Status: this preprint was under review for the journal NPG but the revision was not accepted.
Sea surface temperature patterns in Tropical Atlantic: principal component analysis and nonlinear principal component analysis
S. C. Kenfack,K. F. Mkankam,G. Alory,Y. du Penhoat,N. M. Hounkonnou,D. A. Vondou,and G. N. Bawe
Abstract. Principal Component Analysis (PCA) is one of the popular statistical methods for feature extraction. The neural network model has been performed on the PCA to obtain nonlinear principal component analysis (NLPCA), which allows the extraction of nonlinear features in the dataset missed by the PCA. NLPCA is applied to the monthly Sea Surface Temperature (SST) data from the eastern tropical Atlantic Ocean (29° W–21° E, 25° S–7° N) for the period 1982–2005. The focus is on the differences between SST inter-annual variability patterns; either extracted through traditional PCA or the NLPCA methods.The first mode of NLPCA explains 45.5% of the total variance of SST anomaly compared to 42% explained by the first PCA. Results from previous studies that detected the Atlantic cold tongue (ACT) as the main mode are confirmed. It is observed that the maximum signal in the Gulf of Guinea (GOG) is located along coastal Angola. In agreement with composite analysis, NLPCA exhibits two types of ACT, referred to as weak and strong Atlantic cold tongues. These two events are not totally symmetrical. NLPCA thus explains the results given by both PCA and composite analysis. A particular area observed along the northern boundary between 13 and 5° W vanishes in the strong ACT case and reaches maximum extension to the west in the weak ACT case. It is also observed that the original SST data correlates well with NLPCA and PCA, but with a stronger correlation on ACT area for NLPCA and southwest in the case of PCA.
Received: 24 Jan 2014 – Discussion started: 21 Mar 2014
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.