Articles | Volume 27, issue 2
https://doi.org/10.5194/npg-27-295-2020
https://doi.org/10.5194/npg-27-295-2020
Research article
 | 
25 May 2020
Research article |  | 25 May 2020

Nonlinear vortex solution for perturbations in the Earth's ionosphere

Miroslava Vukcevic and Luka Č. Popović

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Ionosphere, magnetosphere, planetary science, solar science | Techniques: Theory
Quantification of magnetosphere–ionosphere coupling timescales using mutual information: response of terrestrial radio emissions and ionospheric–magnetospheric currents
Alexandra Ruth Fogg, Caitríona M. Jackman, Sandra C. Chapman, James E. Waters, Aisling Bergin, Laurent Lamy, Karine Issautier, Baptiste Cecconi, and Xavier Bonnin
Nonlin. Processes Geophys., 31, 195–206, https://doi.org/10.5194/npg-31-195-2024,https://doi.org/10.5194/npg-31-195-2024, 2024
Short summary
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Bruce T. Tsurutani, Gurbax S. Lakhina, and Rajkumar Hajra
Nonlin. Processes Geophys., 27, 75–119, https://doi.org/10.5194/npg-27-75-2020,https://doi.org/10.5194/npg-27-75-2020, 2020
Short summary

Cited articles

Afraimovich, E. L.: GPS global detection of the ionospheric response to solar flares, Radio Sci. 35, 417–424, 2000. a
Anderson, D., Anghel, A., Yumoto, K., Ishitsuka, M., and Kudeki, E.: Estimating daytime vertical ExB drift velocities in the equatorial F-region using ground-based magnetometer observations, Geophys. Res. Lett., 29, 37-1–37-4, 2002. a
Arai, N., Iwakuni, M., Watada, S., Imanishi, Y., Murayanna, T., and Imanishi, M.: Atmospheric boundary layer waves excited by the tsunami generation related to the great tohoku-oki earthquake, Geophys. Res. Lett., 38, L00G18, https://doi.org/10.1029/2011GL049146, 2011. a
Davies, K. and Baker, D. M.: Ionospheric effects observed around the time of the Alaskan earthquake of March 28, J. Geophys. Res., 70, 2251–2253, 1965. a
Dokuchaev, V. P.: Influence of the earth's magnetic field on the ionospheric winds, Izvestia AN SSSR Seria Geophysica, 5, 783–797, 1959. a
Download
Short summary
The soliton vortex two-dimensional solution has been derived for the ionosphere. Why are solitons so important? The advantage of an analytical soliton solution is its localization in space and time as a consequence of balance between nonlinearity and dispersion. One very good example of the balance between nonlinear and dispersive effects is tsunami, a surface gravity one-dimensional wave that can propagate with constant velocity and constant amplitude when it is assured by a parameter regime.