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Abstract. We consider here wind speed time series and
the aggregate output wind power from a wind farm. We
study their scaling statistics in the framework of fully devel-
oped turbulence and Kolmogorov’s theory. We estimate their
Fourier power spectra and consider their scaling properties
in the physical space. We show that the atmospheric wind
speed and the aggregate power output from a wind farm are
intermittent and multifractal over a wide range of scales. The
coupling between simultaneous data of the wind speed and
aggregate power output is investigated through a joint mul-
tifractal description using the generalized correlation func-
tions (GCFs). This multiscaling test is compatible with a lin-
ear relation between the wind speed and the aggregate power
output fluctuations for timescalesT > 103s' 15min.

1 Introduction

Increasing the wind energy contribution to electrical net-
works requires improving the tools to forecast the electrical
power produced by wind farms, in order to proportion net-
work lines. However the wind energy is a fluctuating energy
ressource, due to the high variability of the wind at all spatial
and/or temporal scales. In the atmospheric boundary layer,
the Reynolds number (ratio of inertial to viscous force) can
be as large asRe= 108 (Burton et al., 2001). Large values
of the Reynolds number lead to a huge intermittency of wind
speed fluctuations at all temporal or spatial scales, ranging
from large-scale variations (years) to very small scale vari-
ations (few min down to seconds) (Stull, 1988). Small-scale
intermittency remains a challenging problem for the turbu-
lence community research (Peinke et al., 2004). Several ap-

proaches can be used to consider the scaling intermittency
of small-scale turbulence, the most classical one being struc-
ture functions analysis. In recent years several studies have
been dedicated to the analysis of scaling laws and turbulent
intermittency at small scales in the laboratory (Anselmet et
al., 1984; She and Levêque, 1994) and in the atmospheric
boundary layer (Schmitt et al., 1993, 1994; Katul et al., 1995;
Schmitt, 2007; Böttcher et al., 2007; Morales et al., 2011;
Calif and Schmitt, 2012). These studies have shown that at-
mospheric turbulent speed at small scales has multifractal
scaling fluctuations and exhibits long-range power correla-
tions.

However the knowledge of variations ranging from min-
utes to a few days – corresponding to 1–1000 km, i.e., the
mesoscale range – is necessary to provide efficient tools
for management and control of wind power generation. The
studies concerning this scale range are fewer than those for
the small-scale range, due to the possible nonuniversality of
the power law slope in the mesoscale range. Recent works
(Lauren et al., 1999; Muzy et al., 2010) have been dedicated
to scaling and multiscaling properties of the atmospheric
wind speed in the mesoscale range.

In this paper, the scaling properties of the atmospheric
wind speed are provided for the small-scale and mesoscale
ranges. Atmospheric wind speed data sampled at 20 and 1 Hz
are analyzed through multifractal theory in order to charac-
terize the wind speed fluctuations behavior for each scaling
regime. In parallel, the aggregate power output data from a
wind farm are analyzed within the same theoretical frame-
work. The paper is organized as follows. In Sect. 2, the data
sets are described. In Sect. 3, the theoretical framework, tra-
ditional spectral analysis and structure functions analysis are

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



380 R. Calif and F. G. Schmitt: Multiscaling of the wind speed and wind power

presented. In Sect. 4, in order to quantify the coupling of the
relationship between the wind atmospheric and the aggregate
power output, a joint multifractal description is presented. In
Sect. 5, the Fourier spectra are estimated for the atmospheric
wind speed and the aggregate power output. To provide a
full characterization of experimental fluctuations, at all in-
tensities and at all scales, multifractal and joint multifractal
approaches are used.

2 Description of the data

In order to investigate the spectral and multiscaling proper-
ties of the turbulent wind speedv in the atmospheric sur-
face layer and the aggregate power outputP , a data set is
collected on the wind energy production site of Petit-Canal,
an island in the French West Indies. This 10 MW production
site, located at 16◦15′ N latitude and 60◦30′ W longitude, was
positioned at approximately 60 m (197 ft) a.s.l., at the top of
a sea cliff. The wind speedv is measured with a three-cup
anemometer (model A100L2 from Vector Instruments) black
having a response time of 0.15 s and an ultrasonic anemome-
ter (model CSAT3). Both were mounted on a 40 m (131 ft)
tall mast erected 20 m (66 ft) from the cliff edge, at 38 m
(125 ft) from the ground. The two experimental databases for
atmospheric wind speed are used here: (i) with the three-
cup anemometer, the sampling frequency and duration are
respectively 1 Hz and 1 yr (January 2006–2007); (ii) with
the ultrasonic anemometer, the sampling frequency and dura-
tion are respectively 20Hz and 2 weeks (14–28 July 2005).
Moreover, the aggregate power output produced by this wind
farm was recorded with a sampling frequency 1 Hz, during
1 yr (January 2006–2007). Table 1 gives a description of our
data set with the mean and the standard deviation values. Ad-
ditionally, two examples of simultaneous wind speed and ag-
gregate power output data sequence for different timescales,
are illustrated in Fig.1: (i) Fig. 1a presents simultaneous
time series sampled at 1 Hz; (ii) Fig.1b presents the mov-
ing averages of simultaneous time series, over a time period
T = 104 s. Figure1a shows that for very short timescales of
the order of seconds, the wind speed signal exhibits high fluc-
tuations contrary to the wind power signal, while over large
scales the observed moving averages have the same trends.

3 Theoretical framework

3.1 The existence of−1 and−5/3 power laws in
the atmospheric wind speed

Classically, a scale invariance can be detected by computing
of power spectral densityE(f ). For a scale-invariant pro-
cess, the following power law is obtained over a range of
frequencyf :

E(f ) ∼ f −β , (1)

(a)

(b)

Fig. 1. Two examples of simultaneous wind power data:(a) simul-
taneous time series sampled at 1 Hz;(b) moving averages of simul-
taneous time series, over a time periodT = 104s' 3h.

whereβ is the spectral exponent. According to some authors
(Mandelbrot, 1982; Schertzer and Lovejoy, 1987; Marshak
et al., 1994), it contains information about the degree of sta-
tionarity of the field:

– β < 1, the process is stationary,

– β > 1, the process is nonstationary,

– 1 < β < 3, the process is nonstationary with incre-
ments stationary.

It may also be considered as characterizing the degree of cor-
relation (Ivanov et al., 2001; Telesca et al., 2003).

In the atmospheric surface layer, it is recognized that
wind speed spectra possess three spectral regions (Pope,
2000): (1) the energy-containing range black (or large-scale
turbulence) in which turbulent kinetic energy is produced,
(2) the inertial subrange (small-scale turbulence) in which
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Table 1.Description of our database with the mean and the standard deviation values.

Data set Sampling Total number Mean value Standard deviation
frequency of data points < . > σ

Wind speedv 20 Hz 2 886 276 (2005) 8.39 m/s−1 1.95 ms−1

Wind speedv 1 Hz 26 438 400 (2006) 8.20 m/s−1 3.32 ms−1

Aggregate power outputP 1 Hz 26 438 400 (2006) – –

turbulent kinetic energy is transferred from large to small
scales, and (3) the dissipation range (millimeters and smaller)
where turbulent kinetic energy is converted to heat by the ac-
tion of fluid viscosity. Figure2 gives an illustration of the
Kolmogorov quasi-equilibrium energetic cascade in the iner-
tial range. In this zone, the Kolmogorov theory implies that
the wind speed fluctuations possess a power law spectrum
(Kolmogorov, 1941; Obukhov, 1941):

β = 5/3. (2)

This relation is written here for wave numbers, but can also
be used for frequencies, involving Taylor’s hypothesis to re-
late spatial fluctuations to temporal fluctuations. This power
law has been verified many times for wind atmospheric data
(Schmitt et al., 1993, 1994; Katul et al., 1995; Schmitt, 2007;
Morales et al., 2011; Calif and Schmitt, 2012). In the energy-
containing range where the scales extend from a few min-
utes to a few days, the properties of turbulent wind speed
depend on their strong anisotropy and their dependence on
the flow domain boundary characteristics (Katul and Chu,
1998; Katul et al., 2012). However in this study, the existence
of universal power laws at low wave numbers for the power
spectral density of the turbulent longitudinal velocity is ex-
amined theoretically and experimentally for the near-neutral
atmospheric surface layer. Indeed, several experimental stud-
ies have found a−1 power law slope at production scales for
the wind speed spectrum in the atmospheric surface layer in
neutral conditions (Katul and Chu, 1998; Nickels et al., 2005;
Katul et al., 2012):

E(f ) ∼ f −1
;f 6 1Hz. (3)

Moreover this power law slope was predicted by three the-
oretical approaches. More details are given inKatul and Chu
(1998). However this power law does not present the same
level of universality asβ = 5/3 for turbulence in the inertial
range: as mentioned inLauren et al.(1999), in the mesoscale
range, the power law slope can vary with the local topogra-
phy and the atmospheric conditions. Let us note also that in
the wind energy community some fits of speed power spectra
are often used, based on von Karman’s formula of the form
E(f ) = a/(b + cf 2)5/6 (Karman, 1948) or on Kaimal’s for-
mulaE(f ) = A/(1+Bf )5/3 (Kaimal et al., 1972), wherea,
b, c and A, B are constants. These two formulae have no
theoretical ground: von Karman wanted to perform an inter-
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Fig. 2. An illustration of the Kolmogorov quasi-equilibrium ener-
getic cascade in the inertial range.

polation between a low-frequencyf 4 spectrum and a high-
frequency Kolmogorov spectrumf −5/3, andKaimal et al.
(1972) proposed their formula on purely empirical grounds
for the low-frequency part. In both cases the main idea is to
capture in a single expression the injections scales and the
inertial range with Kolmogorov spectrum. Indeed, these fits
are based on Kolmogorov theory (Simiu and Scalan, 1978)
which defines a general form of the fluctuating wind speed
shown as follows (Zhang et al., 2008). In the present paper,
we mainly focus on other scaling regimes and therefore do
not need to consider the fits proposed by these authors. Fi-
nally, we must note also that the power spectrum density
E(f ) is a second-order statistic (proportional to the square of
the amplitude of a given frequency fluctuation) and its slope
is not sufficient to fully specify a scaling process. Multifrac-
tal analysis is a natural generalization to study the scaling be-
havior of a nonlinear phenomenon, usingqth-order structure
functions, and to obtain a full characterization of wind speed
fluctuations, at all intensities and all scales; this is discussed
in the next subsection.

3.2 Intermittency and multifractal properties

Intermittency in turbulence has been a subject of research
for almost 50 yr now, following Kolmogorov’s 1962 seminal
works (Kolmogorov, 1962). This intermittency in the iner-
tial range has been modeled by cascade models in various

www.nonlin-processes-geophys.net/21/379/2014/ Nonlin. Processes Geophys., 21, 379–392, 2014



382 R. Calif and F. G. Schmitt: Multiscaling of the wind speed and wind power

studies for velocity (Novikov and Stewart, 1964; Yaglom,
1966; Mandelbrot, 1974). These models reproduce intermit-
tency and multiscaling in the inertial range turbulence. Here
we may define intermittency as the property of having large
fluctuations at all scales, with a correlated structure, or, in
other words, with various orders of singularities to be dis-
tributed over fractal sets with varying dimensions (rather than
a unique dimension as for monofractal process); in the case
of intermittency the scaling moment functionζ(q), which is
introduced below, is nonlinear. Large fluctuations are much
more frequent than what would be obtained for Gaussian
processes (Frisch, 1995; Schertzer et al., 1997; Vulpiani and
Livi , 2004). This is typically studied considering the proba-
bility density function (PDF), or more often using the mo-
ment of orderq of these fluctuations, called “structure func-
tions of orderq”:

Sq(1t) =< (1X)q >' 1tζ(q), (4)

where1X(1t) = X(t + 1t) − X(t) and1t is a time incre-
ment. We have here written the fluctuations in time, since be-
low in this paper we deal with time series analysis.ζ(q) is the
scaling exponent function.ζ(2) = β − 1 relates the second-
order moment to the power spectrum scaling exponent; the
knowledge of the full (q, ζ(q)) curve for integer and nonin-
teger moments provides a full characterization of wind speed
fluctuations at all scales and all intensities. The parameter
H = ζ(1) is the Hurst exponent characterizing the noncon-
servation of the mean. Monofractal processes correspond to
a linear functionζ(q) = qH , with H = 1/2 for the Brown-
ian motion, 0< H < 1 (H 6= 1/2) for a fractional Brownian
motion (that can be defined as a fractional integration of or-
derb (0 < b < 1) of a Gaussian noise, withH =

3
2 −b). The

values of the functionζ(q) are estimated from the slope of
Sq(1t) versus1t in a log–log diagram for all momentsq.
The functionζ(q) defines the types of scaling behavior; in
other words, this exponent function is useful to character-
ize the statistics of the random process. Ifζ(q) is linear, the
statistical behavior is monoscaling; ifζ(q) is nonlinear and
concave, the behavior is defined as mutiscaling, correspond-
ing to a multlfractal process. The concavity of this function
is a characteristic of the intermittency: the more the curve is
concave, the more the process is intermittent (Frisch, 1995;
Schertzer et al., 1997; Vulpiani and Livi, 2004).

Kolmogorov’s 1941 model corresponds to a linear model
for the exponent function (Kolmogorov, 1941):

ζ(q) =
q

3
. (5)

For a multifractal process,ζ(q) is nonlinear. Several models
have been proposed in the literature to fit the scaling expo-
nentsζ(q). Here we consider the classical lognormal model
(Kolmogorov, 1962):

ζ(q) =
q

3
+

µ

18
(3q − q2), (6)

with µ being the intermittency parameter.Yaglom (1966)
has proposed a multiplicative cascade model compatible with
Kolmogorov’s ideas. Several other models have been pro-
posed since in the literature, for example the log-stable model
proposed bySchertzer and Lovejoy(1987):

ζ(q) = qH −
C1

(α − 1)

(
qα

− q
)
, (7)

whereH = ζ(1) is the Hurst parameter which defines the de-
gree of smoothness or roughness of the field. The parameter
C1 is the fractal co-dimension of the set giving the dominant
contribution to the mean (q = 1) and bounded between 0 and
d (d the dimension space, hered = 1). It measures the mean
intermittency characterizing the sparseness of the field: the
largerC1, the more the mean field is inhomogeneous. The
multifractal Lévy parameterα is bounded between 0 and 2,
whereα = 0 corresponds to the monofractal case andα = 2
coresponds to the multifractal lognormal case. The parame-
ter α measures the degree of multifractility, i.e, how fast the
inhomogeneity increases with the order of the moments. But
here we consider the lognormal model which provides a rea-
sonable fit up toq = 5; hence here the question of the best
model (among the inifinitely divisible family of models) is
not the topic of the present paper, and we consider here the
lognormal fit as convenient for the joint analysis done in the
next section.

4 Joint analysis for multivariate data

4.1 Test for data independence using second-order
correlation

In order to test independence between two random process,
second-order statistics are often considered in the wind en-
ergy community (Burton et al., 2001). More precisely the
cross-correlation function in the time domain and the coher-
ence function in the frequency domain, of two processesx(t)

and y(t), are determined for highlighting possible correla-
tions. We recall here the expressions for the cross-correlation
functionCxy and the coherence functionHxy (Papoulis and
Pillai, 2002):

Cxy =
< x(t + τ)y(t) >

σxσy

, (8)

where< . > is the statistical average,τ is a time lag,σx , σy

are respectively the standard deviations of processesx(t) and
y(t) (Papoulis and Pillai, 2002), and

Hxy =

√
|Exy(f )|2

Ex(f )Ey(f )
. (9)

Exy(f ) is the Fourier co-spectrum, andEx(f ) andEy(f ) are
the Fourier spectra of processesx(t) andy(t), respectively.
If Cxy andHxy are zero or close to zero, thenx andy are

Nonlin. Processes Geophys., 21, 379–392, 2014 www.nonlin-processes-geophys.net/21/379/2014/



R. Calif and F. G. Schmitt: Multiscaling of the wind speed and wind power 383

uncorrelated. In contrast, ifCxy andHxy are unity or close
to unity,x andy are perfectly correlated; ifCxy andHxy are
close to−1, x andy are negatively correlated.

These statistical tests are based on second-order statistics.
In the following section a generalization of correlation coef-
ficient is given using the multifractal framework.

4.2 Joint multifractal description for bivariate field:
generalized correlation functions (GCFs) and
exponents (GCEs)

We recall here that, whereas independence implies noncor-
relation, noncorrelation does not imply independence. In or-
der to better consider the relation between two scaling time
series, we apply here a testing technique proposed in Seu-
ront and Schmitt (2005). Instead of random variablesx and
y, we consider here the increments of two stochastic pro-
cesses1X(1t) = X(t + 1t) − X(t) and 1Y(1t) = Y (t +

1t) − Y (t), and the normalization of the joint moments is
given as (Seuront and Schmitt, 2005)

c(h,g) =
< 1Xh1Y g >

< 1Xh >< 1Y g >
∼ 1t−r(h,g) . (10)

When 1Xh and 1Y g are independent,r(h,g) = 0 and
c(h,g) = 1. In contrast, increasing values ofc(h,g) would
characterize increasing dependence between1Xh and1Y g.

The generalized correlation exponent (GCE hereafter), es-
timated as the slope of the power law ofc(h,g) versus1t in
a log–log plot, is then expressed as:

r(h,g) = ζX(h) + ζY (g) − S(h,g), (11)

whereζX(h) andζY (g) characterize the multiscaling prop-
erties of the single fluctuations< 1Xh >, and < 1Y g >

and S(h,g) characterize the multiscaling properties of the
joint fluctuations< 1Xh1Y g >. Both c(h,g) and r(h,g)

are generalizations of correlation functions. This multiscal-
ing test for independence between two stochastic processes
takes into account the multifractal character of intermittent
processes. It also allows to test for the phenomenology re-
sponsible for the high-intensity (rare and unexpected) fluc-
tuations observed in intermittent distributions, considering
their potential association with both high- and low-intensity
fluctuations characterized respectively by high and low or-
ders of moment. InSeuront and Schmitt(2005), GCEs are
considered in special cases:

– If X and Y are lognormal multifractal processes
(Meneveau et al., 1990), then

S(h,g) = a1h + a2g − a3h
2
− a4g

2
− σhg (12)

so that

r(h,g) = S(h,0) + S(0,g) − S(h,g) . (13)

Consequently

r(h,g) = σhg . (14)

In this case, it is clear thatr(1,1) or r(2,2) are enough
to estimate the only needed parameter, namely the cor-
relation coefficientσ , so that ifr(1,1) = 0 orr(2,2) =

0, it can be concluded that the two processes are inde-
pendent.

– If X andY are independent,r(h,g) = 0;

– if X andY are proportional, i.e.,X = aY , then

r(h,g) = ζY (h) + ζY (g) − ζY (h + g) . (15)

Additionally the shape of the obtained surface is sym-
metric in theh–g plane.

– If a power law exists betweenX andY , i.e.,X = aY b,
one has

r(h,g) = ζY (bh) + ζY (g) − ζY (bh + g). (16)

In this caser(h,g) > 0, but it is symmetric in thebh–g

plane.

5 Spectral and multifractal analysis

In this section the Fourier power spectral densities are esti-
mated for our database: wind speed data sampled at 20 and
1 Hz, and aggregate power output data sampled at 1 Hz. After
this, the multifractal analysis is applied.

5.1 Spectral analysis

In this study, in order to estimate the power spectral densities
of the wind speed and the aggregate power output from a
wind farm, the discrete Fourier transform of the times series
considered is computed. The expression of the power spectral
density for a processx(t) is recalled here. AN point-long
interval used to construct the value at frequency domain point
f , Xf (Bracewell, 1999):

X(f ) =

N−1∑
j=0

xj e
2πijf/N , f = 0,1, . . . ,N − 1, (17)

and the power spectral density is

E(f ) =
1

2π
|X(f )|2 . (18)

The Fourier spectra reveal two scaling ranges in the at-
mospheric wind speed and aggregate power output data. In
Fig. 3, we have plotted the spectrum for the wind speed
data sampled at 20Hz. This spectrum is obtained from an
average of 2886 spectra computed with wind speed time
series of length 1000 data points. This averaged spectrum
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(a)

(b)

Fig. 3. The Fourier power spectra illustrating two scaling regimes:
(a) averaged spectrumEv(f ) for the atmospheric wind speed sam-
pled at 20 Hz displaying a−1.69 scaling for 16 f 6 10 Hz and a
−1.28 scaling forf 6 1 Hz. The inset shows that the Fourier spec-
tra of wind atmospheric sampled at 1 Hz display a−1.27 scaling
over seven decades.(b) Averaged spectrumEp(f ) for the aggre-
gate power output, for which a crossover between a−5/3 slope and
−1.27 slope is also found.

highlights two spectral regimes. For the high frequencies
1 6 f 6 10 Hz, corresponding to timescales 0.1 6 T 6 1 s,
in the inertial range, as expected the spectrum possesses a
spectral slopeβ = 1.69 very close to 5/3 expected by Kol-
mogorov’s theory. The slight difference is usually interpre-
tated as coming from intermittency effects (Frisch, 1995;
Schertzer et al., 1997). For the low-frequency part – i.e.,
f 6 1 Hz corresponding to timescalesT > 1 s in the energy-
containing range – the spectrum follows a−1.28 spectral
slope. This is consistent withKatul and Chu(1998) and re-
cently Fitton et al. (2014). In the inset, we displayed the
spectrum obtained from the wind speed data sampled at
1 Hz, exhibiting a−1.28 scaling for the low-frequency part –
i.e., 10−7 6 f 6 1 Hz corresponding to timescales 16 T 6
107 s (107s≈ 4months) – over seven decades. This con-

firms the scaling obtained for frequenciesf 6 1 Hz with the
wind speed data sampled at 20 Hz. Furthermore this scal-
ing is found also inCalif et al.(2014) using Hilbert spectral
technique. Recent papers on longitudinal low-wave-number
spectra provide evidence of a−1 power law in the atmo-
spheric surface layer for neutral conditions, and a−5/3
power law for near-convective conditions (Katul et al., 1995;
Katul and Chu, 1998; Kader and Yaglom, 1991). The power
spectrum densityEv(f ) presented in this paper seems to
show a break around 1 Hz, in agreement with the results pub-
lished inLauren et al.(1999). The models ofKader and Ya-
glom (1991) andKatul et al.(1995) suggest a transition fre-
quency of 0.3 Hz, and the Kaimal model a value of 1 Hz. Fig-
ure 3a shows that our present data are comparable with the
latter value.

Figure 3b illustrates the average spectrumEp(f ) of the
aggregate power output for the entire wind farm sampled
at 1 Hz: the same slopes are observed. For frequencies
10−4 6 f 6 0.5 Hz corresponding to timescales 26 T 6
104 s,Ep(f ) displays a power law near the exact value 5/3,
with β = 1.67. Previously published power spectra of wind
generator power have shown power law regions of the power
spectrum plot covering one or two decades of frequency
(Sørensen et al., 2002; McNerney and Richardson, 1992).
These studies have not provided a comparison between their
data and the Kolmogorov spectrum. Apt (2007) has shown
that the output wind power from a wind farm located fol-
lows a Kolmogorov spectrum over more than four orders of
magnitude in frequency from 4.45×10−6 to 3.33×10−2 Hz,
corresponding to timescales from 30 s to 2.6 days. Here, for
frequenciesf 6 10−4 Hz corresponding to timescalesT >
104 s (approximately 3 h), a power law withβ = 1.27 is ob-
served for the first time. This highlights a scaling break ap-
proximately around 10−4 Hz, for the power spectrum density
Ep(f ).

We obtain approximately the same value for the change
of slope. Let us then remark here that wind speed and ag-
gregate power output have the same type of regime with
high-frequency−5/3 power law behavior and low-frequency
−1.2 power law behavior. However the scale break for the
regime change are not the same:T0 = 1 s for the wind speed
andT0 = 104 s ' 3 h for the aggregate power output. We do
not know whether this four-orders-of-magnitude change in
the scale break is universal or is related to some spatial char-
acteristics, such as local meteorology and spacing of wind
turbine generators in the farm.

However, the power spectrum densityE(f ) is a second-
order statistic (proportional to the square of the amplitude of
a given frequency fluctuation) and its slope is not sufficient
to fully specify a scaling process. Multifractal analysis is a
natural generalization to study the scaling behavior of a non-
linear phenomenon, usingqth-order structure functions; this
is discussed below.
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5.2 The structure functions scaling exponentζ(q) for
the atmospheric wind speed sequences

Here, we have analyzed two databases for atmospheric wind
speedv sampled at 20 and 1 Hz. The structure function
analysis is performed for wind speed increments1v(1t) =

|v(t + 1t) − v(t)| for 0.056 1t 6 500 s of data sampled at
20 Hz and for 16 1t 6 6× 105 s of data sampled at 1 Hz
and for all moments between 0.15 and 5 with increments of
0.25. Figure4a gives the scaling of the structure functions
for a sequence of length 7000 data points forq = 1, 1.5,
2, and 2.5 in a log–log diagram for wind speed sampled at
20 Hz. The structure functions display two scaling tenden-
cies: for 0.056 1t 6 1 s corresponding to the inertial range
and for 106 1t 6 500 s. Figure4b gives the scaling of the
structure functions for a sequence forq = 1, 1.5, 2, and 2.5
in a log–log diagram for wind speedv sampled at 1 Hz, for
106 1t 6 5×105 s. The straight lines in this figure indicate
that the scaling of the relationship is well respected. The two
scaling tendencies observed for the wind speedv correspond
to the inertial range (small scales) and the energy-containing
range (large scales).

We then estimate the scaling exponent functionsζvH (q)

and ζvL(q) respectively for the inertial and the mesoscale
ranges. The exponent functionsζvH are estimated with 412
time series of length 7000 values sampled at 20 Hz andζvL

with 5 time series of length 5 millions of values sampled at
1 Hz. The scaling exponent functionζv(q) is the ensemble
average obtained from all these scaling exponent functions
ζi(q):

ζvH (q) =
1

412

412∑
i=1

ζi(q);ζvL(q) =
1

5

5∑
i=1

ζi(q) . (19)

5.2.1 Scaling exponent functionζvH for the inertial
range

Figure 5 presents the empirical scaling exponent function
ζvH , for the inertial range, compared to linear model K41
(ζ(q) = q/3) (Kolmogorov, 1941), and the lognormal model
proposed byKolmogorov(1962) that corresponds to the fol-
lowing relationship:

ζ(q) =
q

3
+

µ

18
(3q − q2) , (20)

where the parameterµ is called “intermittency parameter”
and is close to 0.25 (Arneodo et al., 1996). The function
ζvH (q) obtained from our database is nonlinear and concave
similar to the results obtained in previous studies (Schmitt et
al., 1993; Schertzer et al., 1997), with the following proper-
ties:

– 0 < q < 3, ζvH (q) > q/3 for small fluctuations,

– q = 3, ζvH (3) = 1 in agreement with the Kolmogorov
4/5 law,

(a)

(b)

Fig. 4. The scaling of the structure functions of the wind speed
Sv(q) (a) for data sampled at 20 Hz and(b) for data sampled at
1 Hz. The structure functions display also two scaling regimes for
0.056 1t 6 103 s for data sampled at 20 Hz and a scaling regime
for 1 6 1t 6 5× 105 s.

– q > 3, ζvH (q) < q/3 for large fluctuations.

The lognormal model provides a reasonable fit for the em-
pirical exponent functionζvH (q). The average of the fluctua-
tions correspond toq = 1, andH = ζvH (1) ' 0.36 is the so-
called “Hurst” exponent characterizing the scaling noncon-
servation of the mean. The second momentζvH (2) = 0.68 is
linked to the spectral exponentβ ' 1+ ζvH (2) = 1.68.

5.2.2 Scaling exponent functionζvL for
the energy-containing range

Figure 5 illustrates the empirical scaling exponent func-
tion ζvL(q) obtained for the mesoscale range, compared
to a linear model (ζvL(1) ' 1/6) and a quadratic model

www.nonlin-processes-geophys.net/21/379/2014/ Nonlin. Processes Geophys., 21, 379–392, 2014



386 R. Calif and F. G. Schmitt: Multiscaling of the wind speed and wind power

Fig. 5. The empirical scaling exponent functionζvH (�) for the
inertial range compared to the linear model K41 (solid line) cor-
responding to homogeneous turbulence, and the lognormal model
(dashed line) taking into account the intermittency effects. The em-
pirical scaling exponent functionζvL (◦) for the mesoscale range,
compared to a linear functionζvL(1)q ' q/6 (blue solid line) and
a quadratic function−0.023q2

+ 0.2q (green dashed line).

ζ(q) = −0.023q2
+ 0.2q. The exponent functionζvL is non-

linear and concave, characterizing a multifractal process.
We obtain the value ofH = ζvL(1) ' 0.16 and the value
ζvL(2) ' 0.30, and consequentlyβ ' 1.30 compatible with
the value estimated by the Fourier analysis (β ' 1.27). The
moment functionK(q) = qH − ζ(q) is often used for char-
acterizing a type of scaling.Lauren et al.(1999) performed
a multiscaling analysis for characterizing the low-wave-
number statistical properties of surface layer winds. In this
study, the data were measured with a cup anemometer at a
sampling rate of 1 Hz. Then, the functionK(q) was plotted
for q ranging 0–3; for exampleK(1) andK(3) were esti-
mated respectively to be 0 and 0.16. In our database the val-
ues ofK(1) andK(3) were estimated respectively to be 0
and 0.13.

5.3 The structure functions scaling exponentζP (q) for
the aggregate power output

Here we apply the structure function analysis to aggregate
power output data from a cluster of wind turbine generators,
for characterizing the type (monoscaling or multiscaling) and
regimes of scaling for these data. We consider the increments
of output power1P(1t) = |P(t +1t)−P(t)| for 1 6 1t 6
106 s and for all moments between 0.25 and 5 with incre-
ments of 0.25. Figure4b illustrates the scaling for the aggre-
gate power outputP for q = 1, 1.5, 2 and 2.5, in a log–log
diagram. The structure functions display two scaling tenden-
cies: for 16 1t 6 6.5× 104 s and for 6.5× 104 6 1t 6 106

s. Here, the straight lines black show also that the scaling
of Eq. (2) is well verified. Then, we estimate the scaling ex-

(a)

(b)

Fig. 6. (a) The scaling of the structure functions for wind power
SP (q) illustrating two scaling regimes: for 16 1t 6 6.5× 104 s
and for 6.5×104 6 1t 6 106 s.(b) The empirical scaling exponent
functionζPH (q) (�) estimated for 16 1t 6 6.5× 104 s and com-
pared to the K41 model (black solid line) and the lognormal model
(red dashed line). The empirical scaling exponent functionζPL(q)

(◦) compared to a quadratic fit (blue dashed line).

ponent functionsζPH (q) andζPL(q) from the slopes of the
straight lines using a linear least regression, for each scaling
regime. The scaling exponent functionζPH (q) is estimated
with i = 20 time series of length 106 values sampled at 1 Hz
andζPL(q) with i = 2 time series of length 107 values sam-
pled at 1Hz. The scaling exponent functionsζP (q) are the
ensemble average obtained from all these exponentsζi(q).

The empirical curvesζPH (q) and ζPL(q) for the aggre-
gate power outputP of this wind farm are illustrated in
Fig. 6. ζPH (q) is compared to the linear model K41 (q/3)
and the lognormal model given in Eq. (6). For the timescales
1 6 1t 6 6.5× 104 s (≈ 18 h),ζPH (q) is concave and non-
linear, characterizing a multifractal process. Moreover, the
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exponent functionζPH is close to the lognormal model.
ζPH (q) presents the following properties similar toζvH (q):

– 0 < q < 3, ζPH (q) > q/3 for small fluctuations,

– q = 3, ζPH (3) = 1,

– q > 3, ζPH (q) < q/3 for large fluctuations.

For the timescalest > 6.5× 104 s (∼ 18 h), ζPL(q) is non-
linear and concave, characterizing a multifractal process.
ζPL(q) is fitted by a quadratic model. However, a represen-
tative estimate ofζPL(q) must be performed with more data.

In short, the atmospheric wind data present two scaling
regimes observed with spectral and structure function anal-
ysis. The scaling exponent functionsζvH andζvL are fitted
by an equation of type−Aq2

+ Bq with A characterizing
the curvature indicating the degree of intermittency. Conse-
quently, the turbulent wind speed is less intermittent in the
inertial range (A = 0.013) than the energy-containing range
(A = 0.023). The aggregate power output presents also two
scaling regimes. For 16 1t 6 6.5×104 s, the wind power is
a multifractal process having the same properties as the wind
speed in the inertial range, and for1t > 6.5×104 s the wind
power is also a multifractal process less intermittent than the
turbulent wind atmospheric in the mesoscale range.

6 Relation between the wind speed and the aggregate
power output fluctuations

6.1 A scaling test for dependence: the coherence and
the cross-correlation functions

The coherence function is often used in the wind energy com-
munity (Burton et al., 2001; Sørensen et al., 2002; Nanahara
et al., 2004). In this work, the coherence functionHvP be-
tween the measured wind speedv and the aggregate power
outputP from the wind farm considered is estimated from
the co-spectrumEvp(f ) for the simultaneous data and den-
sity power spectrumEv(f ) andEp(f ) respectively forv and
P . Figure7a illustrates the coherence functionHvP defined
in Eq. (9), plotted for a frequency range 10−7 6 f 6 1 Hz.
Three regimes are observed: forf > 10−2 Hz correspond-
ing to timescalesT 6 100 s,HvP shows clearly the absence
of correlation. For 10−3 6 f 6 10−2 Hz, corresponding to
timescales 1006 T 6 1000 s, the value of the coherence
function increases from 0 to 0.7, highlighting the presence
of a correlation between the wind speedv and the aggre-
gate power outputP for frequency rangef 6 10−3 Hz. Fig-
ure7b illustrates the maximum of the cross-correlation func-
tion for a temporal range 16 T 6 107 s in a log–log plot.
We recall here the expression of scalarMvP computed for a
given timescaleT :

MvP (T ) = max

[
< vT (t + τ)PT (t) >

σvσp

]
, (21)

wherevT and PT are respectively the moving averages of
wind speed and the power output data computer over a time
periodT , andσv andσP are the corresponding standard de-
viations. Figure7b illustrates a the maximumMvP of the
cross-correlationCvP in a log–log plot for the simultaneous
wind speed/power output data. In the inset, we give exam-
ples of cross-correlation functionsCvP for the simultaneous
wind speed/power output data moving averages, computed
for timescalesT = 102 s, 103, 104, and 105 s. We can see
that the scalarMvP is increasing for small timescales and
reaches a plateau for large timescales with a transition around
102

−103 s; it shows the presence of a correlation between the
wind speed and output power for timescalesT > 103 s.

6.2 A multiscaling test for dependence: generalized cor-
relation functions (GCFs) and exponents (GCEs)

In the multiscaling framework, two stochastic processes, de-
fined previously,1v(1t) and 1P(1t), characterized by
their hth- and gth-order structure functions, are consid-
ered. The correlation between the two processes(1v(1t))h

and (1P(1t))g then becomes a function of the scale and of
the statistical orders of momenth andg, expressed by the
GCF.

Figure 8a illustrates the GCFc(h,g) plotted in log–log
versus the time increment1t > 103 s, for simultaneous wind
speed and output power measurements. The functionc(h,g)

represented is estimated for a constant value of the statisti-
cal order of momentg of wind power fluctuations (g = 3),
and different values of statistical order of momenth of wind
speed fluctuations (i.e.h = 1,2,3, from bottom to top). The
functionc(h,g) displays a scaling for timescales 103 < 1t 6
2.106 s. The GFEsr(h,g) are estimated from the linear re-
gression slope ofc(h,g), illustrated in Fig.8b. We can ob-
serve that the correlation between the wind speed and the
wind power fluctuations increases with increasing values of
the statistical order. The iso-values ofr(h,g) follow approxi-
mately a function of the formσhg. Moreover, because of the
symmetry ofr(h,g) in the h–g plane, we expect to obtain
a relation of proportionality between1v(1t) and1P(1t).
Figure 9 showsS(h,0) versusS(0,g) indicating a propor-
tional relation between1v(1t) and 1P(1t) of the form
1P(1t) = K1v(1t).

To illustrate this purpose, Fig.10 presents the joint dis-
tribution P(1v,1P ) for wind speed fluctuations1v and
output power fluctuations1P , for 1t = 104s≈ 3 h (a) and
for 1t = 105s≈ 1 day(b), with the skeletonφ (red dashed
line), indicating that a linear relation can be considered be-
tween the wind speed and the aggregate power output fluc-
tuations at these timescales. The skeletonφ obtained with
the joint pdfP(1v,1P ) is defined byφ = Pmax(1v,1P ) =

max1P (P(1v,1P ).
For each time increment1t > 104 s, we estimate the co-

efficientsa andb in the relation1P(1t) = a1v(1t) + b.
We find thatb is always very small and thata has a small
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Fig. 7.The coherence functionHvP (frequency domain)(a) and the maximumMvP (time domain)(b) of the cross-correlation functionCvP

in log–log plot for the simultaneous wind speed/power data: the insets in(a) shows the functionsHvP in semilogx plot, and the inset in(b)
shows the cross-correlations for the simultaneous wind speed/power output moving averages, computed for timescalesT = 102, 103, 104,
and 105 s.

Fig. 8. (a)The generalized correlation functions (GCFs)c(h,g) versus the time increments1t in log–log plots for simultaneous wind speed
and aggregate power output fluctuations.(b) The generalized correlation exponents (GCEs)r(h,g) estimated from the linear regression of
c(h,g).

Fig. 9. Plot of the generalized correlation exponentsS(h,0) versus
S(0,g) This confirms the symmetry of ther(h,g) iso-values in the
h–g plane.

1t-dependence:a = A1tB , with A = 102.2 and B = 0.04.
Thus, We obtain the following expression to model the skele-
tonφ for 1t > 104 s:

1P(1t) = A1tB1v(1t) . (22)

This is not incompatible with the fact that the powerP typ-
ically scales cubically with the wind speedv of the form
P = cv3. This relation implies that dP = 3cv2dv. Hence to
a first order, sincev is larger, power increments1P are pro-
portional to wind speed increments1v.

7 Discussions

The goal of this study was (i) to provide a characterization
for the atmospheric wind speed fluctuations and the aggre-
gate power output, at all intensities and at all scales, and

Nonlin. Processes Geophys., 21, 379–392, 2014 www.nonlin-processes-geophys.net/21/379/2014/



R. Calif and F. G. Schmitt: Multiscaling of the wind speed and wind power 389

(a)

(b)

Fig. 10. The joint distributionP(1v,1P ) for wind speed fluctua-
tions 1v and output power1P , for (a) 1t = 104 s and(b) 1t =

105 s.

(ii) to characterize the coupling between the atmospheric
wind speed and the aggregate power output measured simul-
taneously, in the multifractal framework.

7.1 The atmospheric wind speed

We have collected the wind speed data with a sampling
rate of 20 and 1 Hz. The spectral analysis showed that the
Fourier spectraEv(f ) follows a power law:E(f ) ∼ f −β

for the small-scale and the mesoscale range. Thus, for the
small timescales (0.056 T 6 1 s) corresponding to the iner-
tial range, the Fourier spectrum was close to the Kolmogorov
spectrum, withβ = 1.68, in agreement with previous stud-
ies (Schmitt et al., 1993; Katul et al., 1995; Schmitt, 2007;
Böttcher et al., 2007; Morales et al., 2011; Calif and Schmitt,
2012). The structure function analysis highlighted the con-
cavity and the nonlinearity of the exponent functionζvH (q).
Furthermore, the theoretical quadratic relation for lognormal

multifractals was well fitted (Böttcher et al., 2007; Morales et
al., 2011; Schertzer et al., 1997). In Calif and Schmitt(2012),
a lognormal continuous stochastic equation (Schmitt, 2003;
Huang et al., 2008) is considered for modeling the atmo-
spheric wind speed at these small temporal scales.

For the large timescales (16 T 6 107 s) corresponding
to the mesoscale range, the Fourier analysis of the wind
speed data sampled at 20 and 1 Hz showed a power law for
the power spectral densityEv(f ) ∼ f −β with β = −1.27.
Contrary to the inertial range, the turbulence effects in the
mesoscale range did not possess the same degree of univer-
sality. More recent papers on longitudinal low-wave-number
spectra have provided evidence of a−1 power law in the at-
mospheric surface layer for neutral conditions, and a−5/3
power law for near-convective conditions (Katul et al., 1995;
Katul and Chu, 1998; Kader and Yaglom, 1991). Several
theoretical and phenomenological approaches have been de-
voted to the explanation of such−1 power law scaling at the
low frequencies.Tchen(1953) proposed a theoretical anal-
ysis of an approximate spectral budget, based on interaction
between the mean flow vorticity and the fluctuating vortic-
ity. To model the energy production and energy transfer, phe-
menological analogies between molecular dissipation of tur-
bulent kinetic energy, energy extraction from large to small
scales and energy removal from the mean to turbulent flows
have been developed using Heisenberg’s turbulent viscos-
ity approach (Heisenberg, 1948). Tchen(1953) established
that (i) a spectrum close to−1 power law strong is likely
to occur close to a rough surface because of a strong inter-
action between the mean flow vorticity and the fluctuating
vorticity, and (ii) a spectrum close to a−5/3 power law is
likely to occur far away from the rough surface because of
a weak interaction between the mean flow vorticity and the
fluctuating vorticity. This was verified experimentally inKle-
banoff (1954) andKatul and Chu(1998). RecentlyKatul et
al. (2012) also proposed a phenomenological theory based
on Heisenberg’s eddy viscosity approach for the explanation
of the existence of−1 power law scaling.

The structure functions analysis for the wind speed in-
dicated also scaling properties for 16 T 6 107 s. The ex-
ponent functionζvL(q) was nonlinear and concave, and a
quadratic relation was proposed for fittingζvL(q). However
the exponent functionζvL(q) was less concave thanζvH (q):
this indicated that the wind speed is more intermittent in the
mesoscale range than the inertial range, as also shown in a
previous study (Lauren et al., 1999).

7.2 The aggregate power output

We have also collected the aggregate output power from a
wind farm with a sampling rate of 1 Hz. The spectral analysis
showed two scaling regimes. For 26 T 6 9×103 s the slope
was close to the spectral slope−5/3 as in a previous study
(Apt, 2007). The structure functions analysis highlighted the
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concavity and nonlinearity of the exponent functionζPH (q).
Furthermore, this function was well fitted by the lognormal
model.

For timescalesT > 9×103 s, the Fourier analysis showed
that the power spectral densityEP (f ) of the aggregate power
output from a wind farm has a spectral slope close to 1.2.
The structure function analysis confirmed the obtained scal-
ing, indicating the concavity and nonlinearity of the scal-
ing exponent functionζPL(q). ζPL(q) was less concave than
ζPH (q), meaning a decrease of the intermittency with these
timescales, as found also for the turbulent wind speed. How-
ever, for a more representative result, it is necessary to have
more aggregate power output data.

7.3 The coupling between the wind speed and
the output wind power fluctuations

We have collected simultaneously the wind speedv and
the aggregate power outputP , sampled at 1 Hz in order to
highlight a possible dependence between both series. Gen-
erally, a scaling test, i.e., the coherence, is estimated in the
wind energy community, for testing the dependence between
the data. In this study, the coherence functionHvP and the
scalarMvP showed a coupling between the turbulent wind
speed and the aggregate output wind power for timescales
T > 103 s. This study involved simultaneous analysis of tur-
bulence time series and instantaneous power data, consider-
ing the multiscale correlations between both series. For that,
a multiscaling test for independence between two stochas-
tic processes was used. The generalized correlation functions
c(h,g) and exponentsr(h,g) were estimated. For timescales
103 6 T 6 105 s, the functionc(h,g) presented a scaling re-
lating a coupling between both series in agreement with the
coherence functionHvP and the scalarMvP . Moreover, their
GFE r(h,g) indicated that larger fluctuations have stronger
dependence. In fact, slow fluctuations (in the range of tens
of minutes and hours) are mainly due to meteorological dy-
namics and are highly correlated among nearby wind farms.
A smoothing effect is operated by the size of the wind farm
for short timescales (or short spatial timescales). This indi-
cates that large fluctuations in wind speed over very short
timescales (wind gusts) do not give rise to similar fluctua-
tions in the aggregate power output. There is inertia in the
wind turbine generator system, corresponding to a nonlin-
ear transfer function from turbulent wind speed to aggregate
power output production. This could also be caused by the
spatial repartition combined with the number of wind tur-
bines: turbulence at different wind turbines is weakly corre-
lated or uncorrelated (Sørensen et al., 2002). Fast fluctuations
have smaller spatial correlations (Nichita et al., 2002; Petru
and Thiringer, 2002) and wind gusts are smoothed in the ag-
gregate power output from a wind farm. Furthermore, the
symmetry ofr(h,g) in the plane (h–g) is in favor of a propor-
tional relation between the wind speed fluctuations1v(1t),

and the output power fluctuations1P(1t) seem to be of the
form 1P(1t) = K1v(1t) for these timescales.

8 Conclusions

This work analyzed the intermittency and the scaling prop-
erties of the wind speedv ant the aggregate power out-
put P time series, through structure function analysis, at all
scales and all intensities. The aggregate power outputP pos-
sessed intermittent, multifractal properties and two scaling
regimes in relation with the multifractal properties of the in-
put wind speedv. Furthermore, we showed that the genera-
lized correlation functions and exponents are a suitable tool
for testing a dependence between two simultaneous intermit-
tent processes. This multiscaling test allowed characterizing
also the coupling of two simultaneously sampled intermittent
processes by an analytical expression (power law, propor-
tionality). Indeed, we proposed a proportionality expression
for the coupling between the wind speed and the aggregate
power output fluctuations. We believe that the actual relation
is complex and has some nonlinear relations. We want here to
understand the experimental result found about scaling rela-
tion for the power output. The relation given in relation (22)
should be seen as a simplified model and not as a firm result.

We found here typical scales of 103–104 s for the aggre-
gate power output fluctuations. The scale of 104s' 3 h was
found for the change of slope in aggregate power output spec-
tral regime, and the scale of 103s' 15 min was found for the
correlation between both series. This scale may be due to the
local topography, the local meteorology, or the influence of
the spatial disposition of the different wind turbine gener-
ators composing the wind farm. A better understanding of
theses scales of 103–104 s will be the subject of future works
in order to consider a possible universality, or its relation with
local conditions or wind farm composition.
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