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Abstract. There is much observational evidence of different
fine structures in the ionosphere and magnetosphere of the
Earth. Such structures are created and evolve as a perturba-
tion of the ionosphere’s parameters. Instead of dealing with a
number of linear waves, we propose to investigate and follow
up the perturbations in the ionosphere by dynamics of soli-
ton structure. Apart from the fact that this is a more accurate
solution, the advantage of soliton solution is its localization
in space and time as a consequence of the balance between
nonlinearity and dispersion. The existence of such a struc-
ture is driven by the properties of the medium. We derive
the necessary condition for having a nonlinear soliton wave,
taking the vortex shape as a description of the ionosphere pa-
rameter perturbation. We employ a magnetohydrodynamical
description for the ionosphere in plane geometry, including
rotational effects, magnetic field effects via ponderomotive
force, and pressure and gravitational potential effects, treat-
ing the problem self-consistently and nonlinearly. In addi-
tion, we consider compressible perturbation. As a result, we
have found that Coriolis force and magnetic force on the one
hand and pressure and gravity on the other hand determine
dispersive properties. Dispersion at higher latitudes is mainly
driven by rotation, while near the Equator, within the E and
F layers of the ionosphere, the magnetic field modifies the
soliton solution. Also, a very general description of the iono-
sphere results in the conclusion that the unperturbed thick-
ness of the ionosphere layer cannot be taken as an ad hoc
assumption: it is rather a consequence of equilibrium prop-
erty, which is shown in this calculation.

1 Introduction

The structure of the Earth’s ionosphere depends on its dis-
tance from the Earth’s surface, involving different sources of
disturbance in the basic parameters within it. These sources
could be the subject of events in Earth, atmosphere, Sun, and
γ -ray bursts (GRB) from deep space. Observation evidence
of large-scale ionosphere structures is important as interpre-
tation of the low-frequency perturbations of the ionosphere
response to mentioned disturbance sources. That interpreta-
tion is an important research task, since the studies of per-
turbations induced in the ionosphere can be used in different
fields related to human life, for example, prediction of nat-
ural disasters (atmospheric storms, volcano eruptions, earth-
quakes) or problems in satellite and electrical device opera-
tions.

Correlation between perturbation of the ionosphere pa-
rameters and atmospheric gravity waves generated by
tsunamis was investigated in the beginning by Hines (1972)
and Peltier and Hines (1976). Then, after the observational
techniques were developed, research was spread to make an
effort in establishing possible correlations in the detection
of ionospheric effects with the earthquake event (Sobolev
and Husamiddinov, 1985; Lyperovskaya et al., 2007; Pu-
linets, 2004). It was suggested by Arai et al. (2011) that it
may be possible to indicate tsunami generation by monitor-
ing acoustic-gravity waves in the ionosphere accompanied by
undersea seismic disturbances. On the other hand, the earth-
quake precursor could be related to detection of ionosphere
disturbances, observing the formation of ionospheric plasma
concentration irregularities (Davies and Baker, 1965). The
reason for the possible direct coupling of the processes in
the deep earth layers and the ionosphere could be eventual
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transfer of a positive electric charge created by compres-
sion in rocks to the layers of the ionosphere (Freund et al.,
2006). Apart from the above-mentioned ionospheric pertur-
bation coming from the Earth’s surface, there are a number of
them caused by atmosphere or solar activity. There are sev-
eral studies on the tropical depression influence on the iono-
sphere indicating electrical and electromagnetic effects. One
direction of this research is investigation of the sudden distur-
bances in the low ionosphere which result in changes in radio
signals (very low/low frequency (VLF/LF)) that are related
to the short-term variations caused by lightning (Price et al.,
2007). In this field, the great advance has been achieved us-
ing Global Positioning System (GPS) technology (Erickson
et al., 2001) for monitoring ionospheric disturbances during
solar flares (Afraimovich, 2000), but also by developing dif-
ferent simulations of the flare effects of the ionosphere (Huba
et al., 2005; Meier et al., 2002). As far as ionosphere pertur-
bations caused by GRB are concerned, there are few observa-
tional techniques to observe cosmic effects (Nina et al., 2005;
Inan et al., 2007).

However, either of these phenomena has an influence on
the basic ionosphere parameters, such as ion/electron den-
sity, electromagnetic field, pressure, and consequently neu-
tral density. The problem with the detection of any mentioned
parameter is in fact that it is difficult to filter out the origin
of the perturbation since the amplitudes of the ionospheric
anomalies are usually small. Instead of electromagnetic wave
propagation, linear wave theory gives the opportunity to
identify and detect frequencies of possible waves propagat-
ing within the ionosphere (gravity and acoustic modes), but
the linearization procedure mimics the importance of nonlin-
ear effects for the wave dynamics.

The aim of this paper is to describe perturbation in the
ionosphere using a compressible fluid model with pressure,
rotation, magnetic field, and scalar gravitational potential, in-
volving nonlinear terms that are neglected in the linear ap-
proach. As a result, we obtain conditions for stable vortical
structure formation. Simple monitoring of these structures
gives an opportunity for fast prediction and reaction of men-
tioned events that could have an influence on humans.

Apart from these advantages, a number of solitary struc-
tures are directly observed as elements of plasma motion
in the ionosphere and magnetosphere (Hallinan and Davis,
1970), and especially electron and ion density structures in
the equatorial ionosphere (Lin et al., 2007; Huang et al.,
2009).

Also, there is a number of simulations that have inves-
tigated different processes within the ionosphere that are
possible to interpret by the nonlinear solitary solution, e.g.,
Maruyama et al. (2016), which discusses the density peak
structure. As far as the experimental confirmation of the ro-
tation importance for soliton creation is concerned, we rec-
ommend the work of van Hejist and Kloosterziel (1998).

2 Ionosphere model: basic equations and
approximations

2.1 Basic equations

An analytical solution of the set of nonlinear partial differ-
ential equations, if possible, would give better insight into
different processes that are responsible for the creation and
distortion of such structures by deriving and investigating
conditions for their existence. Although there are plenty of
papers considering similar topics (Kaladze, 1998; Kaladze et
al., 2004; Khantadze et al., 2009), all of them have used an
assumption that is a consequence of general gravitational po-
tential action.

In this paper, we use the general scalar gravitational po-
tential, together with Poisson’s equation, instead of a stream
function or shallow water assumption, in order to derive con-
ditions for ionosphere perturbation to take the shape of the
soliton vortex. The condition for the soliton existence and
shape within the ionosphere at low latitudes, close to the
Equator, is analyzed in detail.

We assume the ionosphere to be a fluid consisting of neu-
tral and charged particles, with z as the coordinate measuring
the distance from the Earth’s surface to the two-dimensional
plane surface in the ionosphere. Since the ionosphere fluid
is ionized with the ionization degree depending on the dis-
tance from the Earth’s surface, three layers D, E, and F are
defined, where each of them contains charged particles (elec-
trons and ions) and neutrals. The neutral gas is strongly in-
fluenced, via the collisional coupling with low-density ions
and electrons, by an electromagnetic force, so that in the mo-
mentum equation for the neutral gas there exist, apart from
Coriolis force, pressure and gravitation and ion-neutral and
electron-neutral collisional drag forces, via the electromag-
netic force. We have neglected the inclination of the geomag-
netic and Earth’s North Pole of 110 just for simplicity, with
no loss of generality.

As far as the gravitational force is concerned, the iono-
sphere is influenced by the Earth’s gravitation in the verti-
cal direction but, for the first time here, we add Poisson’s
equation for gravitational potential of the neutral gas, rel-
evant for this geometry, in contrast to the usual approach
based on the assumption of shallow water theory (Kaladze
et al., 2004) or using a stream function description for in-
compressible fluid (Kaladze, 1998). We use a finite thickness
approximation in order to estimate gravity influence on the
ionospheric gas dynamics, not only in the vertical direction,
but also mainly in the horizontal plane, relevant for vortex
soliton formation (Vukcevic, 2019). Assumption of shallow
water theory is just a consequence of the general Poisson
equation, approximated in the horizontal plane, and it will be
shown in this work. The closed system of equations describ-
ing the ionosphere reads as follows. The continuity equation

Nonlin. Processes Geophys., 27, 295–306, 2020 https://doi.org/10.5194/npg-27-295-2020



M. Vukcevic and L. Č. Popović: Nonlinear vortex solution for perturbations in the Earth’s ionosphere 297

for compressible fluid is

∂ρ

∂t
+∇ · (ρv)= 0, (1)

where ρ is neutral gas volume density, and v is neutral gas
velocity; the equation of motion is

∂v

∂t
+ (v · ∇)v+ 2(�× v)+

1
ρ
(j ×B0)=∇8+

1
ρ
∇P, (2)

where � is the angular velocity of the Earth’s rotation, j is
the conduction current density, B0 is the geomagnetic field,
and 8 and P are scalar three-dimensional gravitational po-
tential and pressure, respectively; Poisson’s equation is

18=−4πGρ, (3)

with ρ and 8 previously defined, and the current equation

j = σEE+
σE

B0
(B0×E)= en(v− ve), (4)

where E is the dynamo electric field, σE is the conductivity
tensor, n is the number density of charged particles, e is the
electron charge, and ve is the electron velocity.

The electric dynamo field equation is

E = (v×B0). (5)

Here we use the following plasma condition in the iono-
sphere: ions are considered unmagnetized, so that vi = v, ion
velocity across the magnetic field is equivalent to gas veloc-
ity, and ions are dragged by neutral gas motion completely,
while the electrons are magnetized and frozen in the exter-
nal magnetic field, so that ve = (E×B0)/B

2
0 (Kaladze et al.,

2004). Details of derivation of Eq. (2) and involvement of
the electric field are given in Appendix A. Equation (2) is the
same as Eq. (A5). In the equation of motion, viscous effects
are neglected due to high Hartmann number for typical iono-

sphere parameters (Ha2
=

σB2
0L

2

ηρ
∼ 105), where η is kine-

matic viscosity ∼= 10−5 kg m−1 s−1 (Kaladze et al., 2004).
In this research, scalar gravitational potential is related to

neutral gas at the z= z0 distance from the Earth’s surface,
where it is defined by the Earth’s gravitation only in the z di-
rection but remains the two-dimensional, horizontal compo-
nent defined by gas in the vicinity of a fixed distance from the
Earth. Assumption of the stratified stable ionospheric layer
involves the Brunt–Väisälä frequency which is fast com-
pared to large-scale horizontal motion that will be consid-
ered here using drift approximation. We will show that the
general scalar gravitational potential is equivalent to the ef-
fective height of shallow water theory within approximation
of Poisson’s equation, as was proposed by Vukcevic (2019).
Within that approximation, scalar potential is evaluated as
two-dimensional denoted by φ, while volume density is eval-
uated by surface density σ and pressure as two-dimensional
pressure denoted by p. Details of Poisson’s equation approx-
imation are given in Appendix B.

Figure 1. Local coordinate system. In the horizontal plane are de-
fined two axes by unit vectors: ex oriented to the east and ey ori-
ented to the north. The vertical axis to the horizontal plane is de-
fined by unit vector ez; along this axis is defined the distance of the
horizontal plane from the Earth’s surface.

2.2 Drift approximation

In order to qualitatively estimate contributions of rotation,
gravity, pressure, and magnetic effects, we will employ drift
approximation, and at first, we may assume a pseudo-three-
dimensional case such that
∂v

∂z
= ε(∇⊥ · v⊥), (6)

which is in good agreement with experimental data
(Dokuchaev, 1959).

Here, the subscript ⊥ indicates the components of the
variables within the ionosphere plane surface, and ε is a
small parameter on the order of either (2b�)−1 d

dt or (2b(�+
enB0/ρ)

−1 d
dt , where b is a corrective factor denoting sinϕ,

and ϕ is latitude measured from the Equator.
The last assumption is consistent with the condition of ex-

istence of a drift wave and physically means that fluid inertia
in the direction of the ambient rotation or/and magnetic field
is negligible, or equivalently, that ionospheric motions in the
vertical direction, defined by z, are much less than those in
the horizontal one defined by x and y (Pudovkin, 1974).

Within a local Cartesian system defined by ex , ey , and
ez as the east, north, and up directions, respectively (see
Fig. 1), Earth’s angular velocity has the following compo-
nents: �=�(0,

√
1− b2�,b�), where the Equator is de-

fined by b = 0, while the pole is defined by b = 1. Conse-
quently, the geomagnetic field, assumed to be a magnetic
dipole, has components as B0 = B0(0,

√
1− b2B0,−2bB0).

Making a vector product of the equation of motion,
Eq. (2), and ez, we obtain(
∂v

∂t
+ (v · ∇)v

)
× ez+ 2(�× v)× ez+

1
ρ
(j ×B0)

× ez = (∇φ+∇p)× ez. (7)

Let us now investigate in detail the second and third terms on
the left-hand side of Eq. (7), denoting them as fR = 2(�×
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v)× ez and fH = 1
ρ
(j ×B0)× ez. f represents the coupled

rotational and magnetic field contribution. Writing them as

f = fR + fH = 2b
(
�+

enB0

ρ

)[
vx,vy,0)

]
−

2enbB0

ρ

[
5(1− b2)vx, (1− 2b2)vy,0)

]
, (8)

we are able to derive the relevant parameter necessary for
applying drift approximation. In order to compare these two
terms in the last expression, rotation and magnetic field con-
tribution, we next consider two extreme cases, pole and
Equator.

Case (a): in the extreme case b = 1, at the pole, Eq. (8) is
simplified and reads as

f = 2
(
�−

enB0

ρ

)[
(vx,vy,0)

]
. (9)

This result is similar to the result obtained by Kaladze
(1998), but with different approaches of the stream func-
tion for incompressible fluid, with no gravitation involved,
for motions far from the Equator. That approach used, the
so-called β plane approximation, breaks down at polar lati-
tudes.

For very high latitudes, close to the pole, b→ 1, Eq. (8)
becomes

f = f (x,y)= 2�
[
(vx, (1−

1.5enB0

�ρ
)vy,0)

]
. (10)

The ratio of the magnetic field and rotation defines the y
component of the velocity, conditioning the shape of the
structure. We will discuss this result and implications for the
solution in Sect. 4.

Case (b): in the extreme case, at the Equator plane b = 0,
structure formation is not possible since both terms in Eq. (8)
are equal to 0. That result is the same as that obtained in a
number of papers considering the same problem (Kaladze,
1998). Let us investigate the case for low latitudes, close to
the Equator, b→ 0, since there are plenty of observed struc-
tures within that region that have no explanation at all. Equa-
tion (8) for latitudes θ&60 becomes

f = f (x,y)= 0.2�
[(

1−
5enB0

�ρ

)
vx,vy,0

]
. (11)

For such a case, the existence of the ambient magnetic field
would modify the solution, depending on the ratio of the
magnetic field and rotation contribution.

3 Nonlinear equation

Applying drift approximation and using Poisson’s equation
approximated by two-dimensional functions for density and

scalar potential in order to derive the nonlinear equation, the
set of Eqs. (1)–(3) will transform to{

∂
∂t
σ +{φ,(σ0+ σ)} = 0,
σ =−A∇2

⊥
φ+Bφ.

(12)

Here the drift velocity is defined by

vd =∇φ× ez, (13)

while vi is the inertial velocity, and it depends on the velocity
given by Eq. (7). The three-dimensional Poisson equation is
evaluated in two-dimensional plane geometry, in the neigh-
borhood of z= z0 as proposed by Vukcevic (2019), involving
the thickness of the plain via functions A and B.

Case (a): at the pole, inertial velocity is defined by

vi =

(
∂

∂t
+ v · ∇

)
v+

(
2�+

enB0

ρ

)
v. (14)

In the limit of low-frequency perturbations (which is equiva-
lent to a long-period perturbation; according to observations
the solitary structure lasts from a few hours up to a few days,
in size from a few tens up to a few kilometers Lin et al., 2007;
Anderson et al., 2002) we can omit inertial terms in the fur-
ther calculations, so that velocity is approximated by vd. It
will result in the normalization of the variables by the factor
2�+H , whereH = enB0

ρ
. After this assumption all variables

will be evaluated within the (x,y) plain, and Poisson’s equa-
tion is approximated with the finite thickness evaluation in
the vicinity of z= z0, which is at a certain distance from the
Earth’s surface (for details, see Appendix B).

Consequently, we look for the stationary waves which are
described by Eq. (12) assuming that φ = φ(y−ut,x), where
u is a constant parameter meaning the wave velocity along y.
x and y are the local coordinates previously defined. Then,
Eq. (12) takes the form

−2u(�+H)
∂

∂y
(Bφ−A∇2φ)−

1
2
B ′

∂

∂y
φ2
+A(∇φ×∇)z

∇
2φ++(φ′0B − σ

′

0)
∂

∂y
φ−φ′0A

∂

∂y
∇

2φ = 0, (15)

where ′ denotes the derivative with respect to x. The last
equation corresponds to Eq. (B13) in Appendix B, if divided
by 2(�+H), which represents f in this case.

If the latitudes are close to the pole, due to a change in the
inertial velocity, the shape of the solution will be changed
because the y component of the velocity depends on the ratio
of magnetic and rotation values. The shape of the solution
will be discussed and given in the next section.

Case (b): for latitudes close to the Equator, the second term
in the expression for inertial velocity is conditioned by values
of magnetic field influence and Coriolis force influence (see
Eqs. 8 and 11). Consequently, it influences the normalization
value for the velocity as well as the shape of the soliton. If
the magnetic field strength is small compared to the rotation,
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the nonlinear equation is similar to the previous equation and
reads as

−0.2uf
∂

∂y
(Bφ−A∇2φ)−

1
2
B ′
∂

∂y
φ2
+A(∇φ×∇)z

∇
2φ++(φ′0B − σ

′

0)
∂

∂y
φ−φ′0A

∂

∂y
∇

2φ = 0. (16)

Consequently, the soliton shape is symmetric and the am-
plitude of the soliton is changed. In the case where the mag-
netic parameter H is on the order of 0.2�, the solution will
be elongated along the y axis, while if H>0.4�, the soliton
will change its moving direction and one can expect a struc-
ture elongated along the x axis. This is because the normal-
ization value has different velocity components, and these
two cases will be estimated and discussed in the next section.

Here, we underline the difference between the Rossby
waves derived using the so-called geostrophic approximation
for the number of fluids, planetary atmospheres, or plasma
drift waves (Sommeria et al., 1988; Marcus, 1989; Hasegawa
et al., 1979) and the nonlinear soliton wave solution dis-
cussed by Petviashvili (1983) and Vukcevic (2019). The first
reason for the different structure comes from different disper-
sion relations derived in the linearized problem. In our case
it reads as

ω = v0 · k+
k · (ez×∇σ0)

(1− (A/B)k2)
, (17)

while in the case for Rossby waves it is

ω =
k · (ez×∇σ0)

(1− (A/B)k2)
. (18)

Consequently, the nonlinear equation describing Rossby
waves contains the nonlinear term which is of the vector
type, connected with the term [∇φ×∇]z (Korchagin and
Petviashvili, 1985; Korchagin et al., 1987; Fridman and Kho-
ruzhii, 1999). In our case, the crucial term is the one con-
nected with term B ′, which is related to the equilibrium prop-
erty of the fluid, namely, surface density that is x dependent
and thickness of the layer.

4 Results: soliton vortex solution

In this section it will be shown how the solution of the non-
linear equation derived in the previous section depends on
the thickness of the layer. Nonlinear Eqs. (15) and (16) are
similar, and we look for the solution of either of them in the
form

∇
2φ = λ(x)φ+ ν(x)φ2, (19)

where λ and ν are functions of x caused by both an inhomo-
geneity of the equilibrium functions and the thickness of the

plain surface that we need to find out. Functions λ and ν read
as follows:

λ(x)=
1
A

(
B −

σ ′0
u

)
, (20)

ν(x)=
1

2u

(
λA′+

σ ′′0
u

)
, (21)

where ′′ represents second derivative with respect to x.
Even for constant B (B ′ = 0), the nonlinear term φ2 re-

mains due to the gradient of factor A and the extremum of
the function σ0, which is the equilibrium property of the sur-
face density. It is an important result since it suggests that
the equilibrium thickness of the layer cannot be taken as con-
stant; thickness is related either to the gradient of A or to the
surface density function extremum (see Eq. 21).

Then, the stable solution of Eq. (15) or (16) reads as

φ =
2λ
ν
F(R), (22)

where R =
√
λr is the dimensionless radius in the moving

frame, and F is the solution of the equation

1
R

∂

∂R
R
∂f

∂R
= F −F 2. (23)

The approximate solution of Eq. (23) is (Zakharov and
Kuznetsov, 1974)

F = 2.4
(

cosh
(

3
4
R

))− 4
3
, (24)

which means that the potential has a solution taking the form
of a steady solitary vortex shown in Fig. 2, where R repre-
sents the dimensionless distance to the center of the vortex.
The vortex travels along the y coordinate, northward in our
description, with constant velocity u.

Let us now investigate the cases when the normalization
value is not symmetric. Close to the pole, if the magnetic
parameterH is on the order of�, one can expect a symmetric
solution if the H <�vy component is smaller than vx (see
Eq. 10) and the solution is changed and reads as

F = cosh
(

3
4
R(1+ f (x)3)

)− 4
3
. (25)

The solution of scalar potential approximated by Eq. (25)
represents the asymmetric soliton vorticity shape of scalar
potential shown in Fig. 4.

Related to these two types of potential given by Eqs. (24)
and (25), there are three different possibilities in the area
close to the Equator: H �� solution is symmetric with the
amplitude higher than in the symmetric case close to the pole;
H ∼ 0.2� solution will be elongated along the y axis and is
shown in Fig. 3; if H>0.4�, the soliton will be symmetric,
but it will change the moving direction, since the vx compo-
nent has the opposite sign.
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Figure 2. Potential derived in Eq. (22). Horizontal axes represent
the x and y coordinates, while the vertical axis represents non-
dimensional potential.

Figure 3. Shape of the potential in the Equator vicinity elongated
along the y axis.

5 Discussion

There is very clear evidence of the ion density depletion in
Fig. 1 of Huang et al. (2009), which can be explained as
a consequence of the particles trapped by medium nonlin-
ear scalar potential that will be derived in this paper. One
should not expect to observe within the ionosphere vortices
as is common in the atmosphere, but any regular depletion
or enhancement of density can be explained by the mecha-
nism that we propose here. Although the ionosphere is very
complex and dynamical, there are a number of approxima-
tions used in previous theoretical and numerical research that
worked well compared with observed parameters. For exam-

Figure 4. Shape of the potential close to the pole elongated along
the x axis.

ple, there is an interaction between sheared zonal flow within
the ionosphere and Rossby solitons created in the atmosphere
of the Earth, making a turbulent stage via accumulation of
the flow energy into vortical structures. Here, we propose
the existence of the magnetized stable vortices created in
the ionosphere that could be used as a transient stage of a
highly turbulent medium. Recent explanations of the zonal
flow creation have been innhomogenous heating of the at-
mospheric and ionospheric layers by solar radiation, but pre-
viously, there was a number of studies investigating the cre-
ation of sheared zonal flow as a consequence of nonlinear
mechanism excitation by planetary waves or tides. As sug-
gested by Immel et al. (2006), it is not unexpected that tides
are able to modulate the dynamo electric fields within the E
and F layers. It would be of great interest to investigate how
this interaction influences the creation of magnetized soli-
tons derived in this research, since the model of the iono-
sphere includes conductive fluid with coupled strong interac-
tion of charged particles via Lorentz force. Since the iono-
sphere represents a slightly ionized gas, so that neutral par-
ticles are the dominant components, it is expected that self-
gravity in the horizontal plane would play a significant role
in the structure formation. It is more realistic to use scalar
self-gravity potential accompanied by Poisson’s equation and
to treat the fluid as compressible, instead of an incompress-
ible fluid description using the stream function. According to
Haldoupis and Pancheva (2002), the conviction of the hori-
zontal plasma transport as being unimportant in the E layers
(since the scales involved are much larger than the vertical
ones) had to be reconsidered due to new evidence, by Tsun-
oda et al. (1998), which suggested a link between E layers
and planetary waves. Planetary waves are global-scale oscil-
lations in neutral wind, pressure, and density, which prevail
and propagate zonally in the mesosphere and lower thermo-
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sphere and have periods mostly near 2, 5, 10, and 16 d (Forbs
an Leveroni, 1992). It has been shown that horizontal forma-
tions capture medium particles and transfer these particles in
their movement. Here, we have shown that, as an analogy of
planetary waves, there are nonlinear wave formations in the
ionosphere that could be used in order to follow the dynamics
of the ionosphere in an easier manner. Therefore, the vortices
can considerably contribute to the convective intermixing of
a medium.

In this work we have found a soliton solution in a few dif-
ferent cases, on the pole, close to the pole, and close to the
Equator of the ionosphere. We have confirmed a few results
obtained by using different approaches, with an emphasis on
the cause of the obtained phenomena. It is shown that the
surface mass density disturbance in the shallow water theory
approach is just a consequence of scalar gravitational poten-
tial action via Poisson’s equation used in this work. Also, we
have proved that the thickness of the layer can be uniform
(see Eq. 21, even ifA′ = 0 remains the term σ ′′0 ), but the soli-
ton existence is driven by the inhomogeneity of the equilib-
rium mass surface density. The advantage of such a solution
in studying ionospheric disturbances of any kind is the fact
that the amplitude and velocity of the soliton are very sensi-
tive to ionospheric parameters (density of charged particles,
and consequently of pressure, gravity, magnetic field, and ro-
tation velocity values), which means that once the balance
between all of them fails, a distortion of the structure will
result. Thus, it is very easy to predict consequences caused
by maximum or minimum neutral, so that electron concen-
tration, just by simple monitoring of the structure dynamics
within the ionosphere region. This is in contrast to the inves-
tigation of the ionospheric anomaly influence by some other
methods, involving very small amplitudes of either linearized
periodic waves or electromagnetic waves that need to be fil-
tered out in order to define the source, after a number of re-
flections by the ionosphere.

It is important to underline that the type of vortex, when
it is symmetric, is defined by the extremum value of density
inhomogeneity via the term in ν Eq. (21): cyclones by min-
imum, anticyclones by maximum. Also, if the potential is a
bright soliton, consequently the density is represented by a
dark one since particles are trapped by such potential, and
vice versa; whenever the potential is a dark soliton, density
will be enhanced, represented by a bright one. It is possible
further to investigate more detailed conditions of the solitary
structure for different ionosphere layers.

– Ionosphere D layer. Within this region, located 50–
100 km from the Earth’s surface, we can assume that the
contribution of charged particles can be neglected, so
the ponderomotive force effects are small compared to
the Coriolis force effects (Gershman, 1974). This means
that it is likely to expect a solitary structure for small lat-
itudes, close to the Equator, elongated along the y coor-
dinate, while for high latitudes and at the pole, the soli-

ton is symmetric, the size of the soliton will depend on
the density gradient, and its velocity is normalized by
f = fR =�.

– Ionosphere E layer. This layer is located 100–150 km
from the Earth’s surface, and one can expect the cre-
ation of a soliton at all latitudes higher than 60, since the
ponderomotive force is on the order of the Coriolis one.
In this case, soliton velocity is defined by f = 2(�+H)
at the pole and for latitudes close to the pole. Since
the value H has the opposite sign to �, the cancela-
tion of the vortex structure is possible when these two
terms are on the same order or it is possible to change
the moving direction of the soliton structure. Next, the
size of the soliton is defined by R =

√
λr and, conse-

quently, by soliton velocity u, which for this case is de-
fined by 2(�+H); one expects the size to increase com-
pared with the same case for the D layer. As far as the
low-latitude case is concerned, the latitudes close to the
Equator and the size and velocity of the soliton are de-
pendent on the value H compared to �, and even more,
the soliton is not symmetric but rather extended along
the y axes, since f = f (x,y).

– Ionosphere F layer. The ionospheric F layer is for
heights 150–400 km from the Earth’s surface. In this
case, for all latitudes soliton structure is mainly defined
by the value 0.2H . At the pole, the soliton is symmetric
and velocity is defined by f = 2H , while close to the
Equator one can expect a soliton elongated along the x
axis but moving in the opposite direction compared to
the E and D layers, because f = f (x,y)= fH .

Nonlinear effects are extremely important in wave dynam-
ics whenever they are comparable with dispersive proper-
ties of the medium that are defined by gradients of pressure
and gravity potential, rotation, and magnetic force. One very
good example of the balance between nonlinear and disper-
sive effects is a tsunami, a surface gravity wave that can prop-
agate for a long time with large constant velocity and large
amplitude, with no distortion or dissipative effects, as long as
the conditions of balance are satisfied, so that such a solution
is stable in space and time, propagating with the constant ve-
locity and amplitude. The fact that this solution is very sen-
sitive to even very small changes in any parameter makes
instant detection possible of such a change by distortion of
the structure.

6 Conclusions

We have studied nonlinear dynamics of fine structures in
the Earth’s ionosphere within drift approximation, with pri-
mary emphasis on the necessary conditions for vortex soli-
ton creation. We have included all relevant physical forces
in the model, keeping nonlinear terms, and applied them at
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the Equator of the ionosphere. A series of direct observa-
tions of such soliton structures are carried out either from the
Earth’s surface or onboard the satellites. We have summa-
rized all possible soliton structure formations at different lat-
itudes, as well as at different ionospheric layers. The soliton
size and velocity are constant but defined by different val-
ues of ionospheric parameters. From our investigation of the
soliton solution in the conditions of the Earth’s ionosphere
we can outline the following conclusions.

– A stable localized solution of a partial nonlinear dif-
ferential equation is possible under the balance be-
tween nonlinear terms and dispersion, while dispersion
is caused by the Coriolis force and magnetic field force
on the one hand and gravity and pressure on the other
hand. A necessary condition for its existence is either
nonuniform thickness of the layer or the existence of an
extremum of the equilibrium mass surface density func-
tion.

– The amplitude and velocity of the soliton are very sen-
sitive to ionospheric parameters (density of neutrals,
charged particles, and consequently of pressure, grav-
ity, magnetic field, and rotation velocity values), which
means that once the balance between all of them fails, a
distortion of the structure will result.

– In general, a nonlinear equation that has a soliton so-
lution is possible at all latitudes higher than 60, but the
physical processes responsible for it are different. Close
to the Equator, the presence of a magnetic field is cru-
cial since effects of rotation are very small, while on
the pole it is always a combination of the rotation and
magnetic effects, with the possibility for the soliton to
vanish due to opposite signs of these two effects.

– Soliton existence is a direct consequence of the equilib-
rium condition on the layer thickness. The equilibrium
must be defined either by the extremum of the surface
density function or by parameter A.

– In the ionosphere D layer it is likely to expect a soli-
tary structure close to the Equator, but if it is created the
soliton is elongated along the y coordinate. Close to the
pole, the size of the soliton will depend on the density
gradient, and its velocity is normalized by �.

– The ionosphere E layer is characterized by two types
of solitons: close to the pole the soliton vortex is sym-
metric, with sizes larger than in the D layer with the
possibility of vanishing, and close to the Equator the
existence is caused by the magnetic field presence, and
the soliton is elongated along the y axis.

– The opposite situation is within the ionosphere F layer
where at the pole there exists a symmetric soliton larger
then in the ionosphere D layer at the pole, while close to
the Equator there exists an extended soliton structure.

Finally, we hope that this model will be used in explana-
tions of the ionosphere structures as well as in testing the
physics background of complex ionosphere simulations. This
model can be used not only to model the ionosphere struc-
ture, but also for different astrophysical systems, e.g., accre-
tion disks, where the thickness effects could be very impor-
tant. Therefore, finite thickness effects should be taken into
account. However, this approach can be improved by trying
to find out the correlation between soliton structure dynamics
and other methods used to identify the ionospheric anoma-
lies. Also, it would be of great importance to investigate the
stability of the soliton structure as the subject of small dis-
turbances and apply it to the study of the interaction between
the solitons within different ionospheric layers. All of these
mentioned issues will be considered in further research.
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Appendix A: Derivation of the momentum equation for
the neutral gas influenced by low-density ions and
electrons

As is mentioned in Sect. 2, the neutral gas is strongly influ-
enced by a strong electric field as the interaction of coupled
charged particles, electrons and ions. That interaction enters
in the neutral gas momentum equation via collisional drag
forces of neutral particles and charged particles in the iono-
sphere. So that, there are three coupled momentum equations

∂v

∂t
+(v · ∇)v+ 2(�× v)=∇8+

1
ρ
∇P +miniN〈6ν〉in

(vi− v)+meneN〈6ν>en(ve− v), (A1)

mini
∂vi

∂t
=∇Pi+ niei(E+ vi×B)−miniN

〈6ν〉in(vi− v), (A2)

mene
∂ve

∂t
= 0=∇Pe− nee(E+ ve×B)

−meneN〈6ν〉en(ve− v). (A3)

In these three equations index i or e denotes ion and
electron, respectively, while 〈6ν〉in and 〈6ν〉en are the col-
lision cross sections for neutrals with charged particles.
Consequently, collision frequencies are νi =N〈6ν〉in and
N〈6ν〉en for the ions and electrons. Coriolis force for ions
and electrons is negligible compared to the Lorentz force
since νe ∼ 1061/s� ωci ∼ 2× 1021/s and νi ∼ 1031/s�
ωce ∼ 6× 1061/s; both are much higher than the horizontal
component of Coriolis acceleration fc ∼ 6× 10−51/s at the
midlatitude for the E layer, where ωci,e = eB/mi,e are the cy-
clotron frequencies for ions and electrons, respectively. From
the same estimation it is obvious that ion frictional force is
much higher than the electron one due to the mass ratio of
electron and ion. Adding Eqs. (A2) and (A3), we obtain

mini
∂vi

∂t
=∇(Pi+Pe)+ nee(vi− ve)×B −miniN

〈6ν〉in(vi− v)−meneN〈6ν〉en(ve− v), (A4)

where it has been used as a quasi-neutral condition ni = ne =

n. Applying ve =E×B/B2 from Eq. (A3) to Eq. (A4), ne-
glecting higher-order drift contributions such as diamagnetic
drift, and since vi = v due to very rapid ion velocity evolve-
ment, using nee(v−ve)= v = j , we substitute Eq. (A4) into
Eq. (A1), and we finally obtain the momentum equation for
neutral gas as follows:

∂v

∂t
+ (v ·∇)v+2(�×v)=∇8+

1
ρ
∇P +

1
ρ
(j ×B). (A5)

In the last equation we have neglected ion and electron
pressure compared with neutral gas pressure due to Pe,i/P ∼

n/N � 1. The electron Hall current contribution is a driving
term from the ionospheric electric field E since Hall con-
ductivity σEH/B is much higher than Pedersen conductivity

σEP ∼ σEHωci/νi due to the fact that for the E-layer typical
conditions ωci/νi� 1, ions could be considered to be un-
magnetized. Electrons are magnetized and frozen in the ex-
ternal magnetic field, experiencing only drift perpendicular
to the magnetic field. That is why the parallel conductivity
is high, σE|| ∼ σEPωce/νe, because ωce/νe� 1, ending with
the equation for the electric current as

j = en(v− ve), (A6)

known as noninductive approximation (for more details, see
Sect. 7, especially 7.2 of Schunk and Nagy, 2009). Eq. (A5)
is the same as Eq. (2) in the main text.

Appendix B: Finite thickness approximation

We have restricted the problem to studying the two-
dimensional motion on the horizontal surface Eq. (6); there-
fore, we must solve the three-dimensional Poisson equation
for a two-dimensional geometry. To develop an analytical
theory, we need an appropriate approximation of Eq. (3).

We assume that the three-dimensional potential and den-
sity may be written in the neighborhood of z= 0 in the forms
of

8(r,θ,z)= φ(r,θ)f (z), (B1)
ρ(r,θ,z)= σ(r,θ)g(z). (B2)

Integrating the last equation with respect to z, we obtain

−A∇2
⊥
φ+Bφ = σ, (B3)

where ∇2
⊥

is the two-dimensional Laplacian in the horizontal
surface, A= a

c
, B = b

c

a =

D∫
−D

f (z)dz, (B4)

b =

D∫
−D

f ′′(z)dz, (B5)

and

c =−

D∫
−D

g(z)dz. (B6)

The conventional Lin–Shu approximation for an infinitely
thin disk corresponds to the limit of B = 0 which is obtained
for g(z)= δ(z). All details about the normalization of the
variables and separation of ambient and fluctuation parts are
given in Vukcevic (2019). In order to obtain Eq. (15), we start
from Eq. (12) in the following form:

∂σ

∂t
+∇ · (σv)= 0, (B7)
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where v =∇φ×ez and σ =−A∇2φ+Bφ. The second term
of Eq. (A1) reads as

∇ · (σv)= v0∇σ + v∇σ0+ v∇σ, (B8)

since ∇v =∇v0 = 0. Then, each term will be

v0∇σ = (∇φ0× ez) · ∇(−A∇
2φ+Bφ)

= Aφ′0
∂

∂y
∇

2φ−Bφ′0
∂φ

∂y
, (B9)

v∇σ0 = (∇φ× ez)
∂

∂x
σ0(x)= σ

′

0
∂φ

∂y
(B10)

v∇σ = (∇φ× ez) · ∇(−A∇
2φ+Bφ)

=−A′
∂φ

∂y
∇

2φ−A(∇φ×∇)∇2φ+B ′φ
∂φ

∂y
. (B11)

Collecting all these terms, neglecting the first term in the last
equation as a higher-order nonlinear term, Eq. (B1) reads as

∂

∂t
(−A∇2φ+Bφ)+

∂φ

∂y
(σ ′0−Bφ

′

0)−A(∇φ×∇)

∇
2φ+φ′0A

∂

∂y
∇

2φ+
1
2
B ′
∂φ2

∂y
= 0. (B12)

In order to show that the solitary vortex solution satisfies the
last equation, we assume the solution to be a function φ =
φ(y− ut,x), so that the derivative with respect to time will
become ∂

∂t
=−u ∂

∂y
, and consequently Eq. (B6) will read as

−u
∂

∂y
Bφ+ uA

∂

∂y
∇

2φ+
∂φ

∂y
(σ ′0−Bφ

′

0)−A(∇φ×∇)

∇
2φ+φ′0A

∂

∂y
∇

2φ+
1
2
B ′
∂φ2

∂y
= 0, (B13)

or

A(φ0+ u)
∂

∂y
∇

2φ+
∂φ

∂y
(σ ′0−B(φ

′

0+ u))+A(∇φ×∇)

∇
2φ+

1
2
B ′
∂φ2

∂y
= 0. (B14)

Equation (B13) is the same as Eq. (15) after normalizing soli-
ton velocity u by 2(�+H). If u� φ′0 we can further simplify
the equation having in the first two terms instead of (u+φ′0)
just u. Dividing it by uA, one gets

∂

∂y
∇

2φ+
1
u
(∇φ×∇)∇2φ−

1
A

(
B −

σ ′0
u

)
∂φ

∂y

+
1

2uA
B ′
∂φ2

∂y
= 0. (B15)

Next, we show that looking for the solution of that equa-
tion in the form

∇
2φ = λ(x)φ+ ν(x)φ2 (B16)

will lead to vanishing of the term related to B ′. Acting by
operator ∂

∂y
+

1
u
[∇φ×∇]z on all parts of Eq. (B10) and ne-

glecting terms on the order φ3, we get

∂

∂y
∇

2φ+
1
u
(∇φ×∇)∇2φ = λ(x)

∂φ

∂y
−
λ′

2u
∂φ2

∂y

+ ν
∂φ2

∂y
. (B17)

If Eq. (B10) satisfies Eq. (B9), coefficients of corresponding
terms must be equal, which gives

λ(x)=
1
A

(
B −

σ ′0
u

)
(B18)

and

ν(x)=
λ′

2u
−

1
2uA

B ′. (B19)

Since

λ′ =
B ′A−BA′

A2 −
σ ′′0A− σ

′

0A
′

A2u
, (B20)

we have

ν(x)=
1

2u
B ′A−BA′

A2 −
σ ′′0A− σ

′

0A
′

2A2u2 −
1

2uA
B ′. (B21)

The first and last terms give zero, so it becomes

ν(x)=−
uBA′+ (σ ′′0A− σ

′

0A
′)

2u2A2 =
1

2u

(
λA′+

σ ′′0
u

)
. (B22)

Details for derivation of a nonlinear equation and its solution
in the case when inertial velocity is not constant but rather
x or y dependent can be found in Appendix B of Vukcevic
(2019). In that case drift velocity has to be approximated by
v = 1

�
∇φ×ez, where� is not constant any more, which im-

plies ∇v 6= 0. Note: within Appendix B, scalar B indicates
layer thickness, not magnetic field, while B ′ indicates thick-
ness gradient.
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M. Vukcevic and L. Č. Popović: Nonlinear vortex solution for perturbations in the Earth’s ionosphere 305

Data availability. No data sets were used in this article.

Author contributions. MV planned, wrote the paper and performed
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