Articles | Volume 27, issue 2
https://doi.org/10.5194/npg-27-295-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.Nonlinear vortex solution for perturbations in the Earth's ionosphere
Related subject area
Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Ionosphere, magnetosphere, planetary science, solar science | Techniques: Theory
Quantification of magnetosphere–ionosphere coupling timescales using mutual information: response of terrestrial radio emissions and ionospheric–magnetospheric currents
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Nonlin. Processes Geophys., 31, 195–206,
2024Nonlin. Processes Geophys., 27, 75–119,
2020Cited articles
Afraimovich, E. L.: GPS global detection of the ionospheric response to solar flares, Radio Sci. 35, 417–424, 2000. a
Anderson, D., Anghel, A., Yumoto, K., Ishitsuka, M., and Kudeki, E.: Estimating daytime vertical ExB drift velocities in the equatorial F-region using ground-based magnetometer observations, Geophys. Res. Lett., 29, 37-1–37-4, 2002. a
Arai, N., Iwakuni, M., Watada, S., Imanishi, Y., Murayanna, T., and Imanishi, M.: Atmospheric boundary layer waves excited by the tsunami generation related to the great tohoku-oki earthquake, Geophys. Res. Lett., 38, L00G18, https://doi.org/10.1029/2011GL049146, 2011. a
Davies, K. and Baker, D. M.: Ionospheric effects observed around the time of the Alaskan earthquake of March 28, J. Geophys. Res., 70, 2251–2253, 1965. a
Dokuchaev, V. P.: Influence of the earth's magnetic field on the ionospheric winds, Izvestia AN SSSR Seria Geophysica, 5, 783–797, 1959. a