Articles | Volume 31, issue 2
https://doi.org/10.5194/npg-31-195-2024
https://doi.org/10.5194/npg-31-195-2024
Research article
 | 
10 Apr 2024
Research article |  | 10 Apr 2024

Quantification of magnetosphere–ionosphere coupling timescales using mutual information: response of terrestrial radio emissions and ionospheric–magnetospheric currents

Alexandra Ruth Fogg, Caitríona M. Jackman, Sandra C. Chapman, James E. Waters, Aisling Bergin, Laurent Lamy, Karine Issautier, Baptiste Cecconi, and Xavier Bonnin

Related authors

Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter
Ingrid Mann, Libor Nouzák, Jakub Vaverka, Tarjei Antonsen, Åshild Fredriksen, Karine Issautier, David Malaspina, Nicole Meyer-Vernet, Jiří Pavlů, Zoltan Sternovsky, Joan Stude, Shengyi Ye, and Arnaud Zaslavsky
Ann. Geophys., 37, 1121–1140, https://doi.org/10.5194/angeo-37-1121-2019,https://doi.org/10.5194/angeo-37-1121-2019, 2019
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Ionosphere, magnetosphere, planetary science, solar science | Techniques: Theory
Nonlinear vortex solution for perturbations in the Earth's ionosphere
Miroslava Vukcevic and Luka Č. Popović
Nonlin. Processes Geophys., 27, 295–306, https://doi.org/10.5194/npg-27-295-2020,https://doi.org/10.5194/npg-27-295-2020, 2020
Short summary
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Bruce T. Tsurutani, Gurbax S. Lakhina, and Rajkumar Hajra
Nonlin. Processes Geophys., 27, 75–119, https://doi.org/10.5194/npg-27-75-2020,https://doi.org/10.5194/npg-27-75-2020, 2020
Short summary

Cited articles

Araki, T.: A physical model of the geomagnetic sudden commencement, Geoph. Monog. Series, 81, 183–200, https://doi.org/10.1029/GM081p0183, 1994. a
Benson, R. F. and Calvert, W.: ISIS 1 observations at the source of auroral kilometric radiation, Geophys. Res. Lett., 6, 479–482, https://doi.org/10.1029/GL006i006p00479, 1979. a, b
Benson, R. F., Calvert, W., and Klumpar, D. M.: Simultaneous wave and particle observations in the auroral kilometric radiation source region, Geophys. Res. Lett., 7, 959–962, https://doi.org/10.1029/GL007i011p00959, 1980. a
Bougeret, J. L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S. J., Monge, N., Friel, L., Meetre, C. A., Perche, C., Sitruk, L., and Hoang, S.: WAVES: The radio and plasma wave investigation on the Wind spacecraft, Space Sci. Rev., 71, 231–263, https://doi.org/10.1007/BF00751331, 1995. a
Calvert, W.: The auroral plasma cavity, Geophys. Res. Lett., 8, 919–921, https://doi.org/10.1029/GL008i008p00919, 1981. a, b, c, d
Download
Short summary
Auroral kilometric radiation (AKR) is a radio emission emitted by Earth. Due to the complex mixture of phenomena in the magnetosphere, it is tricky to estimate the time difference between the excitation of two systems. In this study, AKR is compared with indices describing Earth's system. Time differences between the excitation of AKR and the indices are estimated using mutual information. AKR feels an enhancement before the aurora but after more polar latitude features.