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Abstract. Usually, an optimal time window (OTW) centred at the assimilation time to collect measured 

data for an assimilation cycle, can greatly improve the CDA analysis skill. Here, with a simple coupled 10 

model, we study the impact of optimal OTWs on the quality of parameter optimization and climate 

prediction. Results show that the optimal OTWs of valid atmosphere or ocean observations exist for the 

parameter being estimated and incorporating the parameter optimization will do some impact on the 

optimal OTWs for the state estimation. And using the optimal OTWs can enhance the predictability 

both of the atmosphere and ocean. 15 

1. Introduction 

Because of the imperfect model equations, numeric schemes, and physical parameterizations, as well as 

the biased model parameters, climate models always drift away from the real world (e.g., Delworth et 

al., 2006; Collins et al., 2006; Zhang, 2011a,b; Zhang et al., 2012; Wu et al., 2012,2013b; Liu et al. 

2014a,b; Han et al., 2014;). Parameter optimization, which includes the model parameters into control 20 

variables, is a promising way to partly compensate for the bias of the values of the model parameters 

and improve the climate predictability(e.g. Zhang, 2011a,b; Zhang et al., 2012,2013b; Wu et al., 

2012,2013; Liu et al. 2014a,b; Han et al., 2014;). 

In the words of Han et al. (2013), given the importance of the balance and coherence of different model 

components (or media) in coupled model initialization, it has been realized that for the purpose of 25 

climate estimation and model initialization, data assimilation (including model state estimation and 

parameter optimization) should be performed within a coupled model framework which can reasonably 

simulate the interaction of major components of the earth climate system, such as the atmosphere, 

ocean, land, and sea ice and give the assessment of climate changes (e.g. Chen et al., 1995; Zhang et al., 

2007; Randall et al., 2007; Chen, 2010;). And in the coupled climate system, the time scale and 30 

characteristic variability in different media are usually different. When the observational data in one or 

more media are assimilated into a model, information is exchanged among different media and between 

model states and parameters of the couple system. Such an assimilation procedure can sustain the 

nature of multiple time-scale interaction during climate estimation (e.g. Zhang et al., 2007; Sugiura et 
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al., 2008), thus producing coherent and balanced coupled model initialization and parameters that may 

enhance model predictability (e.g., Zhang, 2011b; Yang et al., 2013). 

In each component of a coupled data assimilation system, usually an observational time window (OTW) 

centred at the assimilation time is used to collect measured data (valid observations) for an assimilation 

cycle, assuming that all the collected data sample the observation at the assimilation time, and the 5 

assimilation scheme assimilates all of these valid observations within the OTW into the coupled model 

states and parameters sequentially. As the previous study (Zhao et al., 2015, manuscript submitted to J. 

Climate) has shown that there is an optimal OTW in each coupled component for model state 

estimation so that the assimilation has maximum observational information but minimum variation 

inconsistency and the optimal observational time windows analyzed from the characteristic variability 10 

time scales of coupled media can significantly improve climate analysis and prediction initialization 

since it helps recovering some important character variability such as sub-diurnal cycle in the 

atmosphere and diurnal cycle in the ocean. And the larger the characteristic variability time scale is, the 

larger the corresponding OTW is. The model parameters are lack of direct observations and prognostic 

equations, parameter optimization completely relies on the covariance between a parameter and the 15 

model state (e.g., Zhang, 2011a,b; Zhang et al., 2012; Wu et al. 2012,2013; Han et al., 2014; Liu et al. 

2014a,b). Thus the observational time window (OTW) of the model state in each media of the coupled 

climate system will do some impact on the quality of parameter optimization and climate prediction. 

Questions we attempt to answer in this study are: 1) Whether or not exists an optimal OTW of 

atmosphere or ocean observations for parameter optimization so that the assimilation has maximum 20 

observational information but minimum variation inconsistency? 2) What is the impact of optimal 

OTWs of atmosphere or ocean observations on parameter optimization and climate prediction? 

In this study, with a simple coupled model and the DAEPC algorithm (Zhang et al., 2012) which is 

based on the ensemble adjustment Kalman filter (EAKF, e.g. Anderson, 2001; 2003; Zhang and 

Anderson, 2003;), starting from the characteristic variability time scale of each coupled component and 25 

model parameter, we first identify the optimal OTW for each component and parameter optimization. 

Then we examine the impact of optimal OTWs on parameter optimization and climate prediction. The 

simple coupled model consists of chaotic (synoptic) atmosphere (Lorenz 1963) and seasonal-

interannual slab upper ocean (Zhang et al., 2012) that couples with decadal deep ocean (Zhang 

2011a,b). Although the simple coupled model does not have complex physics as a coupled general 30 

circulation model (CGCM), it does characterize the interaction of multiple time-scale media in the 

climate system (Zhang et al., 2013; Zhao et al., 2015, manuscript submitted to J. Climate). The simple 

model helps us understand the essence of the problem we want to address here. Using the DAEPC 

algorithm with the simple coupled model, we first establish a biased twin experiment framework where 

the degree to which the state and parameter estimation based a certain OTW recovers the truth is an 35 

assessment of the influence of the OTW on the quality of parameter optimization and climate 

prediction. With this biased twin experiment framework, we identify the optimal OTW for the model 

parameters and examine the impact of optimal OTWs on the quality of parameter optimization and 

climate prediction. 
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This paper is organized as follow. Section 2 briefly describes the simple coupled model, the ensemble 

adjustment Kalman filter for state estimation and parameter optimization and the biased twin 

experiment framework. Then the influence of OTW on the quality of the parameter optimization and 

climate prediction are investigated in section 3. Summary and discussions are given in section 4. 

 5 

2. Methodology 

2.1  The model 

Because of the complex physical processes and huge computation cost involved, it is not convenient to 

use a CGCM to study the influence of observational time window on the quality of parameter 

optimization and climate prediction (e.g., Zhang 2011a,b; Zhang et al., 2012; Han et al., 2013, 2014; 10 

Zhao et al., 2015, manuscript submitted to J. Climate). Instead, here we employ a simple decadal 

prediction model developed by Zhang (2011a). Same as Zhang (2011a), this simple decadal prediction 

model is based on the Lorenz’s 3-variable chaotic model (Lorenz, 1963) and couples the three Lorenz 

chaotic atmosphere variables to a slab ocean model (e.g., Zhang 2011a,b; Zhang et al., 2012; Han et al., 

2013,2014; Zhao et al., 2015, manuscript submitted to J. Climate) and a simple pycnocline predictive 15 

model (e.g., Gnanadesikan, 1999; Zhang 2011a,b; Han et al., 2013,2014; Zhao et al., 2015, manuscript 

submitted to J. Climate).  This simple coupled model shares the similar fundamental features with the 

CGCMs to investigate the problems in this study (e.g., Zhang 2011a; Han et al., 2014; Zhao et al., 2015, 

manuscript submitted to J. Climate). The governing equations of this simple coupled climate model are 

as follow:       20 

                                                                                                                    

�̇�1 = −σ𝒳1 + σ𝒳2                                                                                   

�̇�2 = −𝒳1𝒳3 + (1 + 𝒞1ω)𝑘𝒳1 − 𝒳2                                                  

�̇�3 = 𝒳1𝒳2 − 𝑏𝒳3                                                                                   

𝒪𝓂ω̇ = 𝒞2𝒳2 + 𝒞3η + 𝒞4ωη − 𝒪𝒹ω + 𝒮𝓂 + 𝒮s cos(2π𝓉 𝒮𝑝𝑑⁄ )

Γη = 𝒞5ω + 𝒞6ωη − 𝒪𝒹η̇                                                                        

                                                         (1) 

where the five model variables represent the atmosphere  (𝒳1 , 𝒳2and𝒳3)and the upper ocean (ω  for 

the upper slab ocean) and the deep ocean (η for the deep ocean pycnocline). A dot above the variable 

denotes the time tendency. The atmosphere model variables are of high frequency and the standard 25 

values of their relevant parameters (σ, 𝑘 and 𝑏)set as 9.95,28 and 8/3, respectively, which can sustain 

the chaotic nature of the atmosphere in reality. The slab ocean model state is a lower frequency variable. 

And the parameters 𝒪𝓂and  𝒪𝒹in the equation of ω represent the heat capacity and damping coefficient 

of the upper ocean, respectively. The frequency of  ω is much lower than that of the atmosphere model 

variables, thus the slab ocean model state must have a much slower time scale than atmosphere model 30 

variables and the heat capacity should be much larger than the damping rate, namely 𝒪𝓂 ≫ 𝒪𝒹.  Here 

the parameters (𝒪𝓂 , 𝒪𝒹) set as  (10,1), which represent that the time scale of the slab ocean is defined 

as ~O(10), 10 times of the atmospheric time scale ~O(1). While the 𝒮𝓂 + 𝒮𝑠 cos(2π𝓉 𝒮𝑝𝑑⁄ )represents 

the external forcing, 𝒮𝑝𝑑is set as 10, which represents that the period of the external forcing is similar 
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with the time scale of the upper ocean and defines the time scale of the model seasonal cycle. 𝒮𝓂and 𝒮𝑠 

define the magnitudes of the annual mean and seasonal cycle of the external forcing, which are not 

sensitive to the coupled model and set as (10,1). The coefficients 𝒞1and  𝒞2 in the equations of  𝒳2and 

ω are chosen as (0.1,1), which realize the coupling between the fast atmosphere and the slow slab 

ocean, and the 𝒞1represents the slab ocean forcing on the atmosphere and 𝒞2 in contrast. In addition, 𝒞3 5 

and 𝒞4denote the linear forcing of the deep ocean and the nonlinear interaction of the slab and deep 

ocean. For guaranteeing the dominant role of the interaction between atmosphere and the slab ocean in 

the slab ocean model, the magnitudes of 𝒞3 and 𝒞4are smaller than that of 𝒞2and set as 0.01 in this 

study.  In this simple coupled climate model, the seasonal cycle is defined as 10TUs, and thus a model 

year (decade) is defined as 10(100)TUs. In the words of Zhang (2011a), the deep ocean pycnocline 10 

model state  η represent the anomaly of the deep ocean pycnocline depth and its time tendency equation 

is derived from the two-term balance model of the zonal-time mean pycnocline (Gnanadesikan, 1999). 

And in the equation ofη, the parameter Γ is a constant of proportionality and the ratio of Γ and 𝒪𝒹 

defines the time scale of η. Because η is a deep ocean variable, its time scale is larger than that of the 

slab ocean variable ω. Here the time scale of  η is defined as ~O(100), 10 times of the time scale of ω, 15 

namely Γ  is set as 100.  𝒞5 and 𝒞6 denote the linear forcing of the slab ocean and the nonlinear 

interaction of the slab and deep ocean. Also for guaranteeing that the linear interaction is stronger than 

the nonlinear interaction and the nonlinear interaction in the slab ocean model is stronger than that in 

the deep ocean pycnocline model, the number magnitudes of 𝒞5  is larger than that of  𝒞6 and the 

magnitudes of  𝒞4 is larger than that of𝒞6. Here, 𝒞5 and 𝒞6 are set as (1,0.001). So in this study, the 20 

standard values of the parameters including in this simple coupled 

model (σ, 𝑘, 𝑏, 𝒞1, 𝒞2, 𝒪𝒹 , 𝒪𝓂 , 𝒮𝓂 , 𝒮𝑠, 𝒮𝑝𝑑 , Γ, 𝒞3, 𝒞4, 𝒞5, 𝒞6) are set as 

(9.95,28,8/3,0.1,1,1,10,10,1,10,100,0.01,0.01,1,0.001)(e.g., Zhang 2011a,b; Zhang et al., 2012; Han et 

al., 2013,2014; Zhao et al., 2015, manuscript submitted to J. Climate). 

In this paper, the simple coupled model uses the fourth-order Runger-Kutta (RK4) time-differencing 25 

scheme (e.g., Han et al., 2014; Zhao et al., 2015, manuscript submitted to J. Climate), which can be 

described as following Eq.(2). Where 𝑘0 − 𝑘3represent four time levels. φ represents state variables in 

Eq.(1). Δ𝓉 is the time interval (Here ∆𝓉 = 0.01TU) and ℱ is the right term of state variables in Eq.(1). 

𝑘0 = ∆𝓉ℱ(φ𝓃)                                           

𝑘1 = ∆𝓉ℱ(φ𝓃 + 𝑘0 2⁄ )                            

𝑘2 = ∆𝓉ℱ(φ𝓃 + 𝑘1 2⁄ )                            

𝑘3 = ∆𝓉ℱ(φ𝓃 + 𝑘2)                                 

φ𝓃+1 = φ𝓃 +
1

6
(𝑘0 + 2𝑘1 + 2𝑘2 + 𝑘3)

                                                                                                  (2) 

Zhang (2011b) illustrated that, this simple coupled climate model with the standard parameters 30 

described above can share the common feature that different components of various timescales interact 

with each other to develop climate signals with the real world climate system. In the words of Han et al. 

(2014), in this simple coupled model, the transient atmosphere attractor, the slow slab ocean and the 

even-slower deep ocean interact to produce synoptic decadal timescale signals (see Zhang, 2011a; Han 

et al., 2014; Zhao et al., 2015, manuscript submitted to J. Climate). 35 
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2.2   Ensemble coupled data assimilation for state and parameter estimation 

In the words of Zhang (2011a), an ensemble filter uses the error statistics evaluated from ensemble 

model integrations, such as the error covariance between model states to extract observational 

information to adjust the model states for state estimation (e.g., Evensen, 1994, 2007; Anderson, 2001; 

Hamill et al., 2001; Zhang, 2011a,b; Zhang et al., 2012; Wu et al., 2012,2013; Han et al., 2014; Liu et 5 

a., 2014a,b;). And the ensemble-evaluated covariance between the model states and model parameters 

can also be used to estimate the model parameters (e.g., Anderson, 2001; Annan and Hargreaves, 2004; 

Annan et al., 2005; Askoy et al., 2006a,b; Evensen, 2007; Hansen and Penland, 2007; Kondrashov et 

al., 2008; Tong and Xue, 2008b; Yang and Delsole, 2009; Delsole and Yang, 2010; Zhang, 2010; 

Zhang 2011a,b; Wu et al., 2012,2013; Han et al., 2014; Liu at al., 2014a,b; Zhang et al., 2015;). In this 10 

study, the authors employ the DAEPC algorithm (Zhang et al., 2012), which is based on the standard 

ensemble adjustment Kalman filter (EAKF, e.g., Anderson 2001; 2003; Zhang and Anderson, 2003; 

Zhang et al., 2007), to implement the coupled state estimation and adaptive parameter optimization. 

And the EAKF algorithm is a sequential implementation of ensemble Kalman filter (Kalman, 1960; 

Kalman and Bucy, 1961) under an “adjustment” idea. The assumption of independence of observation 15 

error allows the EAKF to sequentially assimilate observations into corresponding model states and 

parameters (Zhang, 2003; Zhang et al., 2007). On one hand the EAKF algorithm can provide much 

computation convenience for data assimilation and parameter optimization, on the other hand it can 

maintains much the non-linearity of background flows as much as possible (e.g., Anderson, 2001; 2003; 

Zhang and Anderson, 2003). 20 

Based on the two-steps of EAKF (Anderson, 2001; 2003), the first step computes the observational 

increment (e.g., Zhang et al., 2007; Wu et al., 2012,2013) using  

∆𝒴𝑘,𝒾 = (�̅�𝑘
𝒰 + ∆�́�𝑘,𝒾) − 𝒴𝑘,𝒾

𝒫                                                                                                                   (3) 

where ∆𝒴𝑘,𝒾denotes the observational increment of the 𝒾th ensemble member of the 𝑘th observation 

𝒴𝑘,𝒾; �̅�𝑘
𝒰 is the posterior mean of the 𝑘th observation; ∆�́�𝑘,𝒾 is updated ensemble spread of the 𝑘th 25 

observation for the ensemble member; 𝒴𝑘,𝒾
𝒫 is the 𝒾th prior ensemble member of the 𝑘th observation. 

Once the observation increment is computed as above, it can be projected onto related model variables 

and parameters using the following uniform linear regression formula: 

∆𝒵𝑘,𝒾 =
𝒞(𝒵 𝓅,𝒴𝑘)

σ𝑘
2 ∆𝒴𝑘𝒾,                                                                                                                              (4)  

Where  ∆𝒴𝑘𝒾,represents the observation increment of 𝒴𝑘𝒾,and 𝒞(𝒵 𝓅 , 𝒴𝑘) defines the error covariance 30 

between the prior ensemble of the model state or parameter variables and the model estimated 

observation ensemble. σ𝑘is the standard deviation of the model estimated ensemble of 𝒴𝑘. The term 

∆𝒵𝑘,𝒾is the contribution of the 𝑘th observation to the model state or parameter variables 𝒵for the 𝒾th 

ensemble member (e.g., Zhang 2011a.b; Zhang et al., 2012; Wu et al., 2012,2013;  Han et al., 2014; 

Liu et al., 2014a,b;). The application of Eq.(4) to the coupled model states when the reliable 35 

observations are available implements CDA for state estimation in a straight forward manner (Zhang et 

al., 2007; Zhang 2011a;). However because of the model parameters are lack of the internal variability 

and prognostic equation, effective parameter estimation is very difficult before the uncertainty of model 

states have been sufficiently constrained by observation. And in order to achieve a signal-dominant 
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parameter-state covariance and have an enhancive parameter correction with observation information, 

the application of Eq.(4) for parameter optimization must be delayed until the coupled model state 

estimation reaches a quasi-equilibrium, where the errors of model states become mainly contributed 

from model parameter errors. (e.g., Zhang, 2011a,b; Zhang et al., 2012; Wu et al., 2012,2013; Han et 

al., 2014; Liu et al., 2014a,b;). Once the model parameters are optimized by the Eq.(4), the updated 5 

parameters will further promote the state estimates in the next data assimilation cycle. 

In addition, the inflation scheme is essential for the parameter optimization. In this study, the inflation 

scheme for the DAEPC algorithm follows Zhang et al. (2012), which is formulated as  

β̃ℓ = β̅ℓ + max (1,
α0σℓ,0

σℓσℓ,𝓉
) (βℓ − β̅ℓ)                                                                                                     (5) 

Same as Zhang et al. (2012), βℓand β̃ℓrepresent the prior and the inflated ensemble of the ℓth parameter. 10 

σℓ,𝓉 and σℓ,0are the prior spreads of βℓat time 𝓉 and the initial time. α0 is the constant tuned by a trial-

and-error procedure. σℓ is the sensitivity of the model state with regard to βℓ(see the similar experiment 

of model sensitivities on parameter described in Zhang (2011b) and Zhang et al. (2012)). And the 

β̅ℓ represents the ensemble mean. The Eq.(5) indicates that if the prior spread of βℓ is less than 

α0 σℓ⁄ times the initial spread, it will be enlarged to this amount (e.g., Zhang 2011a.b; Zhang et al., 15 

2012; Wu et al., 2012,2013;  Han et al., 2014; Liu et al., 2014a,b;). 

2.3 Biased twin experiment framework setup 

In this study, a bias twin experiment framework is designed. Same as Zhang (2011a), in the biased twin 

experiment, while the “truth” model uses the standard parameter values listed in section 2.1, the 

assimilation model uses biased parameter values that have 10% overestimated error than the 20 

corresponding standard values. In this study we assume that the parameter errors are the only source of 

model errors. The “truth” model produces the true solution of the model states and observations are 

sampled from the “truth”. The model starts from the initial condition (0,1,0,0,0) and integrates forward 

10000TUs (1TU= 100∆𝓉) for sufficient spin-up. After the spin-up, the model integrates for another 

10000TUs for producing the “truth” and observations. The observations are produced through sampling 25 

the “true” model state values at an observational frequency and superimposed with a white noise which 

simulates the observational error. Here, the observational intervals of all the valid observations in this 

simple coupled model are all assumed to be 1 time step. (Although in the real observation system, the 

atmosphere observations are available more frequently than the ocean and less frequently than the time 

step. In this study, we are concerned about the influence of the observational time window on the 30 

quality of coupled data assimilation (including the state and parameter estimation) and the optimal 

observational time window for each component and model parameters. If the observational intervals 

are set too large, it may damage the characteristic variability. Thus, we hope the observational time 

interval is small as much as possible. So, for simplicity, the observational intervals are all set to be 1 

time step). The standard deviations of the observation errors are 2 for  𝒳1, 𝒳2, 𝒳3and 0.5 for ω. And 35 

usually there is no valid observations in the deep ocean, thus no observation is available for η(e.g., 

Zhang 2011a,b; Han et al., 2014; Zhao et al, 2015, manuscript submitted to J. Climate). The biased 

model with the biased parameters is used to produce the biased initial condition for all the following 
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assimilation experiments.  And it also starts from the initial condition (0,1,0,0,0) and spins up for 

10000TUs. A Gaussian white noise with the same standard deviations as the corresponding 

observational errors (2 for 𝒳1, 𝒳2and𝒳3, 0.5 for ω, 0.06 for η) is added on the model states at the end 

of spin-up to form the ensemble initial condition. In all of the assimilation experiments, same as the 

previous studies (e.g., Zhang 2011a,b; Han et al., 2013; 2014), the assimilation intervals are set to be 5 5 

time steps for 𝒳1 , 𝒳2, 𝒳3and 20 time steps forω, respectively. The total data assimilation period is 

10000TUs, and parameter optimization is started after 3000TUs when state estimation reaches its 

“quasi-equilibrium” (e.g., Zhang, 2011a,b; 2012;  Wu et al., 2012,2013; Han et al., 2014). And another 

2000TUs will be the spin-up of the parameter optimization. All statistics are computed using the results 

of the last 5000TUs. In this study, the observations including in the observational time windows 10 

(OTWs) will be used to sequentially adjust the model states or/and parameter being estimated at the 

assimilation time in all the assimilation experiments. And throughout this study, all the assimilation 

experiments do not use the multi-variate adjustment scheme. (As Zhao et al. (2015, manuscript 

submitted to J. Climate) has shown that the multi-variate adjustment scheme just using the cross 

covariance will not change the characteristic variability time scales and the optimal observation time 15 

window in different components. And the multi-variate adjustment scheme using the coupling 

covariance cross the different media may do some impact to the characteristic variability time scales in 

different components, which will complex the investigation of the observational time window. Thus in 

this study, for simplicity, all the assimilation experiments do not use the multi-variate adjustment 

scheme.)  20 

All the assimilation experiments including in the biased experiment frameworks are all start from the 

ensemble initial condition created above and the model are all with the biased parameters. First, in the 

biased twin experiment framework, a free assimilation model control without observation constraint 

servers as a reference for the evaluation of any assimilation with an observation constraint within the 

biased experimental framework, called the model control (CTL). The coupled data assimilation 25 

experiment only assimilates the observations into model states without parameter optimization and the 

observational time windows, called state estimation only (SEO).  And the SEO experiment using the 

optimal observational time windows (both the atmosphere and slab ocean, called ATM-OTW and 

OCN-OTW, respectively) in different media, is called SEO_With_OOTW. The experiments assimilate 

the observations into model states and one single model parameter, called Single Parameter Estimation 30 

(SPE).  As the SPE experiment without using the observational time windows, is called 

SPE_Without_OTW. Among the SPE experiments, the model states estimation and parameter 

optimization use the same observational time windows, called SPE_With_S_P_OTW. (In the 

SPE_With_S_P_OTW experiment, the states estimation and parameter optimization use the same 

observational time windows. So there are two observation time windows for state and parameter 35 

estimation, namely the atmosphere State-Parameter observational time window (ATM-S-P-OTW) and 

Slab Ocean State-Parameter observational time window (OCN-S-P-OTW)). As the SPE experiment, 

only the state estimation or the parameter optimization uses the observational time windows, called 

SPE_With_S_OTW and SPE_With_P_OTW, respectively. (In the SPE_With_S_OTW experiment, 

there are two observational time windows for state estimation, namely ATM-S-OTW and OCN-S-40 
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OTW. And In the SPE_With_P_OTW experiment, there are two observational time windows for 

parameter optimization, namely ATM-P-OTW and OCN-P-OTW.)  

In order to investigate the impact of the OTWs on climate prediction, we conduct some forecast 

experiments aiming to the five cases (SPE_Without_OTW, SPE_With_S_P_OTW, 

SPE_With_S_OTW, SPE_With_P_OTW, SEO_OOTW). Table 1 lists the details of the twin 5 

experiment frameworks. 

Same as Zhang and Anderson (2003), based on the trade-off between computation cost and 

assimilation quality, the ensemble size of 20 is chosen in this study (e.g., Zhang and Anderson, 2003; 

Zhang, 2011a,b; Zhang et al., 2012; Wu et al., 2012,2013; Zhang et al., 2015; Han et al., 2013; 2014; 

Zhao et al, 2015, manuscript submitted to J. Climate). 10 

 

3.   Impact of OTWs on the quality of the parameter optimization and climate prediction 

In this section, under the biased twin experiment framework, we will show the influence of OTWs on 

the quality of the parameter optimization and climate predictability. 

3.1  Characteristic variability of each component and parameter of the model 15 

In a coupled climate model, the characteristic variability time scale at which the flow varies in different 

media is different. Sustaining the characteristic variability of the different components in the coupled 

model is the key to improving the quality of the coupled data assimilation. If an OTW is too large, it 

may damage the characteristic variability of the model, which will adversely impact the state 

estimation. Thus, the OTW must be smaller than the corresponding characteristic variability time scale 20 

of the component. As the previous study (Zhao et al., 2015, manuscript submitted to J. Climate) has 

shown that the characteristic variability time scale of the model atmosphere (𝒳2), upper ocean (ω) and 

deep ocean (η) is about 1TU, 10TUs (1 model year) and 100TUs (1 model decade), respectively, 

through the power spectrum analysis. And the optimal Atmosphere observation time window (ATM-

OTW) and slab ocean observation time window (OCN-OTW) in the CDA_NoMul_OTW_bias 25 

experiment are about 3 and 21, respectively, (Here 3/21  represent that there are 3/21 valid observations 

beside each side of the Central Time Point (right at the assimilation time, namely there are 7/43 valid 

observations within the ATM-OTW/OCN-ATW) which is much smaller than the corresponding 

characteristic variability time scale of each component (100/1000). And the larger the characteristic 

variability time scale is, the larger the corresponding optimal OTW is. 30 

In this study, each model parameter in the coupled climate model takes a globally  uniform value, 

which do not change with time. Thus, we can think that the characteristic variability time scales of the 

model parameters in this study are all about 0TU. And the characteristic variability time scales of the 

model states are much larger than those of the model parameters. Using the observational information 

of the model states to correct the biased model parameters will do some impact on the optimal 35 

observational time windows for the parameter optimization and climate prediction. 
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3.2  Optimal observational time windows for the model parameters 

In order to study the impact of the observational time window on the quality of the parameter 

optimization, we should set two observational time windows for the parameter optimization. Here there 

are two ways to establish these two observational time windows: the model state and parameter 

estimation use the same or different observational time windows (ATM-OTW and OCN-OTW). When 5 

the model state and parameter estimation use the same observation time windows, there are two 

observational time windows for model state and parameter optimization (ATM-S-P-OTW and OCN-S-

P-OTW). Otherwise, there are two observational time windows for the state estimation and another two 

observational time windows for the parameter optimization (ATM-S-OTW, OCN-S-OTW and ATM-P-

OTW, OCN-P-OTW). But the four OTWs case not only complex the adjusting and computation 10 

process, but also it may complex the investigation in this study and be not suitable in reality. Thus in 

this study we only consider the case that the state estimation and parameter optimization use the same 

OTWs. 

In the biased experiment framework, the coupled models set with the biased values of all the 

parameters and initialized from the perturbed ensemble initial conditions. The CTL experiment is set 15 

without the observational constraint and the model ensemble is integrated for 10000TUs, serving as the 

reference to other assimilation experiments in the biased twin experiment framework. The SEO 

experiment just assimilate the observations at the assimilation time into the model states without 

observational time windows and parameter optimization and the SEO_OOTW experiment uses the 

optimal observational time windows (3 and 21 for  ATM-OTW and OCN-OTW, Zhao et al., 2015, 20 

manuscript submitted to J. Climate) for state estimation.  And in this study we consider that 

characteristic variability time scales of all the model parameters are same (0 TU). So for simplicity, we 

can choose one parameter to investigate the impact of the observational time windows on the parameter 

optimization. In this study we choose the model parameter 𝑘 (the standard value is 28 and 

overestimated value is 2.8, namely the RMSE of the parameter is 2.8 if without parameter optimization) 25 

to conduct the SPE experiments. As the SEO experiment does, the SPE_Without_OTW just assimilate 

the observations at the assimilation time into the model state and parameter estimation. In the 

SPE_With_S_P_OTW, the state estimation and parameter optimization use the same observational 

time windows. In the SPE_With_S_P_OTW experiment, there are two OTWs, which collect the valid 

atmosphere and slab ocean observations, called the ATM-S-P-OTW and OCN-S-P-OTW, respectively. 30 

The first step we set the OCN-S-P-OTW as 0 (means a single observation and no window). Next, we 

use L to represent the length of an OTW, meaning that the OTW includes L valid observations at either 

side of the assimilation time, so the total number of observations within the OTW is 2L+1. Fig. 1 

shows the root-mean-square errors (RMSEs) of 𝒳1,2,3ω and η ,where the 𝒳1,2,3 is the arithmetical 

average of the RMSEs of the atmosphere model sates.  35 

From Fig.1, we can learn that the optimal ATM-S-P-OTW and OCN-S-P-OTW for state estimation are 

about 2 and 10, which represent that the atmosphere (slab ocean) OTW includes 5 (21) valid 

atmosphere (slab ocean) observations and the lengthen of the optimal ATM-S-P-OTW (OCN-S-P-

OTW) is 4(20) time steps, with the evidence of  the lowest RMSEs of the 𝒳1,2,3and ω. And the RMSEs 
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of the 𝒳1,2,3, ω and η are respectively reduced about 30%(50%), 62%(21%) and 13%(2%) compared to 

the experiment of SPE_Without_OTW (SEO_With_OOTW). The optimal OTWs for state estimation 

are smaller than the corresponding ones in the SEO_With_OOTW experiment (3 and 21, respectively). 

But for the parameter being estimated, the optimal OTWs are 0 and 20, respectively.  And the RMSE 

of the parameter being estimated (𝑘) is reduced about 37% but increase about 28% compared to the 5 

experiment of SEO and SPE_Without_OTW, respectively, when using the optimal  OTWs for state 

estimation (2 and 10).  

We conduct another two experiments which only use the OTWs for state estimation or parameter 

optimization, namely the SPE_With_S_OTW and SPE_With_P_OTW experiment. And in the 

SPE_With_S_OTW experiment, we only use the OTWs for state estimation and assimilate the 10 

observations at the assimilation time into the parameter being estimated. And the results are shown as 

Fig. 2. 

Figure 2 shows that the optimal OTWs (ATM-S-OTW and OCN-S-OTW) for state estimation are 

about 1 and 17, respectively, with the evidence of the lowest RMSEs of the𝒳1,2,3 and ω. And the 

RMSEs of the𝒳1,2,3, ω and η are respectively reduced about 20% (42%), 61% (17%) and 15%(2%) 15 

compared to the experiment of SPE_Without_OTW (SEO_With_OOTW). Also the optimal OTWs for 

state estimation are smaller than the corresponding ones in the SEO_With_OOTW experiment (3 and 

21, respectively). But the optimal OTWs for the parameter being estimated are about 0 and 6, 

respectively. And the RMSE of the parameter being estimated (𝑘) are reduces about 38.4% but 

increases about 11% compared to the experiment of SEO and SPE_Without_OTW, respectively, when 20 

using the optimal OTWs for state estimation (1 and 17).  

In the SPE-P-OTW experiment, we only use the OTWs for parameter estimation and assimilate the 

observations at the assimilation time into the model states. The results are as Fig. 3. 

Also from Fig. 3, we can learn that the optimal OTWs (ATM-P-OTW and OCN-P-OTW) for state 

estimation are 0. The results are as same as the SPE_Without_OTW experiment. But for the RMSE of 25 

the parameter being estimated, the optimal OTWs are about 0 and 20, respectively. And the RMSE of 

the parameter are reduced less than 2% compared to the experiment of SPE_Without_OTW experiment 

when the OTWs are set as 0 and 20, respectively. 

The results of above experiments show that the optimal OTWs (ATM-S-P-OTW and OCN-S-P-OTW 

in the SPE_With_S_P_OTW; ATM-S-OTW and OCN-S-OTW in the SPE_With_S_OTW) for state 30 

estimation are smaller than the corresponding ones in the SPE_OOTW experiment. And the RMSE of 

the model states are reduced greatly when using these optimal OTWs for state estimation. But these 

optimal OTWs are not optimal for the parameter optimization.  And the optimal OTWs (ATM-S-P-

OTW and OCN-S-P-OTW in the SPE_With_S_P_OTW; ATM-P-OTW and OCN-P-OTW in the 

SPE_With_P_OTW) for parameter optimization are about 0 and 20, respectively.  35 

The ATM-S-OTW and OCN-S-OTW aims to projecting more of the observational information of state 

variables onto the model state estimation and then do some impact on the parameter estimation with the 

observations at the assimilation time.  And the ATM-P-OTW and OCN-P-OTW aim to projecting more 

of the observational information of state variables onto the model parameter being estimated and then 

do some impact on the model states in the next assimilation cycle. So adjusting the ATM-S-OTW and 40 
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OCN-S-OTW (ATM-P-OTW and OCN-P-OTW) will do some impact on the estimation of the model 

parameter (states). 

Each parameter in the coupled climate model in this study takes a globally uniform value and the 

characteristic variability time scales can be considered as 0, which are much smaller than those of the 

model states and cause that the optimal OTWs for state estimation are smaller than the corresponding 5 

ones in the SEO_With_OOTW experiment (3/21). And the optimal OTWs of atmosphere observations 

for parameter optimization are much smaller than those of slab ocean observations, which is owing to 

characteristic variability time scales of the atmosphere model states are much smaller than that of the 

slab ocean model state. And when using the optimal OTWs of slab ocean observations for parameter 

optimization, the RMSE of the parameter being estimated are reduced slightly (less than 5%), which is 10 

owing to that the parameter (𝑘) is not sensitive to the slab ocean observations. 

3.3  Impact of the OTWs on climate prediction 

Compared to the SEO_Without_OOTW experiment, above three experiments improve the quality of 

state or parameter estimation to some degree, but we are not sure that which case (SEO_OOTW, 

SPE_Without_OTW, SPE_With_S_P_OTW (OTWs are set as 2 and 10, respectively), 15 

SPE_With_S_OTW (OTWs are set as 1 and 17, respectively), SPE_With_P_OTW (OTWs are set as 0 

and 20, respectively); the RMSEs of the model states in the SPE_With_S_P_OTW case is smallest and 

the RMSE of the model parameter being estimated in the SPE_With_P_OTW case is smallest) is of the 

best skill of prediction. Thus we will conduct some prediction experiments to investigate the impact of 

the OTWs on the climate prediction. 20 

We launch 20 forecasts (each forward up to 50TUs (5000 time steps)) with the initial conditions 

selected every 50TUs apart during 8000-9000TUs. And in this twin experiment framework, we 

evaluate forecast skills using the anomaly correlation coefficient (ACC) and root-mean-square-error 

(RMSE) of forecasts verified with the “truth” (Zhang 2011b; Zhang et al. 2012).  And the ACCs and 

RMS errors of typical “weather” forecasts (𝒳2 , in 1.5TUs, for instance), SI (ω, in 5-10TUs) and 25 

decadal (η, in 50-100TUS) prediction are shown in Fig. 4。 

With the improved initial conditions, the SPE_Without_OTW, SPE_With_S_OTW, 

SPE_With_P_OTW and SPE_With_S_P_OTW case greatly enhance the predictability of both 

atmosphere and ocean, evidenced with much higher ACC and  lower RMS error compared to the 

SEO_OOTW case. If an ad hoc value of 0.6 ACC is use to characterize the time scale of a valid 30 

forecast/prediction (e.g., Hollingsworth et al., 1980; Zhang 2011a; Zhang et al. 2012;), the 

SPE_Without_OTW, SPE_With_S_OTW, SPE_With_P_OTW and SPE_With_S_P_OTW case extend 

a valid forecast of the atmosphere by once (beyond 0.6 TU from 0.3TU). Also the valid predictions for 

the upper ocean are extended by 4%, 8%, 4% and 12%, respectively, for the above four cases. The 

valid predictions for the deep ocean are extended by about 15%. And the predictability of the 35 

SPE_With_S_OTW and SPE_With_S_P_OTW case are slightly better than that of the 

SPE_With_P_OTW and SPE_Without_OTW case. The SPE_With_S_OTW and 

SPE_With_S_P_OTW case provide more accurate initial conditions but slight less accurate parameters 

than the SPE_With_P_OTW and SPE_Without_OTW case, which suggest that the initial conditions 
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play an more important role than the model parameter for the climate prediction when the accuracy of 

the parameter being estimated is lower (in all the SPE experiments, only the parameter (𝑘) is estimated 

and other parameters are all biased). 

Above results show that the optimal observation time windows for state estimation or/and parameter 

optimization can enhance the predictability both of the atmosphere and ocean. And the reason why the 5 

improvement of the predictability of the ocean is not obvious is that in all the SPE experiments only 

one parameter has been estimated and the parameter (𝑘)is not sensitive to the ocean model states. 

 

4.  Summary and discussion 

The errors in the values of parameters in a coupled climate model are a source of model bias that 10 

causes the model to drift away from the real world. As the previous study (Zhao et al., 2015, 

manuscript submitted to J. Climate), in each component of a coupled data assimilation system, an 

observational time window centred at the assimilation time is used to collect measured data for an 

assimilation cycle, assuming that all the collected data sample the observational information that is 

assimilated into the coupled model. The optimal observational time window for each component exists 15 

so that CDA can recover the most accurate climate signals with more observational information but 

minimum inconsistence of time variations in each coupled component. And he use of optimal 

observational time windows analyzed from the characteristic variability time scales of coupled media 

can significantly improve climate analysis and prediction initialization since it helps recovering some 

important character variability such as sub-diurnal cycle in the atmosphere and diurnal cycle in the 20 

ocean.  Thus in this study the impact of the observational time window on the parameter optimization 

and climate prediction has been thoroughly examined using the DAEPC algorithm which is based on 

the ensemble adjustment Kalman filter consisting of a simple coupled model. The optimal 

observational time windows of valid atmosphere or ocean observations exist for the parameter being 

estimated. And when the state estimation and parameter optimization use the same OTWs (which is 25 

suitable in practical applications), the optimal OTWs are smaller than the corresponding ones of the 

case only state estimation using the OTWs and without parameter optimization, which is owing to that 

each parameter of this coupled model takes a globally uniform value and its characteristic variability 

time scale is smaller than those of the coupled model components.  And the larger the characteristic 

variability time scale of the model states that the observations samples from is, the larger the 30 

corresponding OTW for parameter optimization is. The optimal observational time windows for state 

estimation or/and parameter optimization can enhance the predictability both of the atmosphere and 

ocean. The simple model results suggest that when a general coupled circulation model (CGCM) is 

combined with the climate observing system, the use of optimal observational time windows can 

significantly improve climate analysis and prediction initialization. 35 

Although the optimal observational time window for state and parameter estimation has shown great 

improvement in this simple coupled model, serious challenges still exist when it is applied to CGCMs 

to improve the accuracy of the state and parameter estimations and the skill of climate prediction. First, 

the characteristic variability time scale in different components of the CGCM is impacted by many 
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other unknown factors owing to the complex physics. Characteristic variability in a CGCM needs to be 

thoroughly analyzed before an optimal observational time window is determined. Second, in this study 

we assume that all the valid observations including in the observational time window are equal weight 

to make contribution to coupled model state and parameter estimation. In fact, the further the 

observation is away from the assimilation time, the less contribution it makes to the state and parameter 5 

estimation. So how to measure the weights of the observations including in the observational time 

windows in the complex CGCM remains to be resolved. In addition, the multi-variate adjustment 

scheme with the coupling covariance between the model states in different media is the important 

effective methods to improve the accuracy of coupled model state and parameter estimation. So the 

impact of the optimal observational time window on the multi-variate adjustment scheme using the 10 

coupling error covariance should be investigated in the future studies. 

 

Acknowledgements 

Thanks go to Drs. Shaoqing Zhang at GFDL for his comments and suggestions at the early version of 

this manuscript. The authors would like to thank Drs. Chang Liu, Xuefeng Zhang, Xinrong Wu, Wei Li, 15 

Lianxin Zhang for their generous helps. Conversation with Drs. Xue Du, Renfeng Jia, Wang Li, Di Wu 

and Ting Zhao led to modifications of many for the first version of the manuscript. This work was 

supported by the National Natural Science Foundation of China (No.51379049), the Fundamental 

Research Funds for the Central Universities of China (No.HEUCFX41302, No.HEUCFD1505), the 

Young College Academic Backbone of Heilongjiang Province (No.1254G018), and the Scientific 20 

Research Foundation for the Returned Overseas Chinese Scholars, Heilongjiang Province 

(No.LC2013C21). 

 

APPENDIX 

Following the previous studies (e.g., Collins 2002; Zhang et al. 2013a), the root-mean-square error 25 

(RMSE) and anomaly correlation coefficient (ACC) base on a set of forecast experiments are 

calculated as following: 

ACC(τ) =
1

N

∑ [�́�𝒻,𝒿(τ)−𝒳𝒻
́̅̅ ̅̅ (τ)][�́�𝓉,𝒿(τ)−𝒳𝓉́

̅̅ ̅̅ (τ)]N
𝒿=1

δ𝒻(τ)δ𝓉(τ)
                                                                                            (A1) 

RMSE(τ) = √
1

N
∑ [[�́�𝒻,𝒿(τ) − �́�𝓉,𝒿(τ)]]

2
N
𝔧=1                                                                                          (A2) 

Where the superscript prime represents an anomaly value of variable 𝒳at the lead time τ of the truth 30 

(denoted by the subscript 𝓉) and forecast (denoted by the subscript 𝒻). N represents the total number of 

the forecast experiments for each forecast case (in this study N is set as 20). The overbar and 

δ represent the average and the standard deviation of the anomaly values, respectively (Collins 2002; 

Zhang et al., 2013a, Han et al., 2013). 
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Table 1: List of all the experiments used in this study 

Abbreviation Description Observation time windows 

CTL 
Bias model without observation 

constrain 

Not using the observational 

time windows 

SEO  

Bias model with model states 

estimation only and without 

parameter optimization and 

using the observational time 

window  

Not using the observational 

time windows 

 

SEO_With_OOT

W 

 

Bias model with model states 

estimation only and without 

parameter optimization and 

using the optimal observational 

time window  

ATM-OTW 

OCN-OTW 

SPE_Without_O

TW 

Bias model with state estimation 

and single parameter 

optimization and without using 

the observational time window 

Not using the observational 

time windows 

SPE_With_S_P_

OTW 

Bias model with state estimation 

and single parameter 

optimization and with using the 

observation time window, the 

state estimation and the 

parameter optimization using the 

same observation time windows 

ATM-S-P-OTW 

OCN-S-P-OTW 

State estimation and 

parameter optimization use 

the same observational time 

windows 

SPE_With_S_OT

W 

Bias model with state estimation 

and single parameter 

optimization and with using the 

observational time window, only 

the state estimation using the 

observational time windows 

ATM-S-OTW 

OCN-S-OTW 

Only state estimation using 

the observation time window 
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SPE_With_P_OT

W 

Bias model with state estimation 

and single parameter 

optimization and with using the 

observation time window, only 

the parameter optimization using 

the observational time windows 

ATM-P-OTW 

OCN-P-OTW 

Only parameter optimization 

using the observational time 

windows 

F (SEO_With_ 

OOTW) 

Forecast experiment for the 

SEO_OOTW case 

ATM-OTW(3) 

OCN-OTW(20) 

F (SPE_Without 

_OTW) 

Forecast experiment for the 

SPE_Without_OTW case 

Not using the observational 

time windows 

F
(SPE_With_S_ 

P_OTW) 

Forecast experiment for the 

SPE_With_S_P_OTW case 

ATM-S-P-OTW (2) 

OCN-S-P-OTW(10) 

State estimation and 

parameter optimization use 

the same observational time 

windows 

F (SPE_With_S 

_OTW) 

Forecast experiment for the 

SPE_With_S_OTW case 

ATM-S-OTW(1) 

OCN-S-OTW(17) 

Only state estimation using 

the observational time 

windows 

F (SPE_With_P 

_OTW) 

Forecast experiment for the 

SPE_With_P_OTW case 

ATM-P-OTW(0) 

OCN-P-OTW(20) 

Only parameter optimization 

using the observational time 

window 
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Figure 1. Variations of RMSEs of the a) atmosphere states 
1,2,3x  (namely the average 5 

RMSE of the atmosphere states 1x , 2x and 3x ), b) the upper-ocean variable w , c) the 

deep ocean psycnocline depth anomaly  and g) the parameter ( k ) with respect to the 

lengthen of the ATM-S-P-OTW, respectively, at the condition that the OCN-S-P-

OTW is set as 0. And defh) represent the RMSEs of the 
1,2,3x , w ,  and parameter k  

with respect to the lengthen of the OCN-S-P-OTW, respectively, with the optimal 10 
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ATM-S-P-OTW as 2. Here the RMSEs of CTL experiment are 15.82 for
1,2,3x , 1.64 

for w and 1.36 for . 
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Figure 2. The same as Fig. 1 but only using the observational time windows for state 

estimation. abcg) represent the RMSEs of the  
1,2,3x , w ,  and parameter k  with 

respect to the lengthen of the ATM-S-OTW, respectively, at the condition that the 10 
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OCN-S-OTW is set as 0. And defh) represent the RMSEs of the
1,2,3x , w ,  and 

parameter k  with respect to the lengthen of the OCN-S-OTW, respectively, with the 

optimal ATM-S-OTW as 1. 
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Figure 3. The same as Fig.1 but only using the observational time windows for 

parameter estimation. abcg) represent the RMSEs of the  
1,2,3x , w ,  and parameter k  10 

with respect to the lengthen of the ATM-P-OTW, respectively, at the condition that 
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the OCN-P-OTW is set as 0. And defh) represent the RMSEs of the 
1,2,3x , w ,  and 

parameter k  with respect to the lengthen of the OCN-P-OTW, respectively, with the 

optimal ATM-P-OTW as 0. 

 

 5 

 

 

Figure 4. Variation of abc) the RMSEs and def) anomaly correlation coefficients 

(ACCs) of the forecasted ensemble mean of 2x , w and  , respectively, with the 

forecast lead time based on 20 forecast cases initialized from the initial condition and 10 

model parameters produced by the SPE_With_S_P_OTW (black-solid line), 

SPE_With_S_OTW ( blue-dotted line) , SPE_With_P_OTW (cyan-blue-dashed line), 

SEO_With_OOTW (red-dotted line) and SPE_Without_OTW (green-dotted line) case. 

And the thin dotted black lines mark a 0.6 ACC level in the def) panels. 
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