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Abstract. We consider here wind speed time series andproaches can be used to consider the scaling intermittency
the aggregate output wind power from a wind farm. We of small-scale turbulence, the most classical one being struc-
study their scaling statistics in the framework of fully devel- ture functions analysis. In recent years several studies have
oped turbulence and Kolmogorov’s theory. We estimate theitbeen dedicated to the analysis of scaling laws and turbulent
Fourier power spectra and consider their scaling propertiesntermittency at small scales in the laboratoAn§elmet et
in the physical space. We show that the atmospheric windal.,, 1984 She and Levéquel994 and in the atmospheric
speed and the aggregate power output from a wind farm aréoundary layer$chmitt et al. 1993 1994 Katul et al, 1995
intermittent and multifractal over a wide range of scales. TheSchmitt 2007 Bottcher et al. 2007 Morales et al. 2011,
coupling between simultaneous data of the wind speed an€alif and Schmitt2012. These studies have shown that at-
aggregate power output is investigated through a joint mul-mospheric turbulent speed at small scales has multifractal
tifractal description using the generalized correlation func-scaling fluctuations and exhibits long-range power correla-
tions (GCFs). This multiscaling test is compatible with a lin- tions.
ear relation between the wind speed and the aggregate power However the knowledge of variations ranging from min-
output fluctuations for timescalgs> 10°s~ 15min. utes to a few days — corresponding to 1-1000 km, i.e., the
mesoscale range — is necessary to provide efficient tools
for management and control of wind power generation. The
studies concerning this scale range are fewer than those for
1 Introduction the small-scale range, due to the possible nonuniversality of
the power law slope in the mesoscale range. Recent works
Increasing the wind energy contribution to electrical net- (Lauren et al.1999 Muzy et al, 2010 have been dedicated
works requires improving the tools to forecast the electricaltp scaling and multiscaling properties of the atmospheric
power produced by wind farms, in order to proportion net- wind speed in the mesoscale range.
work lines. However the wind energy is a fluctuating energy |n this paper, the scaling properties of the atmospheric
ressource, due to the h|gh Va”abl“ty of the wind at all Spatialwind Speed are provided for the small-scale and mesoscale
and/or temporal scales. In the atmospheric boundary layefanges. Atmospheric wind speed data sampled at 20 and 1 Hz
the Reynolds number (ratio of inertial to viscous force) canare analyzed through multifractal theory in order to charac-
be as large aRe= 10 (Burton et al, 200)). Large values  terize the wind speed fluctuations behavior for each scaling
of the Reynolds number lead to a huge intermittency of Windregime_ In para||e|, the aggregate power output data from a
speed fluctuations at all temporal or spatial scales, rangingvind farm are analyzed within the same theoretical frame-
from large-scale variations (years) to very small scale vari-work. The paper is organized as follows. In Sect. 2, the data
ations (few min down to seconds$till, 1988. Small-scale  sets are described. In Sect. 3, the theoretical framework, tra-

intermittency remains a challenging problem for the turbu- ditional spectral analysis and structure functions analysis are
lence community researcPé¢inke et al.2004). Several ap-
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380 R. Calif and F. G. Schmitt: Multiscaling of the wind speed and wind power

presented. In Sect. 4, in order to quantify the coupling of the 18 117
relationship between the wind atmospheric and the aggregate ‘
power output, a joint multifractal description is presented. In 6 097
Sect. 5, the Fourier spectra are estimated for the atmospheric A

wind speed and the aggregate power output. To provide a ‘

full characterization of experimental fluctuations, at all in- I r
tensities and at all scales, multifractal and joint multifractal
approaches are used.
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2 Description of the data 030

In order to investigate the spectral and multiscaling proper- g 1019
ties of the turbulent wind speed in the atmospheric sur-

face layer and the aggregate power outputa data set is ‘ ‘ : ‘ ‘ ‘ : ‘ .
collected on the wind energy production site of Petit-Canal, 0 0 00 150 t(sezgg% &) 0 00 %0 4000
an island in the French West Indies. This 10 MW production @

site, located at 19.5 N latitude and 6630' W longitude, was b ‘ v
positioned at approximately 60 m (197 ft) a.s.l., at the top of
a sea cliff. The wind speed is measured with a three-cup
anemometer (model A100L2 from Vector Instruments) black
having a response time of 0.15 s and an ultrasonic anemome-
ter (model CSAT3). Both were mounted on a 40m (131 ft)
tall mast erected 20m (66 ft) from the cliff edge, at 38 m
(125 1t) from the ground. The two experimental databases for
atmospheric wind speed are used here: (i) with the three-
cup anemometer, the sampling frequency and duration are
respectively 1Hz and 1yr (January 2006—-2007); (ii) with
the ultrasonic anemometer, the sampling frequency and dura- or
tion are respectively 2@/ z and 2 weeks (14-28 July 2005).
Moreover, the aggregate power output produced by this wind

farm was recorded with a sampling frequency 1 Hz, during % 2 4 6 8 10 12
1yr (January 2006—2007). Table 1 gives a description of our (0) t(hours)

data set with the mean and the standard deviation values. Adjg 1. Two examples of simultaneous wind power dg&:simul-
ditionally, two examples of simultaneous wind speed and ag+aneous time series sampled at 1 H»;moving averages of simul-
gregate power output data sequence for different timescalesaneous time series, over a time peribe: 10%s~ 3h.

are illustrated in Figl: (i) Fig. 1a presents simultaneous

time series sampled at 1 Hz; (ii) Figb presents the mov-

ing averages of simultaneous time series, over a time periotvhereg is the spectral exponent. According to some authors
T = 10*s. Figurela shows that for very short timescales of (Mandelbrof 1982 Schertzer and Lovejoyl987 Marshak
the order of seconds, the wind speed signal exhibits high flucet al, 1994, it contains information about the degree of sta-
tuations contrary to the wind power signal, while over large tionarity of the field:

scales the observed moving averages have the same trends.

1078

wind speed (m/s)

10.19

— B < 1, the process is stationary,

3 Theoretical framework — B > 1, the process is nonstationary,

— 1< B < 3, the process is nonstationary with incre-

3.1 The existence of1 and —5/3 power laws in ments stationary.

the atmospheric wind speed
It may also be considered as characterizing the degree of cor-
Classically, a scale invariance can be detected by computingelation (vanov et al, 2001; Telesca et a]2003.

of power spectral densit¥ (f). For a scale-invariant pro-  |n the atmospheric surface layer, it is recognized that
cess, the following power law is obtained over a range ofwind speed spectra possess three spectral regope(
frequencyy: 2000: (1) the energy-containing range black (or large-scale
turbulence) in which turbulent kinetic energy is produced,
E(f)~fF, (1) (2) the inertial subrange (small-scale turbulence) in which
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Table 1. Description of our database with the mean and the standard deviation values.

Data set Sampling Total number Mean value Standard deviation
frequency of data points <.> o

Wind speed 20 Hz 2886276 (2005) 8.395 1 1.95ms?

Wind speed 1Hz 26438400 (2006) 8.20fs 1 3.32ms?

Aggregate power outpu? 1Hz 26438400 (2006) - -

turbulent kinetic energy is transferred from large to small togtEtx) |
scales, and (3) the dissipation range (millimeters and smallerp

where turbulent kinetic energy is converted to heat by the ac- Integral I
tion of fluid viscosity. Figure2 gives an illustration of the
Kolmogorov quasi-equilibrium energetic cascade in the iner-
tial range. In this zone, the Kolmogorov theory implies that
the wind speed fluctuations possess a power law spectrun Injection
(Kolmogoroy, 1941, Obukhoy 19417):

Dissipative
scale

B =5/3. )

—— —— — — — —

This relation is written here for wave numbers, but can also

be used for frequencies, involving Taylor’s hypothesis to re- Dis!ipaﬁon

late spatial fluctuations to temporal fluctuations. This power >
law has been verified many times for wind atmospheric data Log(k)

(Schmitt et al. 1993 1994 Katul et a.l, 1995 Schmitt 2007 Fig. 2. An illustration of the Kolmogorov quasi-equilibrium ener-
Mora[es et al.2011, Calif and Schmitt2012). In the energy- _ getic cascade in the inertial range.

containing range where the scales extend from a few min-

utes to a few days, the properties of turbulent wind speed

depend on their strong anisotropy and their dependence opolation between a low-frequeng§ spectrum and a high-
the flow domain boundary characteristi¢éaful and Chy  frequency Kolmogorov spectruri—>/2, and Kaimal et al.
1998 Katul et al, 2012). However in this study, the existence (1972 proposed their formula on purely empirical grounds
of universal power laws at low wave numbers for the powerfor the low-frequency part. In both cases the main idea is to
spectral density of the turbulent longitudinal velocity is ex- capture in a single expression the injections scales and the
amined theoretically and experimentally for the near-neutralinertial range with Kolmogorov spectrum. Indeed, these fits
atmospheric surface layer. Indeed, several experimental stuchre based on Kolmogorov theorgitniu and Scalan1978

ies have found a-1 power law slope at production scales for which defines a general form of the fluctuating wind speed
the wind speed spectrum in the atmospheric surface layer isBhown as followsZhang et al.2008. In the present paper,
neutral conditionsiatul and Chu1998 Nickels etal,2005  we mainly focus on other scaling regimes and therefore do

Katul et al, 2012: not need to consider the fits proposed by these authors. Fi-
1 nally, we must note also that the power spectrum density
E(f)~ fh f <1Hz (3)  E(f)isasecond-order statistic (proportional to the square of

. . the amplitude of a given frequency fluctuation) and its slope
Moreover this power law slope was predicted by three theg ot g fficient to fully specify a scaling process. Multifrac-
oretical approaches. More details are giveaiul and Chu 5 5nalysis is a natural generalization to study the scaling be-
(199§. However this power law does not present the Same,ior of a nonlinear phenomenon, usigth-order structure
level of universality ag = 5/3 for turbulence in the inertial  ¢,¢tions, and to obtain a full characterization of wind speed

range: as mentioned lrauren et al(1999, in the mesoscale  cyyations, at all intensities and all scales; this is discussed
range, the power law slope can vary with the local topogra-i, the next subsection.

phy and the atmospheric conditions. Let us note also that in

the wind energy community some fits of speed power spectr®.2  |ntermittency and multifractal properties

are often used, based on von Karman’s formula of the form

E(f) =a/(b+cf?)>6 (Karman 1948 or on Kaimal's for-  Intermittency in turbulence has been a subject of research
mulaE(f) = A/(1+ Bf)%/3 (Kaimal et al, 1972, wherea, for alImost 50 yr now, following Kolmogorov's 1962 seminal

b, c and A, B are constants. These two formulae have noworks Kolmogoroy 1962. This intermittency in the iner-
theoretical ground: von Karman wanted to perform an inter-tial range has been modeled by cascade models in various
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studies for velocity lovikov and Stewart1964 Yaglom with w being the intermittency parametefaglom (1966
1966 Mandelbrot 1974). These models reproduce intermit- has proposed a multiplicative cascade model compatible with
tency and multiscaling in the inertial range turbulence. HereKolmogorov's ideas. Several other models have been pro-
we may define intermittency as the property of having largeposed since in the literature, for example the log-stable model
fluctuations at all scales, with a correlated structure, or, inproposed byschertzer and Lovejof987):

other words, with various orders of singularities to be dis-

tributed over fractal sets with varying dimensions (rather than; (4) = g H —
a unique dimension as for monofractal process); in the case (@—1)

of intermittency the scaling moment functigig), whichis  \herepr — ¢ (1) is the Hurst parameter which defines the de-
introduced below, is nonlinear. Large fluctuations are muchgree of smoothness or roughness of the field. The parameter

more frequent than what would be obtained for Gaussian, s the fractal co-dimension of the set giving the dominant
processesHrisch 1995 Schertzer et 81997 Vulpianiand  contribution to the meany(= 1) and bounded between 0 and

Livi, 2004. This is typically studied considering the proba- , (d the dimension space, hefe= 1). It measures the mean

bility density function (PDF), or more often using the mo- jnermittency characterizing the sparseness of the field: the
ment of ordely of these fluctuations, called “structure func- larger C1, the more the mean field is inhomogeneous. The
tions of orderg " multifractal Lévy paramete is bounded between 0 and 2,
wherea = 0 corresponds to the monofractal case and 2
coresponds to the multifractal lognormal case. The parame-

whereAX (A7) = X(t + At) — X (r) and At is a time incre-  tera measures the degree of multifractility, i.e, how fast the
ment. We have here written the fluctuations in time, since beinhomogeneity increases with the order of the moments. But
low in this paper we deal with time series analysig,) isthe ~ here we consider the lognormal model which provides a rea-
scaling exponent functior.(2) = g — 1 relates the second- sonable fit up tay = 5; hence here the question of the best
order moment to the power spectrum scaling exponent; thénodel (among the inifinitely divisible family of models) is
knowledge of the full ¢, ¢(¢q)) curve for integer and nonin- Not the topic of the present paper, and we consider here the
teger moments provides a full characterization of wind speedognormal fit as convenient for the joint analysis done in the
fluctuations at all scales and all intensities. The parametefext section.

H = ¢(1) is the Hurst exponent characterizing the noncon-
servation of the mean. Monofractal processes correspond t
a linear functions (¢) = g H, with H = 1/2 for the Brown-

ian motion, O< H < 1 (H # 1/2) for a fractional Brownian
motion (that can be defined as a fractional integration of or-
derb (0 < b < 1) of a Gaussian noise, with = % —b). The

values of the functiorg (¢) are estimated from the slope of |n order to test independence between two random process,
Sq(At) versusAt in a log—log diagram for all moments  second-order statistics are often considered in the wind en-
The function¢(¢) defines the types of scaling behavior; in ergy community Burton et al, 2001). More precisely the
other words, this exponent function is useful to character-cross-correlation function in the time domain and the coher-
ize the statistics of the random process; () is linear, the  ence function in the frequency domain, of two processes
statistical behavior is monoscaling;dfg) is nonlinear and  and y(r), are determined for highlighting possible correla-
concave, the behavior is defined as mutiscaling, correspondions. We recall here the expressions for the cross-correlation

ing to a multlfractal process. The concavity of this function function C., and the coherence functidt,, (Papoulis and

is a characteristic of the intermittency: the more the curve ispillai, 2002:

concave, the more the process is intermittémisch 1995

Schertzer et 311997 Vulpiani and Livi, 2004). == X +7)y) > ®)
Kolmogorov’s 1941 model corresponds to a linear model ! 0x0y ’

for the exponent functiorkolmogoroy, 1941):

(¢“ —4q). ©)

Sy (A1) =< (AX)? > At @D, (4)

2 Joint analysis for multivariate data

4.1 Test for data independence using second-order
correlation

where< . > is the statistical average,is a time lagoy, oy

t(q) = q ) are respectively the standard deviations of procesggsnd
3 y(t) (Papoulis and Pillai2002, and

For a multifractal process,(g) is nonlinear. Several models >

have been proposed in the literature to fit the scaling expoy, , = M (9)

nents¢ (¢). Here we consider the classical lognormal model —~ { Ex(/)Ey(f)

(Kolmogoroy, 1962:

E,,(f)isthe Fourier co-spectrum, ait} (/) andE, (f) are
6) the Fourier spectra of processeg@) andy(t), respectively.

q 1% 2
==+ =039 —q),
¢(@) 3 18( 7 =4 If Cx, and H,, are zero or close to zero, thenand y are
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uncorrelated. In contrast, &, and H,, are unity or close
to unity,x andy are perfectly correlated; €, and Hy, are
close to—1, x andy are negatively correlated.

These statistical tests are based on second-order statistics.

In the following section a generalization of correlation coef-
ficient is given using the multifractal framework.

4.2 Joint multifractal description for bivariate field:
generalized correlation functions (GCFs) and
exponents (GCES)

We recall here that, whereas independence implies noncor-
relation, noncorrelation does not imply independence. In or-
der to better consider the relation between two scaling time
series, we apply here a testing technigue proposed in Seu-
ront and Schmitt (2005). Instead of random variablesnd

v, we consider here the increments of two stochastic pro-
CeSSEAX (AN =X(t+ Ar)— X (@) and AY(At) =Y (t +

At) — Y (¢), and the normalization of the joint moments is
given as Seuront and Schmjt2005

< AX"AYS >

~ At—r(h,g) .
AXh >< AYE >

(10)

cth,g)= -

When AX" and AY¢ are independentr(h,g) =0 and
c(h,g) = 1. In contrast, increasing values of, g) would
characterize increasing dependence betwegf andAYS.
The generalized correlation exponent (GCE hereafter), es;
timated as the slope of the power lawc@f, g) versusAz in
a log—log plot, is then expressed as:
r(h,g) =¢x(h)+ ¢y (g) — S(h,g)., (11)
where¢y (h) and¢y(g) characterize the multiscaling prop-
erties of the single fluctuations AX" >, and < AY?$ >
and S(h, g) characterize the multiscaling properties of the

383

Consequently

r(h,g) =ohg. (14)

In this case, itis clear that1, 1) orr(2, 2) are enough

to estimate the only needed parameter, namely the cor-
relation coefficient, so thatifr(1,1) =0orr(2,2) =

0, it can be concluded that the two processes are inde-
pendent.

If X andY are independent(k, g) =0;
if X andY are proportional, i.eX =aY, then
r(h,g) =&y (h)+ ¢y (g) — Ly (h+3). (15)

Additionally the shape of the obtained surface is sym-
metric in theh—g plane.

If a power law exists betweeki andY, i.e., X =aY?,
one has

r(h,g) =ty (bh) +ty(g) — ¢y (bh +g). (16)

In this case (h, g) > 0, but itis symmetric in théh—g
plane.

5 Spectral and multifractal analysis

In this section the Fourier power spectral densities are esti-

mated for our database: wind speed data sampled at 20 and
1 Hz, and aggregate power output data sampled at 1 Hz. After

this, the multifractal analysis is applied.

5.1 Spectral analysis

In this study, in order to estimate the power spectral densities

o ’ h A ve of the wind speed and the aggregate power output from a
joint fluctuations< AX®AY# >. Both c(h,g) andr(h,8)  \yind farm, the discrete Fourier transform of the times series

are generalizations of correlation functions. This multiscal- ., cidered is computed. The expression of the power spectral
ing test for independence between two stochastic ProCessefunsity for a process(r) is recalled here. AV point-long

takes into account the multifractal character of intermittent;

processes. It also allows to test for the phenomenology re
sponsible for the high-intensity (rare and unexpected) fluc-
tuations observed in intermittent distributions, considering
their potential association with both high- and low-intensity
fluctuations characterized respectively by high and low or-
ders of moment. IrSeuront and Schmi{2005, GCEs are
considered in special cases:

—If X and Y are lognormal multifractal processes
(Meneveau et al1990, then

S(h, g) = ath +asg — azh® — asg® — ohg (12)
so that
r(h,g)=Sh,0+ 50,8 —Sh,g). (13)

www.nonlin-processes-geophys.net/21/379/2014/

interval used to construct the value at frequency domain point
¥, Xy (Bracewel| 1999:

N-1

X(f)=) x; N f=01,... N-1, (17)
j=0

and the power spectral density is
1

E(f)=—IX(NI*. (18)
JT

The Fourier spectra reveal two scaling ranges in the at-
mospheric wind speed and aggregate power output data. In
Fig. 3, we have plotted the spectrum for the wind speed
data sampled at 20Hz. This spectrum is obtained from an
average of 2886 spectra computed with wind speed time
series of length 1000 data points. This averaged spectrum

Nonlin. Processes Geophys., 2139292014
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O ' 107 firms the scaling obtained for frequencigs< 1 Hz with the
:lg;_m wind speed data sampled at 20 Hz. Furthermore this scal-
ing is found also irCalif et al. (2014 using Hilbert spectral
technique. Recent papers on longitudinal low-wave-number
spectra provide evidence of-al power law in the atmo-
10" spheric surface layer for neutral conditions, and-8/3
power law for near-convective conditiori§gtul et al, 1995
Katul and Chy1998 Kader and Yaglom1991). The power
1 spectrum densityE, (f) presented in this paper seems to
show a break around 1 Hz, in agreement with the results pub-
lished inLauren et al(1999. The models oKader and Ya-
E glom (199]) andKatul et al.(1995 suggest a transition fre-
guency of 0.3 Hz, and the Kaimal model a value of 1 Hz. Fig-
. s ure 3a shows that our present data are comparable with the
10" 10 10' latter value.
@ f(Hz) Figure 3b illustrates the average spectrufi (f) of the
10° , ; ‘ aggregate power output for the entire wind farm sampled
. sope 127 at 1Hz: the same slopes are observed. For frequencies
107 A = = - slope -5/3 104 < f < 0.5Hz corresponding to timescales<2l' <
10*s, E,(f) displays a power law near the exact valyg5
with 8 = 1.67. Previously published power spectra of wind
generator power have shown power law regions of the power
spectrum plot covering one or two decades of frequency
(Sgrensen et al2002 McNerney and Richardseri992.
These studies have not provided a comparison between their
data and the Kolmogorov spectrum. Apt (2007) has shown
that the output wind power from a wind farm located fol-
lows a Kolmogorov spectrum over more than four orders of
: . : magnitude in frequency from45x 1076 to 3.33x 1072 Hz,
(b) f (Hz) corresponding to timescales from 30s to 2.6 days. Here, for
frequenciesf < 10~4Hz corresponding to timescalds>
10*s (approximately 3 h), a power law with= 1.27 is ob-

—0—20Hz
= = =slope -1.69
——slope -1.28

Fig. 3. The Fourier power spectra illustrating two scaling regimes:

a) averaged spectruth, ( /) for the atmospheric wind speed sam- . . R .
|(o|;d at 28 Hz (:Fi)isplayin];; a1.69 scaling fcf)r K £ <10 sz and a served for the first time. This highlights a scaling break ap-

—1.28 scaling forf < 1 Hz. The inset shows that the Fourier spec- Proximately around 10* Hz, for the power spectrum density
tra of wind atmospheric sampled at 1 Hz display-4.27 scaling Ep(f)-

over seven decade) Averaged spectrunk , (f) for the aggre- We obtain approximately the same value for the change
gate power output, for which a crossover betweerba3 slope and  Of slope. Let us then remark here that wind speed and ag-
—1.27 slope is also found. gregate power output have the same type of regime with

high-frequency-5/3 power law behavior and low-frequency
—1.2 power law behavior. However the scale break for the
highlights two spectral regimes. For the high frequenciesregime change are not the sarfig:= 1 s for the wind speed
1< f < 10Hz, corresponding to timescaledl & 7 < 1s, andTy = 10%s ~ 3 h for the aggregate power output. We do
in the inertial range, as expected the spectrum possessesnat know whether this four-orders-of-magnitude change in
spectral slopgs = 1.69 very close to B3 expected by Kol-  the scale break is universal or is related to some spatial char-
mogorov’s theory. The slight difference is usually interpre- acteristics, such as local meteorology and spacing of wind
tated as coming from intermittency effectSriéch 1995 turbine generators in the farm.
Schertzer et 8l.1997). For the low-frequency part — i.e., However, the power spectrum densiiy /) is a second-
f < 1Hz corresponding to timescal&s> 1s in the energy-  order statistic (proportional to the square of the amplitude of
containing range — the spectrum follows—d.28 spectral a given frequency fluctuation) and its slope is not sufficient
slope. This is consistent witkatul and Chu(1998 and re-  to fully specify a scaling process. Multifractal analysis is a
cently Fitton et al.(2014. In the inset, we displayed the natural generalization to study the scaling behavior of a non-
spectrum obtained from the wind speed data sampled ainear phenomenon, usingh-order structure functions; this
1 Hz, exhibiting a—1.28 scaling for the low-frequency part — is discussed below.
i.e., 107 < f < 1Hz corresponding to timescalesl” <
10’s (10's~ 4months) — over seven decades. This con-

Nonlin. Processes Geophys., 21, 37392 2014 www.nonlin-processes-geophys.net/21/379/2014/
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5.2 The structure functions scaling exponent (¢g) for
the atmospheric wind speed sequences

Here, we have analyzed two databases for atmospheric win
speedv sampled at 20 and 1Hz. The structure function
analysis is performed for wind speed incremeftg Ar) =

vt + At) —v(t)| for 0.05< Ar < 500 s of data sampled at
20 Hz and for 1< Ar < 6 x 10°s of data sampled at 1 Hz

and for all moments between 0.15 and 5 with increments of

0.25. Figureda gives the scaling of the structure functions
for a sequence of length 7000 data points ot 1, 1.5,

2, and 2.5 in a log-log diagram for wind speed sampled at

20 Hz. The structure functions display two scaling tenden-
cies: for Q05 < Ar < 1s corresponding to the inertial range
and for 10< Ar < 500s. Figuretb gives the scaling of the
structure functions for a sequence fpe= 1, 1.5, 2, and 2.5

in a log—log diagram for wind speadsampled at 1 Hz, for
10< At < 5x 10 s. The straight lines in this figure indicate

that the scaling of the relationship is well respected. The two

scaling tendencies observed for the wind speedrrespond

to the inertial range (small scales) and the energy-containing

range (large scales).

We then estimate the scaling exponent functions(q)
and ¢,1 (g) respectively for the inertial and the mesoscale
ranges. The exponent functionsgy are estimated with 412
time series of length 7000 values sampled at 20 Hzgpd
with 5 time series of length 5 millions of values sampled at
1Hz. The scaling exponent functiap(q) is the ensemble

average obtained from all these scaling exponent functions

Gi(q):

1 412 15
Lo (q) = 4—12;/; (@)t (@) =g ;cmq). (19)
5.2.1 Scaling exponent functiort, g for the inertial

range

Figure 5 presents the empirical scaling exponent function
tvh, for the inertial range, compared to linear model K41
(¢(q) = q/3) (Kolmogoroy, 1941), and the lognormal model
proposed byolmogorov(1962 that corresponds to the fol-
lowing relationship:

q M 2

=< 4+ (3¢ —qg%), 20

£(@) =3+ 5G4 -4 (20)
where the parametegr is called “intermittency parameter”
and is close to 0.25Atneodo et al. 1996. The function

Zyu (q) obtained from our database is nonlinear and concaw?si

similar to the results obtained in previous studigsimitt et
al., 1993 Schertzer et al1997), with the following proper-
ties:

- 0<gq <3,%u(g) > q/3 for small fluctuations,
— g =3, ¢ (3) = 1 in agreement with the Kolmogorov
4/5 law,
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Fig. 4. The scaling of the structure functions of the wind speed
Sy(g) (a) for data sampled at 20 Hz ar{d) for data sampled at
1Hz. The structure functions display also two scaling regimes for
0.05< Ar < 103 s for data sampled at 20 Hz and a scaling regime
for 1< Ar <5x 10°s.

- q > 3,%H(q) < q/3 for large fluctuations.

The lognormal model provides a reasonable fit for the em-
pirical exponent functiog, y (¢). The average of the fluctua-
tions correspond tg = 1, andH = ¢, (1) ~ 0.36 is the so-
called “Hurst” exponent characterizing the scaling noncon-
ervation of the mean. The second momgpt(2) = 0.68 is
nked to the spectral exponefit~ 1+ ¢, (2) = 1.68.

5.2.2 Scaling exponent functiorg,y, for
the energy-containing range

Figure 5 illustrates the empirical scaling exponent func-
tion ¢,;(¢q) obtained for the mesoscale range, compared
to a linear model &7 (1) ~1/6) and a quadratic model
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Fig. 5. The empirical scaling exponent functigny (O) for the
inertial range compared to the linear model K41 (solid line) cor-
responding to homogeneous turbulence, and the lognormal model
(dashed line) taking into account the intermittency effects. The em-
pirical scaling exponent functioty,; (°) for the mesoscale range,
compared to a linear function,; ()¢ >~ ¢ /6 (blue solid line) and
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a quadratic functiowO.OZ%2 + 0.2 (green dashed line).

&(a)

¢(q) = —0.0232 + 0.2¢. The exponent functiot,;, is non-
linear and concave, characterizing a multifractal process. | o

We obtain the value off = ¢, (1) >~ 0.16 and the value ;,D’

Zyr(2) >~ 0.30, and consequently ~ 1.30 compatible with 0.4 o/

the value estimated by the Fourier analygis1.27). The P4 o m m 4
moment functionk (¢) = g H — ¢(g) is often used for char- S  o.g-0-0-0-CC e acaintaintales g
acterizing a type of scalind.auren et al(1999 performed 0 fe«’o?s'”'1‘ P T Y BT

a multiscaling analysis for characterizing the low-wave- () ’ q
number statistical properties of surface layer winds. In this _ _ .
study, the data were measured with a cup anemometer at 5. 6._(a) The_ scaling of t_he structure functions for wind power
sampling rate of 1 Hz. Then, the functidf(q) was plotted 5P (@) illustrating wo scaling regimes: for L Ar < 6.5x 10%s

for ¢ ranging 0-3; for exampl& (1) and K (3) were esti- and for 65 x 10% < Ar < 108 s. (b) The empirical scaling exponent

. unctionp i (¢) (O) estimated for K At < 6.5 x 10%s and com-
mated respectively to be 0 and 0.16. In our database the VaLared to the K41 model (black solid line) and the lognormal model

ues of K (1) and K (3) were estimated respectively to be 0 (yeq dashed line). The empirical scaling exponent functien(q)
and 0.13. (°) compared to a quadratic fit (blue dashed line).

5.3 The structure functions scaling exponentp(q) for

the aggregate power output
ponent functiong py (¢) and¢py, (q) from the slopes of the

Here we apply the structure function analysis to aggregatestraight lines using a linear least regression, for each scaling
power output data from a cluster of wind turbine generators,regime. The scaling exponent functigpy (¢) is estimated
for characterizing the type (monoscaling or multiscaling) andwith i = 20 time series of length $0/alues sampled at 1 Hz
regimes of scaling for these data. We consider the incrementand¢p; (¢) with i = 2 time series of length Y0values sam-

of output poweA P(At) = |P(t+ At)— P(¢)|for1 < Ar < pled at 1Hz. The scaling exponent functios (¢) are the
10°s and for all moments between 0.25 and 5 with incre-ensemble average obtained from all these exporgeats.
ments of 0.25. Figurdb illustrates the scaling for the aggre-  The empirical curvegpy(gq) and¢py (g) for the aggre-
gate power outpuP for ¢ =1, 1.5, 2 and 2.5, in a log—log gate power outputP of this wind farm are illustrated in
diagram. The structure functions display two scaling tendenFig. 6. ¢py (g) is compared to the linear model K44 /3)
cies: for 1< Ar < 6.5x 10%s and for 65 x 10* < Ar < 10° and the lognormal model given in E®)( For the timescales

s. Here, the straight lines black show also that the scalingl < Ar < 6.5x 10*s (~ 18 h),zpy(¢) is concave and non-
of Eq. (2) is well verified. Then, we estimate the scaling ex- linear, characterizing a multifractal process. Moreover, the

Nonlin. Processes Geophys., 21, 37392 2014 www.nonlin-processes-geophys.net/21/379/2014/



R. Calif and F. G. Schmitt: Multiscaling of the wind speed and wind power 387

exponent function;py is close to the lognormal model. wherevy and Py are respectively the moving averages of
cpp (g) presents the following properties similarggy (¢): wind speed and the power output data computer over a time
periodT, ando, andop are the corresponding standard de-

= 0<¢<3,¢pu(g) > ¢q/3 for small fluctuations, viations. Figure7b illustrates a the maximum,p of the

—g=3,¢pu3)=1 cross-correlatior, p in a log—log plot for the simultaneous
wind speed/power output data. In the inset, we give exam-
- g >3,tpH(q) < q/3 forlarge fluctuations. ples of cross-correlation function, p for the simultaneous

wind speed/power output data moving averages, computed
for timescales’ = 1% s, 1%, 10%, and 18's. We can see
that the scalanM, p is increasing for small timescales and

For the timescales> 6.5 x 10*s (~ 18h), zp1 () is non-
linear and concave, characterizing a multifractal process

EP t'L (@) |st'f|tt(id by a quadrailtk:) mOdffl' Hov(;/e\{(;:rz, a rep;esten-reaches a plateau for large timescales with a transition around
ative estimate ofp. (¢) must be performed with more data. ,p 43 s; it shows the presence of a correlation between the

Ir_1 short, the atmo_sphenc wind data present twq Sca“ngvvind speed and output power for timescafes: 10°s.
regimes observed with spectral and structure function anal-

ysis. The scaling exponent functiopsy and¢,; are fitted
by an equation of type-Ag?+ Bg with A characterizing
the curvature indicating the degree of intermittency. Conse-
quently, the turbulent wind speed is less intermittent in the
inertial range A = 0.013) than the energy-containing range
(A =0.023). The aggregate power output presents also twi
scaling regimes. For £ Ar < 6.5x 10*s, the wind power is

a multifractal process having the same properties as the Wingrld (AP (A1) then becomes a function of the scale and of

speed in the inertial range, and e > 6‘5_X 1045_the wind the statistical orders of momentand g, expressed by the
power is also a multifractal process less intermittent than theGCF

turbulent wind atmospheric in the mesoscale range.

6.2 A multiscaling test for dependence: generalized cor-
relation functions (GCFs) and exponents (GCES)

In the multiscaling framework, two stochastic processes, de-
fined previously,Av(At) and AP(At), characterized by
%heir ath- and gth-order structure functions, are consid-
red. The correlation between the two proceggas Ar))"

Figure 8a illustrates the GCFk (%, g) plotted in log—log
versus the time incrementr > 10 s, for simultaneous wind
6 Relation between the wind speed and the aggregate SPeed and output power measurements. The functior)
power output fluctuations represented is estimated for a constant value of the statisti-
cal order of momeng of wind power fluctuationsg = 3),
6.1 A scaling test for dependence: the coherence and and different values of statistical order of momeénrdf wind
the cross-correlation functions speed fluctuations (i.é.= 1, 2, 3, from bottom to top). The
functionc(h, ) displays a scaling for timescales®1Q Ar <
The coherence function is often used in the wind energy com2.10f s. The GFEs-(h, g) are estimated from the linear re-
munity (Burton et al, 2001, Sgrensen et al2002 Nanahara  gression slope of(h, g), illustrated in Fig.8b. We can ob-
et al, 2004. In this work, the coherence functiadf,p be-  serve that the correlation between the wind speed and the
tween the measured wind spee@nd the aggregate power wind power fluctuations increases with increasing values of
output P from the wind farm considered is estimated from the statistical order. The iso-valuesr@f:, g) follow approxi-
the co-spectrunk,, (f) for the simultaneous data and den- mately a function of the forrrhg. Moreover, because of the
sity power spectrunt, (f) andE, (f) respectively fowand ~ symmetry ofr(h, g) in the h—g plane, we expect to obtain
P. Figure7a illustrates the coherence functiéh p defined  a relation of proportionality betweefnv(Ar) and A P (At).
in Eq. ), plotted for a frequency range 10< f <1Hz.  Figure9 showsS(h,0) versusS(0, g) indicating a propor-
Three regimes are observed: fgr>10"2Hz correspond-  tional relation betweem\v(Ar) and AP (Ar) of the form
ing to timescaled” < 100s,H,p shows clearly the absence A P(Ar) = K Av(Ar).
of correlation. For 103 < f < 10-2Hz, corresponding to To illustrate this purpose, Fidl.O presents the joint dis-
timescales 10& 7 < 1000s, the value of the coherence tribution P(Av, AP) for wind speed fluctuations\v and
function increases from 0 to 0.7, highlighting the presenceoutput power fluctuationa P, for Ar = 10*s~ 3h (a) and
of a correlation between the wind speedand the aggre- for Ar = 1(Ps~ 1day(b), with the skeletory (red dashed
gate power outpuP for frequency rangg’ < 10-3Hz. Fig-  line), indicating that a linear relation can be considered be-
ure7b illustrates the maximum of the cross-correlation func- tween the wind speed and the aggregate power output fluc-
tion for a temporal range £ T < 10’s in a log—log plot.  tuations at these timescales. The skelafoabtained with
We recall here the expression of scaléyp computed for a  the joint pdfP(Av, A P) is defined byp = Pmax(Av, AP) =

given timescald': maxa p (P(Av, AP).
For each time incrementz > 10% s, we estimate the co-
M,p(T) = max[< vr(t+7) Prt) >} ’ (21)  efficientsa andb in the relationA P(Ar) = aAv(Ar) +b.
GvOp We find thatb is always very small and that has a small
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(a) f(Hz) (b) T(s)

Fig. 7. The coherence functioH,, p (frequency domain{a) and the maximundz, p (time domain)b) of the cross-correlation functiaf, p
in log—log plot for the simultaneous wind speed/power data: the inséd ghows the function#l, p in semilogx plot, and the inset ifib)
shows the cross-correlations for the simultaneous wind speed/power output moving averages, computed for timestAXes03, 107,
and 16's.
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Fig. 8. (a) The generalized correlation functions (GCE#§), g) versus the time increments in log—log plots for simultaneous wind speed
and aggregate power output fluctuatiofiy. The generalized correlation exponents (GCHE8) g) estimated from the linear regression of
c(h, ).

Ar-dependences = AAtE, with A = 1072 and B = 0.04.
S(h0) - 0.97 S(0.g) + 0.0069 Thus, We obtain the following expression to model the skele-
=099 ] tong for Ar > 10%s:

0.4

AP(At) = AAtB Av(AD). (22)

This is not incompatible with the fact that the powRityp-
ically scales cubically with the wind speadof the form
P = cv3. This relation implies that B = 3cv?dv. Hence to
a first order, since is larger, power increments P are pro-
portional to wind speed incrementsy.

0.1 0.‘15 012 0.25 S04) 0f3 0.‘35 0.4 0.45 7 DiSCUSSiOnS

Fig. 9. Plot of the generalized correlation exponefits, 0) versus  The goal of this study was (i) to provide a characterization
5(0, ) This confirms the symmetry of thet/, g) iso-values inthe  for the atmospheric wind speed fluctuations and the aggre-
h—g plane. gate power output, at all intensities and at all scales, and
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X107 multifractals was well fittedBottcher et al.2007 Morales et
e E al, 2011, Schertzer et a11997). In Calif and Schmit(2012),
. 16 a lognormal continuous stochastic equati&ehimit 2003
2000% ¢ ] Huang et al. 2008 is considered for modeling the atmo-
e ‘ spheric wind speed at these small temporal scales.
1000F » St P12 For the large timescales & T < 10’s) corresponding
T Vi to the mesoscale range, the Fourier analysis of the wind
ok " ..... . speed data sampled at 20 and 1 Hz showed a power law for
e 08 the power spectral densit,(f) ~ f~# with g = —1.27.
oo I o A - R Contrary to the ine_rtial range, the turbulence effects in the
g mesoscale range did not possess the same degree of univer-
. P o4 sality. More recent papers on longitudinal low-wave-number
20007 L ' N, spectra have provided evidence of-4 power law in the at-
. ' mospheric surface layer for neutral conditions, and5(3
B0 T e . 2 0 2 4 & = power law for near-convective conditiortsgtul et al, 1995
(@) AV (m/s) Katul and Chy 1998 Kader and Yaglom1991). Several
<107 theoretical and phenomenological approaches have been de-
6 voted to the explanation of suehl power law scaling at the
low frequenciesTchen (1953 proposed a theoretical anal-
5 ysis of an approximate spectral budget, based on interaction
between the mean flow vorticity and the fluctuating vortic-
4 ity. To model the energy production and energy transfer, phe-
menological analogies between molecular dissipation of tur-
bulent kinetic energy, energy extraction from large to small
scales and energy removal from the mean to turbulent flows
have been developed using Heisenberg’s turbulent viscos-
ity approach Keisenberg1948. Tchen (1953 established
that (i) a spectrum close tel power law strong is likely
f to occur close to a rough surface because of a strong inter-
action between the mean flow vorticity and the fluctuating
(b) % ",g - o vorticity, and (ii) a spectrum close to-a5/3 power law is
likely to occur far away from the rough surface because of
Fig. 10. The joint distributionP’(Av, A P) for wind speed fluctua- g weak interaction between the mean flow vorticity and the
tions Av and output powen P, for (a) Ar = 10*s and(b) At = flyctuating vorticity. This was verified experimentallyKite-
10°s. banoff (1954 andKatul and Chu(1998. RecentlyKatul et
al. (2012 also proposed a phenomenological theory based
on Heisenberg's eddy viscosity approach for the explanation

(iiy to characterize the coupling between the atmospheric®f the existence of-1 power law scaling. _ _
wind speed and the aggregate power output measured simul- The structure functions analysis for the wind speed in-

AP (kW)

3000 ¢

2000 |~

1000|~

AP (kW)

-1000|~

-2000| =

taneously, in the multifractal framework. dicated also scaling properties for<IT < 10’s. The ex-
ponent functions,z (¢) was nonlinear and concave, and a
7.1 The atmospheric wind speed guadratic relation was proposed for fittiggy, (¢). However

the exponent functiog, (¢) was less concave thapgy (¢):
We have collected the wind speed data with a samplingthis indicated that the wind speed is more intermittent in the
rate of 20 and 1 Hz. The spectral analysis showed that thenesoscale range than the inertial range, as also shown in a
Fourier spectrak,(f) follows a power law:E(f) ~ f=# previous studyl(auren et al.1999.
for the small-scale and the mesoscale range. Thus, for the
small timescales (05< T < 1s) corresponding to the iner-
tial range, the Fourier spectrum was close to the Kolmogorov/-2 The aggregate power output
spectrum, withg = 1.68, in agreement with previous stud-
ies (Schmitt et al, 1993 Katul et al, 1995 Schmitt 2007, We have also collected the aggregate output power from a
Bottcher et al.2007 Morales et al.201% Calif and Schmitt ~ wind farm with a sampling rate of 1 Hz. The spectral analysis
2012. The structure function analysis highlighted the con- showed two scaling regimes. For2T < 9x 10°s the slope
cavity and the nonlinearity of the exponent functigy (¢). was close to the spectral slopé&/3 as in a previous study
Furthermore, the theoretical quadratic relation for lognormal(Apt, 2007). The structure functions analysis highlighted the
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concavity and nonlinearity of the exponent functigny (¢). and the output power fluctuatiomsP (At) seem to be of the
Furthermore, this function was well fitted by the lognormal form AP (At) = K Av(At) for these timescales.
model.

For timescale§” > 9 x 10° s, the Fourier analysis showed
that the power spectral densip ( f) of the aggregate power

output from a wind farm has a spectral slope close to 1'2Thi:s work analyzed the intermittency and the scaling prop-
The structure function analysis confirmed the obtained scal- Y y 9 prop

ing, indicating the concavity and nonlinearity of the scal- erties of the wind speed ant the aggregate power out-

. . put P time series, through structure function analysis, at all
ing exponent functiogpy (¢). {pr (¢) was less concave than . .
) . : . scales and all intensities. The aggregate power outads-
¢pu(g), meaning a decrease of the intermittency with these . . . . .
. . sessed intermittent, multifractal properties and two scaling
timescales, as found also for the turbulent wind speed. How- " : . . . : .
. o regimes in relation with the multifractal properties of the in-
ever, for a more representative result, it is necessary to have .
put wind speed. Furthermore, we showed that the genera-
more aggregate power output data. . ) . .
lized correlation functions and exponents are a suitable tool
for testing a dependence between two simultaneous intermit-
7.3 The coupling between the wind speed and tent processes. This multiscaling test allowed characterizing
the output wind power fluctuations also the coupling of two simultaneously sampled intermittent
processes by an analytical expression (power law, propor-
tionality). Indeed, we proposed a proportionality expression
for the coupling between the wind speed and the aggregate

the aggregate power outpe, sampled at 1 Hz in orqler 0 power output fluctuations. We believe that the actual relation
highlight a possible dependence between both series. Gen- : .
is complex and has some nonlinear relations. We want here to

erally, a scaling test, i.e., the coherence, is estimated in the : .
: . . understand the experimental result found about scaling rela-
wind energy community, for testing the dependence between . . : .
X tion for the power output. The relation given in relati@g)
the data. In this study, the coherence functidyp and the L X
) . should be seen as a simplified model and not as a firm result.
scalarM,p showed a coupling between the turbulent wind .
. . We found here typical scales of 3a10*s for the aggre-
speed and the aggregate output wind power for timescales :
: h : . gate power output fluctuations. The scale of 46 3h was
T > 10%s. This study involved simultaneous analysis of tur- .
; . . ., found for the change of slope in aggregate power output spec-
bulence time series and instantaneous power data, consider- : 7
. . : ) ral regime, and the scale of 46~ 15 min was found for the
ing the multiscale correlations between both series. For that

. . . torrelation between both series. This scale may be due to the
a multiscaling test for independence between two stochas:

. : . ."local topography, the local meteorology, or the influence of
tic processes was used. The generalized correlation funchori?]e spatial disposition of the different wind turbine gener-
c(h, g) and exponents(k, g) were estimated. For timescales

108 < T < 10P s, the function:(s, ¢) presented a scaling re- ators composing the wind farm. A better understanding of

. . o : theses scales of 3910 s will be the subject of future works
lating a coupling between both series in agreement with the

coherence functio#l, p and the scalad?, p. Moreover, their :gggfjs;;%;%?ziirvaEg?;:ﬂeczmvegifﬁlgz’ or its relation with
GFEr(h, g) indicated that larger fluctuations have stronger P '
dependence. In fact, slow fluctuations (in the range of tens
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