Articles | Volume 31, issue 2
https://doi.org/10.5194/npg-31-195-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-31-195-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantification of magnetosphere–ionosphere coupling timescales using mutual information: response of terrestrial radio emissions and ionospheric–magnetospheric currents
School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin 15, Ireland
Caitríona M. Jackman
School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin 15, Ireland
Sandra C. Chapman
CFSA, Physics Department, University of Warwick, Coventry, UK
Department of Mathematics and Statistics, University of Tromsø, Tromsø, Norway
ISSI, Bern, Switzerland
James E. Waters
Aix Marseille Univ., CNRS, CNES, LAM, Marseille, France
Aisling Bergin
CFSA, Physics Department, University of Warwick, Coventry, UK
Laurent Lamy
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
LAM, Pythéas, Aix Marseille Université, CNRS, CNES, 38 Rue Frédéric Joliot Curie, 13013 Marseille, France
Karine Issautier
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
Baptiste Cecconi
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
Xavier Bonnin
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
Related authors
No articles found.
Ingrid Mann, Libor Nouzák, Jakub Vaverka, Tarjei Antonsen, Åshild Fredriksen, Karine Issautier, David Malaspina, Nicole Meyer-Vernet, Jiří Pavlů, Zoltan Sternovsky, Joan Stude, Shengyi Ye, and Arnaud Zaslavsky
Ann. Geophys., 37, 1121–1140, https://doi.org/10.5194/angeo-37-1121-2019, https://doi.org/10.5194/angeo-37-1121-2019, 2019
Short summary
Short summary
This work presents a review of dust measurements from spacecraft Cassini, STEREO, MMS, Cluster, Maven and WIND. We also consider the details of dust impacts and charge generation, and how different antenna signals can be generated. We compare observational data to laboratory experiments and simulations and discuss the consequences for dust observation with the new NASA Parker Solar Probe and ESA Solar Orbiter spacecraft.
Related subject area
Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Ionosphere, magnetosphere, planetary science, solar science | Techniques: Theory
Nonlinear vortex solution for perturbations in the Earth's ionosphere
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Miroslava Vukcevic and Luka Č. Popović
Nonlin. Processes Geophys., 27, 295–306, https://doi.org/10.5194/npg-27-295-2020, https://doi.org/10.5194/npg-27-295-2020, 2020
Short summary
Short summary
The soliton vortex two-dimensional solution has been derived for the ionosphere. Why are solitons so important? The advantage of an analytical soliton solution is its localization in space and time as a consequence of balance between nonlinearity and dispersion. One very good example of the balance between nonlinear and dispersive effects is tsunami, a surface gravity one-dimensional wave that can propagate with constant velocity and constant amplitude when it is assured by a parameter regime.
Bruce T. Tsurutani, Gurbax S. Lakhina, and Rajkumar Hajra
Nonlin. Processes Geophys., 27, 75–119, https://doi.org/10.5194/npg-27-75-2020, https://doi.org/10.5194/npg-27-75-2020, 2020
Short summary
Short summary
Current space weather problems are discussed for young researchers. We have discussed some of the major problems that need to be solved for space weather forecasting to become a reality.
Cited articles
Araki, T.: A physical model of the geomagnetic sudden commencement, Geoph. Monog. Series, 81, 183–200, https://doi.org/10.1029/GM081p0183, 1994. a
Benson, R. F. and Calvert, W.: ISIS 1 observations at the source of auroral kilometric radiation, Geophys. Res. Lett., 6, 479–482, https://doi.org/10.1029/GL006i006p00479, 1979. a, b
Benson, R. F., Calvert, W., and Klumpar, D. M.: Simultaneous wave and particle observations in the auroral kilometric radiation source region, Geophys. Res. Lett., 7, 959–962, https://doi.org/10.1029/GL007i011p00959, 1980. a
Bougeret, J. L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S. J., Monge, N., Friel, L., Meetre, C. A., Perche, C., Sitruk, L., and Hoang, S.: WAVES: The radio and plasma wave investigation on the Wind spacecraft, Space Sci. Rev., 71, 231–263, https://doi.org/10.1007/BF00751331, 1995. a
Calvert, W.: The auroral plasma cavity, Geophys. Res. Lett., 8, 919–921, https://doi.org/10.1029/GL008i008p00919, 1981. a, b, c, d
Cowley, S. W. H.: Magnetosphere-ionosphere interactions: A tutorial review, Magnetospheric Current Systems, Geoph. Monog. Series, 118, 91–106, 2000. a
Davis, T. N. and Sugiura, M.: Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 71, 785–801, https://doi.org/10.1029/JZ071i003p00785, 1966. a
Desch, M. D., Kaiser, M. L., and Farrell, W. M.: Control of terrestrial low frequency bursts by solar wind speed, Geophys. Res. Lett., 23, 1251–1254, https://doi.org/10.1029/96GL01352, 1996. a
Dunckel, N., Ficklin, B., Rorden, L., and Helliwell, R. A.: Low-Frequency Noise Observed in the Distant Magnetosphere with OGO 1, J. Geophys. Res.-Space, 75, 1854–1862, https://doi.org/10.1029/JA075i010p01854, 1970. a, b, c
Dungey, J. W.: Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47, https://doi.org/10.1103/PhysRevLett.6.47, 1961. a
Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delory, G. T., Peria, W., Chaston, C. C., Temerin, M., Elphic, R., Strangeway, R., Pfaff, R., Cattell, C. A., Klumpar, D., Shelly, E., Peterson, W., Moebius, E., and Kistley, L.: FAST satellite wave observations in the AKR source region, Geophys. Res. Lett., 25, 2061–2064, https://doi.org/10.1029/98GL00570, 1998. a, b, c
Fogg, A. R.: Generic MI lag finder, GitHub [code], https://github.com/arfogg/generic_MI_lag_finder, last access: 3 July 2023. a
Fogg, A. R.: arfogg/generic_MI_lag_finder: First release of the mutual information lag finding tool (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.10804655, 2024. a
Fogg, A. R., Lester, M., Yeoman, T. K., Burrell, A. G., Imber, S. M., Milan, S. E., Thomas, E. G., Sangha, H., and Anderson, B. J.: An Improved Estimation of SuperDARN Heppner-Maynard Boundaries using AMPERE data, J. Geophys. Res.-Space, 125, e2019JA027218, https://doi.org/10.1029/2019JA027218, 2020. a
Fogg, A. R., Jackman, C. M., Waters, J. E., Bonnin, X., Lamy, L., Cecconi, B., Issautier, K., and Louis, C. K.: Wind/WAVES Observations of Auroral Kilometric Radiation: Automated Burst Detection and Terrestrial Solar Wind – Magnetosphere Coupling Effects, J. Geophys. Res.-Space, 127, e2021JA030209, https://doi.org/10.1029/2021JA030209, 2022. a, b, c, d, e, f
Fogg, A. R., Lester, M., Yeoman, T. K., Carter, J. A., Milan, S. E., Sangha, H. K., Elsden, T., Wharton, S. J., James, M. K., Malone-Leigh, J., Paxton, L. J., Anderson, B. J., and Vines, S. K.: Multi-instrument observations of the effects of a solar wind pressure pulse on the high latitude ionosphere: a detailed case study of a geomagnetic sudden impulse, J. Geophys. Res.-Space, 128, e2022JA031136, https://doi.org/10.1029/2022JA031136, 2023. a
Fogg, A. R., Jackman, C. M., Coco, I., Douglas Rooney, L., Weigt, D. M., and Lester, M.: Why are some solar wind pressure pulses followed by geomagnetic storms?, J. Geophys. Res.-Space, 128, e2022JA031259, https://doi.org/10.1029/2022JA031259, 2024. a
Forsyth, C., Rae, I. J., Coxon, J. C., Freeman, M. P., Jackman, C. M., Gjerloev, J., and Fazakerley, A. N.: A new technique for determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE), J. Geophys. Res.-Space, 120, 10592–10606, https://doi.org/10.1002/2015JA021343, 2015. a, b
Gallagher, D. L. and D'Angelo, N.: Correlations between solar wind parameters and auroral kilometric radiation intensity, Geophys. Res. Lett., 8, 1087–1089, https://doi.org/10.1029/GL008i010p01087, 1981. a
Green, J. L. and Gurnett, D. A.: A Correlation Between Auroral Kilometric Radiation and Inverted V Electron Precipitation, J. Geophys. Res., 84, 5216–5222, https://doi.org/10.1029/JA084iA09p05216, 1979. a, b
Green, J. L., Gurnett, D. A., and Shawhan, S. D.: The Angular Distribution of Auroral Kilometric Radiation, J. Geophys. Res., 82, 1825–1838, https://doi.org/10.1029/JA082i013p01825, 1977. a, b, c
Green, J. L., Boardsen, S., Garcia, L., Fung, S. F., and Reinisch, B. W.: Seasonal and solar cycle dynamics of the auroral kilometric radiation source region, J. Geophys. Res., 109, A05223, https://doi.org/10.1029/2003JA010311, 2003. a
Hashimoto, K., Matsumoto, H., Murata, T., Kaiser, M. L., and Bougeret, J.-L.: Comparison of AKR simultaneously observed by the GEOTAIL and WIND spacecraft, Geophys. Res. Lett., 25, 853–856, https://doi.org/10.1029/98GL00385, 1998. a, b
Hilgers, A.: The auroral radiating plasma cavities, Geophys. Res. Lett., 19, 237–240, https://doi.org/10.1029/91GL02938, 1992. a
Huff, R. L., Calvert, W., Craven, J. D., Frank, L. A., and Gurnett, D. A.: Mapping of Auroral Kilometric Radiation Sources to the Aurora, J. Geophys. Res., 93, 11445–11454, https://doi.org/10.1029/JA093iA10p11445, 1988. a
Iyemori, T.: Storm-Time Magnetospheric Currents Inferred from Mid-Latitude Geomagnetic Field Variations, J. Geomagn. Geoelectr., 42, 1249–1265, https://doi.org/10.5636/jgg.42.1249, 1990. a
Johnson, J. R. and Wing, S.: External versus internal triggering of substorms: An information-theoretical approach, Geophys. Res. Lett., 41, 5748–5754, https://doi.org/10.1002/2014GL060928, 2014. a
Johnson, M. T., Wygant, J. R., Cattell, C., Mozer, F. S., Temerin, M., and Scudder, J.: Observations of the seasonal dependence of the thermal plasma density in the Southern Hemisphere auroral zone and polar cap at 1 RE, J. Geophys. Res., 106, 19023–19033, https://doi.org/10.1029/2000JA900147, 2001. a, b
Kasaba, Y., Matsumoto, H., and Hashimoto, K.: The angular distribution of auroral kilometric radiation observed by the GEOTAIL spacecraft, Geophys. Res. Lett., 24, 2483–2486, https://doi.org/10.1029/97GL02599, 1997. a, b
Kozachenko, L. F. and Leonenko, N. N.: Sample estimate of the entropy of a random vector, Problemy Peredachi Informatsii, 23, 9–16, 1987. a
Kurth, W. S., Murata, T., Lu, G., Gurnett, D. A., and Matsumoto, H.: Auroral kilometric radiation and the auroral electrojet index for the January 1997 magnetic cloud event, Geophys. Res. Lett., 25, 3027–3030, https://doi.org/10.1029/98GL00404, 1998. a, b
Lamy, L., Zarka, P., Cecconi, B., Prangé, R., Kurth, W. S., and Gurnett, D. A.: Saturn kilometric radiation: Average and statistical properties, J. Geophys. Res., 113, A07201, https://doi.org/10.1029/2007JA012900, 2008. a, b
Li, H., Wang, C., and Peng, Z.: Solar wind impacts on growth phase duration and substorm intensity: A statistical approach, J. Geophys. Res.-Space, 118, 4270–4278, https://doi.org/10.1002/jgra.50399, 2013. a
Lneiseman: aaft, GitHub [code], https://github.com/lneisenman/aaft, last access: 16 July 2021. a
March, T. K., Chapman, S. C., and Dendy, R. O.: Mutual information between geomagnetic indices and the solar wind as seen by WIND: Implications for propagation time estimates, Geophys. Res. Lett., 32, L04101, https://doi.org/10.1029/2004GL021677, 2005. a, b, c, d
Menietti, J. D., Mutel, R. L., Christopher, I. W., Hutchinson, K. A., and Sigwarth, J. B.: Simultaneous radio and optical observations of auroral structures: Implications for AKR beaming, J. Geophys. Res., 116, A12219, https://doi.org/10.1029/2011JA017168, 2011. a
Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach, M.-T., Laundal, K., Østgaard, N., Tenfjord, P., Reistad, J., Snekvik, K., Korth, H., and Anderson, B. J.: Overview of solar wind–magnetosphere–ionosphere–atmosphere coupling and the generation of magnetospheric currents, Space Sci. Rev., 206, 547–573, https://doi.org/10.1007/s11214-017-0333-0, 2017. a, b
Morioka, A., Miyoshi, Y., Tsuchiya, F., Misawa, H., Sakanoi, T., Yumoto, K., Anderson, R. R., Menietti, J. D., and Donovan, E. F.: Dual structure of auroral acceleration regions at substorm onsets as derived from auroral kilometric radiation spectra, J. Geophys. Res., 112, A06245, https://doi.org/10.1029/2006JA012186, 2007. a, b
Morioka, A., Miyoshi, Y., Tsuchiya, F., Misawa, H., Kasaba, Y., Asozu, T., Okano, S., Kadokura, A., Sato, N. Miyaoka, H., Yumoto, K., Parks, G. K., Honary, F., Trotignon, J. G., Décréau, P. M. E., and W., R. B.: On the simultaneity of substorm onset between two hemispheres, J. Geophys. Res., 116, A04211, https://doi.org/10.1029/2010JA016174, 2011. a, b, c, d
Morioka, A., Miyoshi, Y., Kurita, S., Kasaba, Y., Angelopoulos, V., Misawa, H., Kojima, H., and McFadden, J. P.: Universal time control of AKR: Earth as a spin-modulated variable radio source, J. Geophys. Res.-Space, 118, 1123–1131, https://doi.org/10.1002/jgra.50180, 2013. a
Morioka, A., Miyoshi, Y., Kasaba, Y., Sato, N., Kadokura, A., H., M., Miyashita, Y., and Mann, I.: Substorm onset process: Ignition of auroral acceleration and related substorm phases, J. Geophys. Res.-Space, 119, 1044–1059, https://doi.org/10.1002/2013JA019442, 2014. a
Mutel, R. L., Christopher, I. W., and Pickett, J. S.: Cluster multispacecraft determination of AKR angular beaming, Geophys. Res. Lett., 35, L07104, https://doi.org/10.1029/2008GL033377, 2008. a, b, c
Panchenko, M., Khodachenko, M. L., Kislyakov, A. G., Rucker, H. O., J., H., Kaiser, M. L., Bale, S. D., Lamy, L., Cecconi, B., Zarka, P., and Goetz, K.: Daily variations of auroral kilometric radiation observed by STEREO, Geophys. Res. Lett., 36, L06102, https://doi.org/10.1029/2008GL037042, 2009. a
Papitashvili, N.: OMNIWeb Plus, NASA [data set], https://omniweb.gsfc.nasa.gov/hw.html (last access: 28 January 2021), 2023. a
Papitashvili, N. E. and King, J. H.: OMNI 1-min Data, NASA Space Physics Data Facility [data set], https://doi.org/10.48322/45bb-8792, 2020. a, b
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a, b
Schreiber, T. and Schmitz, A.: Improved surrogate data for nonlinearity tests, Phys. Rev. Lett., 77, 635–638, https://doi.org/10.1103/PhysRevLett.77.635, 1996. a
Shannon, C. E.: A Mathematical Theory of Communication, Bell Syst. Tech. J., 27, 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 1949. a, b
Snelling, J. M., Johnson, J. R., Willard, J., Nurhan, Y., Homan, J., and Wing, S.: Information Theoretical Approach to Understanding Flare Waiting Times, Astrophys. J., 899, 148, https://doi.org/10.3847/1538-4357/aba7b9, 2020. a
Stauning, P.: The Polar Cap index: A critical review of methods and a new approach, J. Geophys. Res.-Space, 118, 5021–5038, https://doi.org/10.1002/jgra.50462, 2013. a
Tindale, E., Chapman, S. C., Moloney, N. R., and Watkins, N. W.: The Dependence of Solar Wind Burst Size on Burst Duration and Its Invariance Across Solar Cycles 23 and 24, J. Geophys. Res.-Space, 123, 7196–7210, https://doi.org/10.1029/2018JA025740, 2018. a
Treumann, R. A. and Baumjohann, W.: Auroral Kilometric Radiation and Electron Pairing, Frontiers in Physics, 8, 386, https://doi.org/10.3389/fphy.2020.00386, 2020. a
Troshichev, O. A. and Andrezen, V. G.: The relationship between interplanetary quantities and magnetic activity in the southern polar cap, Planetary Space Science, 33, 415–419, https://doi.org/10.1016/0032-0633(85)90086-8, 1985. a
Troshichev, O. A., Dolgacheva, S., Stepanov, N. A., and Sormakov, D. A.: The PC index variations during 23/24 solar cycles: Relation to solar wind parameters and magnetospheric disturbances, J. Geophys. Res.-Space, 126, e2020JA028491, https://doi.org/10.1029/2020JA028491, 2021. a
Walach, M.-T. and Grocott, A.: SuperDARN Observations During Geomagnetic Storms, Geomagnetically Active Times and Enhanced Solar Wind Driving, J. Geophys. Res.-Space, 124, 5828–5847, https://doi.org/10.1029/2019JA026816, 2019. a, b
Waters, J. E., Cecconi, B., Bonnin, X., and Lamy, L.: Wind/Waves flux density collection calibrated for Auroral Kilometric Radiation (Version 1.0), MASER [data set], https://doi.org/10.25935/wxv0-vr90, 2021a. a, b
Waters, J. E., Jackman, C. M., Lamy, L., Cecconi, B., Whiter, D., Bonnin, X., Issautier, K., and Fogg, A. R.: Empirical Selection of Auroral Kilometric Radiation During a Multipoint Remote Observation With Wind and Cassini, J. Geophys. Res.-Space, 126, e2021JA029425, https://doi.org/10.1029/2021JA029425, 2021b. a, b, c, d, e, f, g
Waters, J. E., Jackman, C. M., Whiter, D., Forsyth, C., Fogg, A. R., Lamy, L., Cecconi, B., Bonnin, X., and Issautier, K.: A perspective on substorm dynamics using 10 years of Auroral Kilometric Radiation observations from Wind, J. Geophys. Res.-Space, 127, e2022JA030449, https://doi.org/10.1029/2022JA030449, 2022. a, b, c, d, e, f
Wicks, R. T., Chapman, S. C., and Dendy, R. O.: Spatial correlation of solar wind fluctuations and their solar cycle dependence, Astrophys. J., 690, 734–742, https://doi.org/10.1088/0004-637X/690/1/734, 2009. a
Wilson III, L. B., Brosius, A. L., Gopalswamy, N., Nieves-Chinchilla, T., Szabo, A., Hurley, K., Phan, T., Kasper, J. C., Lugaz, N., Richardson, I. G., Chen, C. H. K., D., V., Wicks, R. T., and TenBarge, J. M.: A Quarter Century of Wind Spacecraft Discoveries, Rev. Geophys., 59, e2020RG000714, https://doi.org/10.1029/2020RG000714, 2021. a
Wing, S., Brandt, P. C., Mitchell, D. G., Johnson, J. R., Kurth, W. S., and Menietti, J. D.: Periodic Narrowband Radio Wave Emissions and Inward Plasma Transport at Saturn's Magnetosphere, Astron. J., 159, 249, https://doi.org/10.3847/1538-3881/ab818d, 2020. a
World Data Center for Geomagnetism Kyoto, Nose, M., Iyemori, T., Sugiura, M., and Kamei, T.: Geomagnetic AE index [data set], https://doi.org/10.17593/15031-54800, 2015. a, b
Wu, C. S.: Kinetic cyclotron and synchrotron maser instabilities: radio emission processes by direct amplification of radiation, Space Sci. Rev., 41, 215–298, https://doi.org/10.1007/BF00190653, 1985. a
Wu, C. S. and Lee, L. C.: A theory of the terrestrial kilometric radiation, Astrophys. J., 230, 621–626, https://doi.org/10.1086/157120, 1979. a, b
Short summary
Auroral kilometric radiation (AKR) is a radio emission emitted by Earth. Due to the complex mixture of phenomena in the magnetosphere, it is tricky to estimate the time difference between the excitation of two systems. In this study, AKR is compared with indices describing Earth's system. Time differences between the excitation of AKR and the indices are estimated using mutual information. AKR feels an enhancement before the aurora but after more polar latitude features.
Auroral kilometric radiation (AKR) is a radio emission emitted by Earth. Due to the complex...