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Abstract

Principal Component Analysis (PCA) is one of the popular statistical methods for fea-
ture extraction. The neural network model has been performed on the PCA to obtain
nonlinear principal component analysis (NLPCA), which allows the extraction of non-
linear features in the dataset missed by the PCA. NLPCA is applied to the monthly5

Sea Surface Temperature (SST) data from the eastern tropical Atlantic Ocean (29◦ W–
21◦ E, 25◦ S–7◦ N) for the period 1982–2005. The focus is on the differences between
SST inter-annual variability patterns; either extracted through traditional PCA or the
NLPCA methods.The first mode of NLPCA explains 45.5 % of the total variance of SST
anomaly compared to 42 % explained by the first PCA. Results from previous stud-10

ies that detected the Atlantic cold tongue (ACT) as the main mode are confirmed. It
is observed that the maximum signal in the Gulf of Guinea (GOG) is located along
coastal Angola. In agreement with composite analysis, NLPCA exhibits two types of
ACT, referred to as weak and strong Atlantic cold tongues. These two events are not
totally symmetrical. NLPCA thus explains the results given by both PCA and compos-15

ite analysis. A particular area observed along the northern boundary between 13 and
5◦ W vanishes in the strong ACT case and reaches maximum extension to the west
in the weak ACT case. It is also observed that the original SST data correlates well
with NLPCA and PCA, but with a stronger correlation on ACT area for NLPCA and
southwest in the case of PCA.20

1 Introduction

Thorough knowledge of our planet and its climatic variations increasingly becomes
a major concern for humanity. Data collection techniques have witnessed significant
progress, especially with the use of satellites for the collection of mass data; given that
the density of data increases over time. Researchers have to work with more volumi-25

nous data whose management requires more original techniques.
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Sophisticated techniques such as principal component analysis (PCA) have become
indispensable in extracting essential information from voluminous data sets (Von Storch
and Zwiers, 1999). The disadvantage of this conventional method is that only linear
structures can be extracted from data. This limitation of determining only linear struc-
tures means that nonlinear structures are either missed or misinterpreted by these5

methods. Since the 1980s, models of neural networks have been increasingly docu-
mented and Kramer (1991) used this to generalize PCA and popularized its application
for the extraction of nonlinear relationships in a dataset, where the PCA then extends to
nonlinear principal component analysis (NLPCA). The introduction of these two tech-
niques has become determinant in the advancement of environmental science.10

Nonlinear PCA can be performed by a variety of methods, e.g. the neural network
(NN) model using multi-layer perceptrons (MLP) (Kramer, 1991; Hsieh, 2004, 2007),
and the kernel PCA model (Scholkopf et al., 1998). Nonlinear PCA belongs to the
class of nonlinear dimensionality reduction techniques, which includes principal curves
(Hastie et al., 1989), locally linear embedding (LLE) (Roweis et al., 2000) and isomap15

(Tenenbaum et al., 2000). A more complex technique is the Isomap, which finds a
nonlinear transformation that preserves not Euclidean distances between data points,
but an approximation to distances between data points as measured along geodesics
in the data (Aho et al., 1983). Several extensions have since been developed to help
with treating larger data sets (De Silva and Tenenbaum, 2004; Bachmann et al., 2006).20

In comparison, nonlinear principal component analysis (NLPCA) is an extension of the
ideas of principal component analysis to settings where there is a nonlinear relationship
between data variables. Here, we focus on a neural network (Hecht-Nielsen, 1995;
Malthouse, 1998) based NLPCA. It is successfully applied in the fields of atmospheric
and oceanic sciences (Hsieh, 2004; Monahan et al., 2003).25

Many authors (e.g., Hsieh, 2001; Li et al., 2005) have studied the variations of cli-
mate in the tropical Pacific through the application of the NLPCA on the SST of this
region. The subsurface thermal structure of the Pacific Ocean was also studied us-
ing the NLPCA (Tang and Hsieh, 2003). Moreover, this method of statistical analysis
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has been used for some atmospheric study such as Monahan (2001) on sea level
pressure and air temperature over Canada. The tropical Pacific climatic system is
particularly affected by the “El Nino-Southern Oscillation” (ENSO) phenomenon, the
strongest ocean-atmosphere interaction at inter-annual timescale. This phenomenon
was also studied using NLPCA by Hsieh (2004, 2007), who showed that spatial vari-5

ability of Pacific Ocean is non-linear. Previous studies (Li and Philander, 1997) inves-
tigated the seasonal cycle of the Atlantic Ocean. This seasonal cycle is similar to that
of the eastern Pacific, including the appearance in boreal summer of a cold SST ex-
tending westward from the coast (Xie and Carton, 2004). However its similarities to
ENSO have been recognized since the 1980s (Merle et al., 1980; Servain et al., 1982;10

Hirst and Hantenrath, 1983; Philander, 1986). Also, in South China Sea, Chen et al.
(2010) applied NLPCA on SST and showed that this statistical method accounts for
more variance of the total variables in comparison with linear PCA and has the advan-
tage in analyzing inter-annual variability of the South China Sea. A few studies (Aires
and Chédin, 2000; Wilson-Diaz et al., 2001; Everson et al., 1997) have investigated15

PCA in the study of Sea surface temperature, respectively, in the tropical Ocean, the
Arabian Sea and in the western North Atlantic. PCA was used by Constantin (2009) to
the monthly SST data for North Atlantic Ocean and showed that the North Atlantic SST
provides evidence for potential SST predictability at climate timescale. To our knowl-
edge, a study has not been done in the African region using NLPCA.20

The annual cycle of the SST in the GOG can be divided into two seasons: the cold
season from June to September and the warm season from October to May; stopped
in November–December with a little cold season (Xie and Carton, 2004). In the GOG,
there exists a yearly phenomenon, a zone of colder SST along and slightly south-east
of the equator: the Atlantic Cold Tongue. However, the origin of this cold water has been25

a subject of considerable debate. It occurs mainly in the eastern part of the basin where
the equatorial Atlantic thermocline is very close to the surface. It is in the Gulf of Guinea
that there is a strong SST seasonal variability. In May–June, the cold waters appear
first, along the equator between 10 and 0◦ W and then spread to the West (Carton et
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al., 1996). This Cold Tongue is the primary seasonal signal of sea surface temperature
in the equatorial Atlantic Ocean (Merle et al., 1980; Wauthy, 1983). Within the last
decades, numerous studies of climate variability in the tropical Atlantic have identified
two distinct modes in the tropical Atlantic variability at inter-annual time scales (e.g.,
Servain and Merle, 1993; Xie et al., 1999): the equatorial mode and the meridional5

mode. PCA method is used by Servain et al. (1999) and the result is that the meridional
mode is linked to the equatorial mode almost simultaneously. Previous study (Xie and
Carton, 2004) shows that on inter-annual timescales, this equatorial mode is similar
to ENSO in the Pacific. This Atlantic “El Nino” mode is most pronounced in boreal
summer coinciding with the seasonal development of the equatorial cold tongue. In10

this paper we introduce two types of Atlantic cold tongue: weak and strong ACTs which
correspond, respectively, to cold and warm anomaly in the ACT region. Some authors
(Servain et al., 2003) show that the Atlantic mode is much weaker than its Pacific
counterpart and according to other authors (Zebiak, 1993; Carton and Huang, 1994;
Latif and Grötzner, 2000) it is the main difference between these two phenomena.15

Picaut et al. (1984) did a comparison between interannual variability and seasonal
variability of SST in the tropical Atlantic. The result is that interannual changes in SST
are largest in region where the seasonal SST signal is large.

The ocean has a strong impact on the West African climate, especially on precip-
itation. Many studies such as those of Ping et al. (2008) and Nnamchi et al. (2011)20

have attempted to assess its contribution to the establishment of the monsoon. These
studies observed that the weakening of the ocean circulation in the Atlantic contributes
to the slowdown of the African monsoon. Climate variability in West Africa has been
associated with inter-decadal trends of sea surface temperature anomaly in the North-
ern and Southern Hemispheres, and also to the anomaly of sea surface temperature25

in the Atlantic Ocean or in the global ocean (Lamb, 1978; Palmer, 1986; Rowell et
al., 1995). Moreover, modeling results (Messager et al., 2004) show that regional sea
surface temperature appears as a major factor in the seasonal and interannual precipi-
tation of monsoon on the African continent up to 12◦ N. Observational study (Nicholson
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and Dezfuli, 2013) shows that along the Atlantic coast, high rainfall is associated with
above normal SSTs in the equatorial and South Atlantic.

Due to the effect of the Atlantic cold tongue on the West African monsoon, (Oku-
mura and Xie, 2004; Hagos and Cook, 2008) the problem of understanding the inter-
relationship between the Atlantic cold tongue and the African monsoon has remained5

at the center of many research endeavours. The understanding of the Atlantic cold
tongue is then important to understand African climate and might better be understood
using the NLPCA. Much analysis (Lamb, 1977; Lamb and Peppler, 1992; Vizy and
Cook, 2001) shows that the equatorial SST in the Atlantic basin and especially in the
GOG directly influences the distribution and intensity of rainfall over West Africa. Ca-10

niaux et al. (2011) shows an ACT pattern in GOG but there still is room for significant
improvement. The aim of this work is to address the two questions: firstly, are the two
types of ACT mentioned above symmetric? Secondly, can NLPCA show the interannual
variability of SST in the tropical Atlantic?

In this paper we apply PCA and NLPCA on data from the tropical Atlantic SST. The15

paper is organized as follows: Sect. 2 is a brief description of the PCA and NLPCA.
Section 3 describes the results of these methods on the Atlantic sea surface tempera-
ture, where we also discus about composite analysis. The last part concludes.

2 Principal component analysis and nonlinear Principal component analysis

Linear methods of dimensionality reduction like PCA are useful tools for handling and20

interpreting high dimensional data. On the other hand, several nonlinear dimension-
ality reduction methods such as kernel PCA (kPCA), Isomap, local linear embedding
(LLE) and NLPCA have been developed. Many of these nonlinear methods, includ-
ing most of the differential geometry based methods and some of the neural network
based methods, were originally developed in the machine learning and machine vi-25

sion communities for the purpose of extracting low-dimensional information from data
sets applications; such as object identification and feature tracking. Both Isomap and
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NLPCA emanate from the PCA. Isomap is a geometrical/statistical method identified
with (1) cited in the next paragraph while NLPCA (discussed later) is a Neural network
method identified with (2) in the same paragraph. Isomap is the most straight way to
use the geodesic distance for nonlinear projection. The goal of the Isomap (Tenen-
baum et al., 2000) is to preserve the geodesics rather than the Euclidian distances.5

It has been broadly used in a large series of signal and image processing, pattern
recognition and data analysis applications (Gámez et al., 2004). The key factor that
distinguishes Isomap from NLPCA is that Isomap uses a distance function that approx-
imates geodesic distances in the data, while the latter employs Euclidean distances in
the data space. In this work we focus our attention on PCA and NLPCA.10

2.1 Principal component analysis

PCA method is that which analyzes the variability of a single field (Rainfall, SST, etc.).
Commonly, it is used for two objectives: (1) reducing the number of variables compris-
ing a dataset while retaining the variability in the data and (2) identifying hidden pat-
terns in the data, and classifying them with little loss of information. It finds the spatial15

patterns of variability, their time variation, and gives a measure of particular structure
of each uL pattern.

Consider a dataset {xi (t)}, where t is the time. Assume that there is a total of N
samples in t for each variable xi (t), (i = 1, . . . , l ). We group the {xi (t)} into a matrix
x(t). PCA looks for uL which is a linear combination of the {xi (t)} and an associated20

vector, with

uL = ax(t) (1)

so that 〈‖x(t)−auL(t)‖2〉‖ is minimised, and where 〈 · 〉 denotes a sample or time mean.
Here uL is called the first principal component (PC), a time series, while a is the first25

eigenvector of the data covariance matrix, also called an empirical orthogonal func-
tion, (EOF), that describes a spatial pattern. From the residual, x(t)−auL, the second
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PCA mode can similarly be extracted, and so on for higher modes. These methods
have been performed using NN and become nonlinear principal component analysis
(NLPCA).

2.2 Nonlinear principal component analysis

The fundamental difference between NLPCA and PCA is that NLPCA allows a nonlin-5

ear mapping from x to uL (denoted in this part by u to make difference between NLPCA
and PCA terms) whereas PCA allows only a linear mapping. A large number of special-
ized neural networks and learning algorithms have been proposed to perform principal
component analysis (PCA) such as Isomap and NLPCA. There is no conclusive study
that shows which approach is superior. The essential problem with nonlinear methods10

such as Isomap is that there exist few theoretical results underpinning the numerical
algorithms. The network model has greater flexibility than the hierarchical model for
handling complex spatial relationships.

In Fig. 1 the input column vector x of length l are mapped to the neurons in the
hidden layer and the transfer function q1 maps from x to the first hidden layer (the15

encoding layer), represented by h(x), a column vector of length m, with elements

h(x)
k = q1

[(
W (x)x+b(x)

)
k

]
, (2)

(k = 1, . . . ,m) with the sigmoid function

q1 = tanh,20

where W (x) is weight matrices and b(x) is bias parameter vector. The dimensions of x
and h(x) are l and m, respectively, where x is the input column vector of length l , and
m is the number of hidden neurons in the encoding and decoding layers for u. The
neurons u is calculated from a linear combination of the hidden neurons h(x). A second25

transfer function q2 maps the encoding layer to the bottleneck layer containing a single
243
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neuron, which represents the nonlinear principal component u, with

u = q2

[
W ′(x) ·h(x) +b

(x)
]

(3)

with identity function q2. These mappings are standard feed forward NNs and are ca-
pable of representing any continuous function mappings from x to u.5

On the right side of Fig. 1 the top NN (a standard feed forward NN) maps u to x′ in
two steps:

A transfer function q3 maps from u to the final hidden layer (the decoding layer) h(u),

h(u) = q3

((
W ′(u)u+b(u)

)
k

)
, (4)

10

with q3 = tanh and (k = 1, . . . ,m); followed by q4 mapping from h(u) to x′, the output
column vector of length l , with

x′
i = q4

((
W (u)h(u) + b̄(u)

)
i

)
(5)

with identity function q4. To any given accuracy, provided large enough l and m are15

used to maximize by finding the optimal values of W (x), b(x), W ′(x), and b̄(x).
The cost (Hsieh, 2001) function

J1 = 〈‖x′ −x‖2〉 (6)

is minimized by finding the optimal values of W (u), b(u), W ′(u), and b̄(u). The mean20

square error (MSE) between the output x′ and the original data x is thus minimized.
Without loss of generality, we impose the constraint 〈u〉 = 0, hence

b̄x = −〈W ′(x)h(x)〉. (7)
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The total number of free (weight and bias) parameters used by the NLPCA is then
2lm+4m+ l . Furthermore, we adopt the normalization condition that 〈u2〉 = 1. This
condition is approximately satisfied by modifying the cost function to

J = 〈‖x−x′‖2〉+
(
〈u2〉 −1

)2
. (8)

5

The choice of m, the number of hidden neurons in both the encoding and decoding
layers, follows a general principle of parsimony. A larger m increases the nonlinear
modeling capability of the network, but could also lead to overfitted solutions. If q4
is the identity function, and m = 1, then Eq. (5) implies that all x′ are linearly related
to a single hidden neuron, hence there can only be a linear relation between the x′

10

variables. For nonlinear solutions, we need to look at u. In effect, the linear relation (1)
is now generalized to u = f (x), where f can be any nonlinear function represented by
a feed-forward NN mapping from the input layer to the bottleneck layer; and instead of
〈‖x(t)−auL(t)‖2〉, 〈‖x−g(u)‖2〉 is minimized, where g is the general nonlinear function
mapping from the bottleneck to the output layer. The residual, x−g(u), can be input15

into the same network to extract the second NLPCA mode, and so on for the higher
modes.

That the classical PCA is indeed a linear version of this NLPCA can be readily seen
by replacing all the transfer functions with the identity function, thereby removing the
nonlinear modeling capability of the NLPCA (Hsieh, 2001). Then the forward map to20

u involves only a linear combination of the original variables as in the PCA. A number
of runs (mappings from u to x′) used to find the solution with the smallest MSE. The
NLPCA here generalizes easily to more than one hidden layer mappings, as two hidden
layer mappings may outperform single hidden layer mappings in modeling complicated
nonlinear functions.25

We used daily Atlantic sea surface temperature (SST) data (Reynolds et al., 2007)
from NOAA (National Oceanic and Atmospheric Administration). This data set is a mix-
ture of satellite and in situ data with a spatial resolution of 0.25◦ ×0.25◦ from 1982 to
2005 and collected between 256◦S–7◦ N and 29◦ W–21◦ E. This data was combined
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into 0.5◦ by 0.5◦ gridded monthly data because of the simulation time, thus there are
(100×64) 6400 spatial points, 1276 points of missing SST data on the continent, and
(100×64−1276) 5124 spatial and (24×12) time existing points. A climatologically an-
nual cycle was calculated by averaging the data for each calendar month, and monthly
SST anomalies (SSTAs) were defined relative to this annual cycle.5

3 Results: Tropical Atlantic sea surface temperature

3.1 Principal component analysis

The four EOFs modes together account for 97 % of the total monthly SST variance.
Individually, they explain 88, 5, 3, and 1 % of the total variance of SST. The spatial pat-
terns associated with four SST modes are shown in Fig. 2 as homogeneous correlation10

maps EOF1, EOF2, EOF3, and EOF4. Likewise, the four EOFas modes together ac-
count for 68 % of the total monthly SSTA variance. Individually, they explain 42, 12, 8,
and 6 % of the total variance of SSTA. The spatial patterns associated with four SSTA
modes are shown in Fig. 3 as homogeneous correlation maps EOFa1, EOFa2, EOFa3,
and EOFa4.15

EOF1 exhibits (Fig. 2a) a high variance in coastal Angola, which extends from the
coast to the west between 6◦S and 2◦ N and EOF2 exhibits (Fig. 2b) the large variance
in two places: (1) at the Equator between 5◦S and 2◦N, (2) along the coast. The tropical
Atlantic is known for its cold tongue water which is manifested in both the first mode
(discussed later) and the second mode. EOF2 also describes the equatorial mode.20

EOFa1 mode (Fig. 3) accounts for up to 42 % of the variance with the region of largest
amplitude around Angola coast. The signal decreases from East to West between 15◦ S
and 2◦ N. Warm oceanic anomalies appear in the eastern equatorial basin with the
South African coast more pronounced. EOF2a displays an opposite phase between
the North and South parts of 6◦ S while EOF1a is a mixture of equatorial mode and25

ACT. In this section it is known from SSTA that PCA points out the interannual principal
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mode in the Atlantic Ocean. NLPCA can give us information about this variability, and
we may explore it in the following section.

3.2 Nonlinear principal component analysis

For SSTA data, we choose the nonlinear NLPCA model (m = 4) and 2 972 208 param-
eters which greatly exceeds the number of time points. There are still far too many5

spatial variables (number of point in the selected space) for this dataset to be directly
analyzed by the NLPCA. To reduce the number of input variables, the SSTA data is
pre-filtered by PCA and the first 3 PCs (PC1, PC2, and PC3) are used as the input
to the NLPCA network. Each input variable is normalizing by subtracting its mean and
then dividing by the standard deviation of the first PC (Hsieh, 2001). Scatter plots of the10

3 leading principal component time series are shown by the solid black dots in Fig. 4.
All four projections are shown because it is difficult to understand the structure of the
NLPCA approximation from a single projection. This is particularly evident in Fig. 4c,
where the curve, viewed edge-on, appears to be self-intersecting, whereas in fact the
other projections demonstrate that this is not the case.15

The first mode (Fig. 4) of NLPCA explains 73.5 % of the variance of the given EOFs,
i.e. 45.5 % of the total variance of SSTA compared to 42 % explained by the first PCA.
The projection of NLPCA mode in the planes defined by pairing PC1, PC2, and PC3
are shown in blue in Fig. 4. Unlike the PCA, the NLPCA shows the nonlinear form in
SSTA structure.20

The SST anomaly manifests itself as a Wave-shaped curve on the non linear graph
of the first nonlinear mode between the minimum and maximum value of its principal
component u. The non linearity of the sinuosity observed in Fig. 4a is modest and the
maximum of PC1 is smaller than the absolute value of the minimum of PC1. This shows
we have a very cold event, which appears in the Atlantic region.25

Figure 5 is a plot of the standardized time series of nonlinear principal component
(NLPC), which bears a strong resemblance to the ACT time series (defined as the
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average SSTA over the box from 5◦ S to 2◦ N and from the coast to 20◦ W by Caniaux
et al. (2011)). The correlation coefficient of the two series is 0.90.

Linear PCA method describes the evolution in time of a standing oscillation with
fixed spatial structure and time varying amplitude. NLPCA is not so constrained, and
therefore its power lies in characterizing more complex lower-dimensional structures5

(Monahan, 2001). The analysis of these two curves (Fig. 5) indicates that NLPCA can
give information about ACT.

The most important phenomena of the GOG are active during the boreal summer,
especially the Atlantic cold tongue (Xie and Carton, 2004). This Atlantic signal appears
every year in the East Equatorial Atlantic (EEA) and positions itself south of the Equator10

with a longitudinal extent to almost 20◦ W,centered and located a few degrees south of
the Equator in the eastern part of the basin and slightly shifted equator-ward (Caniaux
et al., 2011).Since it is a seasonal phenomenon, we use Caniaux et al. (2011) formula
to extract the active period for our study.

Figure 6 shows the reconstructed field of SST anomaly for some values of the first15

nonlinear component u. The reconstruction of the field is obtained by choosing a par-
ticular value of u associated with each of three PCs (principal components) and multi-
plying by the associated EOFs. Eight values of u are chosen equitably from minimum
to maximum. To display the sequences of ACT (which correspond to minimum of u as
Fig. 4 indicates) and the warmest SSTA (which correspond to the beginning of the ACT20

phase), only the eight minimum (Fig. 6) and maximum (Fig. 7) values of u are selected
for each summer season (May–August) of each year. The latest is chosen for reasons
given in the next section and according to Odekunle and Eludoyin (2008) results in
GOG. It seems that the spatial distribution varies with each selected value of u. For the
case of Fig. 6, this variation from the minimum (strong activity of Atlantic cold tongue)25

to maximum (low activity of Atlantic cold tongue) of the eight minimum of u shows a
contrast between the north-east and southwest of 5◦ S. Figure 6b corresponding to
0.75 min (u) is similar to EOFa1. So, NLPCA explains variances extracted by PCA and
gives more information, which is not obvious by analysis with the PCA.
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Figure 7 as Fig. 6 corresponds to the maximum of u and represents ocean pattern
during the first stage of ACT in the selected months. This result completes those given
by the previous section by giving another structure which is the initial step of the At-
lantic cold tongue. We observe that Fig. 6b is similar to EOFa1 which shows ACT and
then also insinuates equatorial mode. This pattern is repeated from a to h. We saw that5

SSTA is stronger in ACT than other parts of Atlantic Ocean and it is strongest in the
Angola coast. This view appears to corroborate the observations of Hirst and Hanten-
rath (1983) and Rouault et al. (2003) that the variability in tropical southeast Atlantic
SST is strongest in the Angola Benguela frontal current zone region near 15–20◦ S.
Figure 6a represents the coldest year and Fig. 6h the year of the warmest ACT, which10

is not the warmest year but the year of weak ACT. We note in Fig. 6 that the cold
year of ACT is more intense than the warm one. ACT distribution is linear in space.
This result confirms the correlation coefficient between NLPCA and PCA1. As afore
mentioned, Figs. 6a and 6h exhibit strong and weak ACT, respectively. Xie and Carton
(2004) shows that on interannual timescales, there is an equatorial mode of variability15

that is similar to El Nino/Southern Oscillation (ENSO) in the Pacific. And also shows
that this Atlantic Nino is most pronounced in boreal summer coinciding with the sea-
sonal development of the equatorial cold tongue. The strong ACT is more active than
the weak one. Unlike in the Pacific Ocean, the spatial variability of this equatorial mode
in the Atlantic Ocean which is similar to El Nino/Southern Oscillation (ENSO) in the20

Pacific is less linear than the latter.
We may see that the strongest positive SST anomalies lie closer to the Angola coast.

It seems the ACT activity depends on the coastal upwelling in the Angola region. There-
fore the variability of SSTA in Angola coast can give trends in ACT. It also seems the
cold tongue takes its cooling source from Angola. We observe that the weak and strong25

ACTs are symmetric but nevertheless the intensities are different. The more active the
Angola SST is, the larger is the ACT’s active surface. The reverse is also true! We
realize that strong ACT event has an effect on West African coast apart from the An-
golan coast, particularly in the Ghana coast. We may observe the scheme of ACT in
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Fig. 7 which is obvious because it is the early phase of the development of ACT. We
observe that the variance is more positive than the one observed in Fig. 6. In partic-
ular, cold events described by NLPCA mode 1 displays the strongest anomalies near
the Angola coast in the south region centered around 17◦ W, which increases from the
south to the north. Odekunle and Eludoyin (2008) shows that the Cameroon coastal5

border is warmer and in (Fig. 6) we observed that this warmer region on the west side
occurs when ACT is at its maximum and it is seen that the active upwelling are lo-
cated in two regions: the Angolan and the Ghanaian coasts. Some results (Reason
and Rouault, 2006) suggest that the Angolan coast variability can strongly have an ef-
fect surrounding area climate and that the strongest relationships exist between SST in10

the Angola-Benguela Frontal Zone area and rainfall over the region 5◦ W–5◦ E, 5–10◦ N.
The spatial distribution is best described (Fig. 6) by NLPCA than PCA, and the vari-

ance may be represented by these first NLPCA modes. This mode is the resultant
of two linear modes of the PCA. The asymmetry of SSTA in the evolution of NLPCA
mode 1 is modest; the warm event is lightly southwards than the cold event.15

Monahan (2001) observed for the results in the Pacific Ocean that the NLPCA
mode 1 is primarily a mixture of PCA modes 1 and 2. It is the same in this study.
Figure 6 shows strong ACT interchange with Ghana upwelling and also its activity from
West to East. Caniaux et al. (2011) observed, Fig. 6a and h exhibit, respectively, small
and big cooling area and show that cooling is not proportional to surface area. The20

largest SST anomalies are located in Angola coast during strong and weak average
ACT events. ACT spreads slowly, but increases, and decreases, towards the west and
east, respectively. It is more active in Eastwards than westwards. Cold activity of ACT
is more intense than warm one; this means that strong ACT is more active than weak
one. Comparison between Figs. 6a–h and 7a–h shows that the type (strong or weak)25

of ACT depends on SSTA activity before its formation. We observe that strong ACT
corresponds to cold activity before its formation and weak ACT is associated to warm
activity before the ACT development. But observing Figs. 6g and 7g, we may conclude
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that it cannot be generalized. This means that the ACT activity is not totally dependent
on its surface.

In Fig. 6c, d, and h is observed a particular event occurring in a circle along the
equator between 13 and 5◦ W. Its surface area increases from strong to weak ACT; with
maximum for weak and minimum for strong ACTs, respectively. We may also observe5

that the maximum is displaced more to the West (from the coast) than the minimum.
Some authors (Hastenrath and Lamb, 1977; Houghton, 1983) recently showed that
cold water appears as a narrow band along the northern boundary between 2◦ E and
8◦ W. NLPCA exhibits the same result with special information on the spatial variability
of this space.The magnitude of this area is more important during weak ACT.10

3.3 Composite analysis

Figure 8a is a composite analysis of May-June-July-August (MJJA) average SSTA for
the years in which the SST index (mentioned above, Caniaux et al., 2011) is greater
than one standard deviation above the long-term mean. Figure 8b is the same for the
MJJA for which SST index is less than one standard deviation below the long-term15

mean. This averaging period was used for the composites because MJJA displays the
period which the surface area at less than 25 ◦C is greater than the empirical threshold
surface area at 0.40×106 km2 (Caniaux et al., 2011). These two maps correspond to
the SSTA patterns of an average warm and cold ACT event, respectively. The spatial
asymmetry between cold and warm events of ACT observed in NLPCA mode 1 is20

manifests in composite analysis. These two maps correspond to the SSTA patterns of
an average weak and strong ACT, respectively.

Figure 8a and b, respectively, bears a strong resemblance to Fig. 6h and a; and are
strongly similar to EOFa1. This means that EOF1a exhibit strong ACT. It is more explicit
in the first NLPCA mode 1, which shows both strong and weak ACTs.25

Note that, consistent with the maps corresponding to the 1D NLPCA (Fig. 6), the
largest SSTA tend to be located in the Angola coast during the average strong and
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weak ACT events. The spatial correlation between the two maps is −0.98. This con-
firms the symmetry between the warm and cold ACT events.

A final comparison of the 1D NLPCA and 1D PCA approximations is given in Fig. 9,
which shows, respectively, maps of the pointwise correlation between the original SSTA
data and the 1D PCA approximation, and of the pointwise correlation between SSTA5

and the 1D NLPCA approximation (Fig. 9). The two approximations are equally well
correlated with the original data over the central band of the Atlantic Ocean, where
the NLPCA correlations are somewhat higher than those of the PCA approximation,
except in the Southwest part of the Ocean. In the Angolan region and in the ACT the
1D NLPCA approximation displays a greater fidelity to the original data, as determined10

by the pointwise correlation, than does the 1D PCA approximation. This demonstrates
the better capacity of NLPCA in representing SST data than the PCA.

We observe that NLPCA represents better ACT surface on the Angolan coast than
the PCA. However strong correlation in Fig. 9 centered at around 15◦ W in Southern of
ACT surface shows the ability of PCA to reproduce SSTA data in this region. Therefore,15

the NLPCA and PCA are complementary. In this mode, these two statistical tools do
not strongly represent SSTA data on the Namibia and along Cameroon-Liberia coasts
as the tropical Atlantic Ocean.

4 Conclusions

We have investigated the application of linear PCA and nonlinear generalization of20

PCA, to tropical Atlantic SST. It was found that a NLPCA mode 1 explains 45.5 % of
the total variance in the SST field, in contrast to 42 % for the first PCA mode. The
NLPC mode 1 described the ACT variability which is exhibited in the time series u
(Fig. 5) and the sequence of spatial maps (Fig. 6). PCA mode 1 also characterizes
average ACT variability, but only as a standing oscillation, so it is unable to evaluate25

the asymmetry in spatial pattern between average warm and cold events manifested
in the 1D NLPCA. Compared to PCA, NLPCA can better point out the two type of ACT:
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the strong and weak. NLPCA can better represent all the SST data than PCA. We note
that non linearity in spatial variation of SSTA is modest in Atlantic Ocean in contrast
to the Ocean Pacific Ocean. Both warm and cold surface events develop regularly in
the same specific region along the coast of Angola and Namibia. The NLPCA indicates
that Angola upwelling has a strong relation with Atlantic cold tongue. The less intense5

the Angola upwelling, the smaller the surface area of Atlantic cold tongue.
Apart from a weakly nonlinear 1D NLPCA corresponding to variability between aver-

age strong ACT and average weak ACT events, the results obtained also show that the
robust low-dimensional structure of the SSTA data appears along the equator between
13 and 5◦ W. It has been observed that in summer the interannual variability of SST is10

more active near the Angolan coast than the other parts of GOG. The Atlantic equato-
rial mode which is similar to El Nino/Southern Oscillation (ENSO) in the Pacific Ocean
has been recognized and it is shown that it is less linear than the latter. Detailed anal-
ysis shows that NLPCA represents better ACT surface and Angolan coast than PCA
although the two methods remain important to analyse voluminous data. It is seen that15

the activity of ACT is independent of its surface. Future analysis is needs to further ex-
plore the relationship between Angola upwelling and ACT. It will be equally important
to study West African monsoon rainfall using NLPCA and the intended implications of
SST for the spatio-temporal variability of precipitation over West Africa.
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Fig. 1. The NN model for calculating nonlinear PCA. There are 3 “hidden” layers of variables or
“neurons” (denoted by circles) sandwiched between the input layer x on the left and the output
layer x on the right. Next to the input layer is the encoding layer, followed by the “bottleneck”
layer (with a single neuron u for NLPCA), which is then followed by the decoding layer. q1, q2,
q3, and q4 are the transfer functions.

259

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/235/2014/npgd-1-235-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/235/2014/npgd-1-235-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 235–267, 2014

Sea surface
temperature patterns
in Tropical Atlantic

S. C. Kenfack et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 2. Spatial patterns of the first EOF modes of SST. Negative contours are white lines. Zero
line is bold black and positive contours are black. The contour interval is 0.01.
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Fig. 3. As in Fig. 2 but for SSTA.
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Fig. 4. Scatter plot of the sea surface temperature (SST) anomaly (SSTA) data (shown as dot)
in the principal component (PC1, PC2, and PC3) plane. The first principal component analysis
(PCA) eigenvector is oriented along the horizontal line. The first mode NLPCA approximation
to the data is shown by the blues circles, which traced out a Wave-shaped curve.
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Fig. 5. Plot of NLPC1, the time series associated with SSTA NLPCA mode 1 (blue line) and the
normalized ACT index (red dashed line).
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Fig. 6. The SST anomaly pattern (in ◦C) of the NLPCA as the minimum of NLPC u between
May and August for each year of the first NLPCA mode. Considering just the eight minimum
mentioned above, the anomaly pattern of the first NLPCA mode varies from (a) its minimum
(strong Atlantic cold tongue), to (b) three-quarter its minimum, to (c) half its minimum, to (d)
quarter of its minimum, to (e) quarter its maximum, to (f) half its maximum, to (g) three-quarter
its maximum and (h) its maximum (weak Atlantic cold tongue). Zero contours are white lines.
Positive contour is bold black line and negative contours are black.
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Fig. 7. The SST anomaly pattern (in ◦C) of the NLPCA as the maximum of NLPC u between
May and August for each year of the first NLPCA mode. From the eight maxim values of u , the
anomaly pattern of the first NLPCA mode varies from (a) its minimum (strong starting phase of
ACT), to (b) three-quarter its minimum, to (c) half its minimum, to (d) quarter its minimum, to
(e) quarter its maximum, to (f) half its maximum, to (g) three-quarter its maximum and (h) its
maximum (weak starting phase of ACT).
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Fig. 8. Composite maps for average (a) warm ACT and (b) cold ACT events in ◦C unit.
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Fig. 9. Maps of pointwise correlation coefficients between observed SSTA and (a) 1D PCA
approximation and (b) 1D NLPCA approximation.
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