Articles | Volume 21, issue 2
https://doi.org/10.5194/npg-21-379-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/npg-21-379-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm
R. Calif
EA 4539, LARGE laboratoire en Géosciences et Énergies, Université des Antilles et de la Guyane, 97170 P-á-P, France
F. G. Schmitt
CNRS, UMR 8187 LOG Laboratoire d'Océanologie et de Géosciences, Université de Lille 1, 28 avenue Foch, 62930 Wimereux, France
Viewed
Total article views: 2,404 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Mar 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,325 | 939 | 140 | 2,404 | 145 | 132 |
- HTML: 1,325
- PDF: 939
- XML: 140
- Total: 2,404
- BibTeX: 145
- EndNote: 132
Cited
48 citations as recorded by crossref.
- Background PM10 atmosphere: In the seek of a multifractal characterization using complex networks T. Plocoste et al. 10.1016/j.jaerosci.2021.105777
- A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting D. Ambach & W. Schmid 10.1016/j.energy.2017.06.137
- Calculation and Analysis of Wind Turbine Health Monitoring Indicators Based on the Relationships with SCADA Data F. Zhang et al. 10.3390/app10010410
- Spatio-temporal visualization and forecasting of $${\text {PM}}_{10}$$ in the Brazilian state of Minas Gerais K. da Silva et al. 10.1038/s41598-023-30365-w
- Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room L. Lian et al. 10.1016/j.physa.2018.05.021
- Data-driven modeling of the wake behind a wind turbine array N. Ali & R. Cal 10.1063/5.0004393
- ν-Support Vector Regression Model Based on Gauss-Laplace Mixture Noise Characteristic for Wind Speed Prediction S. Zhang et al. 10.3390/e21111056
- Investigation of Turbulence Behaviour in the Stable Boundary Layer Using Arbitrary-Order Hilbert Spectra W. Wei et al. 10.1007/s10546-016-0227-9
- Detrended fluctuation analysis of the Ornstein-Uhlenbeck process: Stationarity versus nonstationarity Z. Czechowski & L. Telesca 10.1063/1.4967390
- Multi-scale/fractal processes in the wake of a wind turbine array boundary layer N. Ali et al. 10.1080/14685248.2019.1590584
- Fuzzy First-Order Transition-Rules-Trained Hybrid Forecasting System for Short-Term Wind Speed Forecasts Y. Bai et al. 10.3390/en13133332
- Unsupervised statistical estimation of offshore wind turbine vibration for structural damage detection under varying environmental conditions J. Guo et al. 10.1016/j.engstruct.2022.115005
- Identifying the scale-dependent motifs in atmospheric surface layer by ordinal pattern analysis Q. Li & Z. Fu 10.1016/j.cnsns.2018.01.002
- Investigation of local correlations between particulate matter (PM10) and air temperature in the Caribbean basin using Ensemble Empirical Mode Decomposition T. Plocoste et al. 10.1016/j.apr.2020.06.031
- Scale evolution, intermittency and fluctuation relations in the near-wake of a wind turbine array N. Ali & R. Cal 10.1016/j.chaos.2018.12.018
- Multi-scale time dependent correlation between synchronous measurements of ground-level ozone and meteorological parameters in the Caribbean Basin T. Plocoste et al. 10.1016/j.atmosenv.2019.05.001
- Nonlinear dynamics of the sea level time series in the eastern English Channel F. Schmitt et al. 10.1007/s11069-017-3125-7
- Power fluctuations in turbulence W. Bos & R. Zamansky 10.1103/PhysRevLett.122.124504
- Approximate multifractal correlation and products of universal multifractal fields, with application to rainfall data A. Gires et al. 10.5194/npg-27-133-2020
- A Novel Hybrid Strategy Using Three-Phase Feature Extraction and a Weighted Regularized Extreme Learning Machine for Multi-Step Ahead Wind Speed Prediction J. Wang et al. 10.3390/en11020321
- Role of Deterministic Electromechanical Conversion for Short-Term Fluctuations in Wind Power: A Case Study in Japan F. Raak et al. 10.1103/PhysRevApplied.12.034013
- Correlated power time series of individual wind turbines: A data driven model approach T. Braun et al. 10.1063/1.5139039
- Detecting the Causal Nexus between Particulate Matter (PM10) and Rainfall in the Caribbean Area T. Plocoste 10.3390/atmos13020175
- Exploring the link between multiscale entropy and fractal scaling behavior in near-surface wind M. Nogueira & F. Schmitt 10.1371/journal.pone.0173994
- Multifractal behavior of an air pollutant time series and the relevance to the predictability Q. Dong et al. 10.1016/j.envpol.2016.11.090
- Analysis of repulsion states among pedestrians inflowing into a room L. Lian et al. 10.1016/j.physleta.2018.05.055
- Some statistical properties of aeolian saltation Z. Wang 10.1063/5.0192219
- Construction of SDE-based wind speed models with exponentially decaying autocorrelation R. Zárate-Miñano & F. Milano 10.1016/j.renene.2016.03.026
- Fisher–Shannon and detrended fluctuation analysis of MODIS normalized difference vegetation index (NDVI) time series of fire-affected and fire-unaffected pixels X. Li et al. 10.1080/19475705.2017.1337652
- Turbulence kinetic energy budget and conditional sampling of momentum, scalar, and intermittency fluxes in thermally stratified wind farms N. Ali et al. 10.1080/14685248.2018.1564831
- Taylor Law in Wind Energy Data R. Calif & F. Schmitt 10.3390/resources4040787
- The Potential Wind Power Resource in Australia: A New Perspective W. Hallgren et al. 10.1371/journal.pone.0099608
- Deterministic and Interval Wind Speed Prediction Method in Offshore Wind Farm Considering the Randomness of Wind Q. Chen et al. 10.3390/en13215595
- The impact of turbulent renewable energy production on power grid stability and quality K. Schmietendorf et al. 10.1140/epjb/e2017-80352-8
- Long-range fluctuations and multifractality in connectivity density time series of a wind speed monitoring network M. Laib et al. 10.1063/1.5022737
- Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips T. García-Sánchez et al. 10.3390/en13164078
- Power spectrum and multifractal detrended fluctuation analysis of high-frequency wind measurements in mountainous regions L. Telesca et al. 10.1016/j.apenergy.2015.10.187
- Long-range dependence and time-clustering behavior in pedestrian movement patterns in stampedes: The Love Parade case-study L. Lian et al. 10.1016/j.physa.2016.11.048
- Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines V. Amin Allah & M. Shafiei Mayam 10.1016/j.energy.2017.01.052
- A Multifractal Random-Walk Description of Atmospheric Turbulence: Small-Scale Multiscaling, Long-Tail Distribution, and Intermittency L. Liu et al. 10.1007/s10546-019-00451-6
- Multifractal detrended cross-correlation analysis of wind speed and solar radiation T. Plocoste & P. Pavón-Domínguez 10.1063/5.0026354
- Multiscale analysis of the dynamic relationship between particulate matter (PM10) and meteorological parameters using CEEMDAN: A focus on “Godzilla” African dust event T. Plocoste 10.1016/j.apr.2021.101252
- Integrated Forecasting Method for Wind Energy Management: A Case Study in China Y. Dong et al. 10.3390/pr8010035
- Multiscale Analysis of Wind Velocity, Power Output and Rotation of a Windmill O. Medina et al. 10.1016/j.egypro.2015.07.897
- Discontinuous Jump Behavior of the Energy Conversion in Wind Energy Systems P. Lin et al. 10.1103/PRXEnergy.2.033009
- Stochastic Dynamic AC Optimal Power Flow Based on a Multivariate Short-Term Wind Power Scenario Forecasting Model W. Bai et al. 10.3390/en10122138
- Temporal multiscaling characteristics of particulate matter PM10 and ground-level ozone O3 concentrations in Caribbean region T. Plocoste et al. 10.1016/j.atmosenv.2017.08.068
- A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting T. Ahmad & D. Zhang 10.1016/j.energy.2021.122109
Latest update: 21 Nov 2024