Articles | Volume 20, issue 5
https://doi.org/10.5194/npg-20-759-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/npg-20-759-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Dispersion of aerosol particles in the free atmosphere using ensemble forecasts
T. Haszpra
Institute of Theoretical Physics, and MTA-ELTE Research Group in Theoretical Physics, Eötvös Loránd University, Pázmány P. s. 1/A, Budapest, 1117, Hungary
I. Lagzi
Department of Meteorology, Eötvös Loránd University, Budapest, and Department of Physics, Budapest University of Technology and Economics, Budafoki út 8., Budapest, 1111, Hungary
T. Tél
Institute of Theoretical Physics, and MTA-ELTE Research Group in Theoretical Physics, Eötvös Loránd University, Pázmány P. s. 1/A, Budapest, 1117, Hungary
Related authors
Tímea Haszpra, Mátyás Herein, and Tamás Bódai
Earth Syst. Dynam., 11, 267–280, https://doi.org/10.5194/esd-11-267-2020, https://doi.org/10.5194/esd-11-267-2020, 2020
Short summary
Short summary
We investigate the changes in the ENSO phenomenon and the alterations of its precipitation-related teleconnections in the CESM-LE. To avoid the disadvantages of the subjective choices of traditional temporal methods, we use an ensemble-based snapshot framework providing instantaneous quantities computed over the ensemble dimension of the simulation. We find that ENSO teleconnections undergo considerable changes, and the ENSO amplitude remarkably increases by 2100.
T. Haszpra and T. Tél
Nonlin. Processes Geophys., 20, 867–881, https://doi.org/10.5194/npg-20-867-2013, https://doi.org/10.5194/npg-20-867-2013, 2013
György Károlyi, Rudolf Dániel Prokaj, István Scheuring, and Tamás Tél
Earth Syst. Dynam., 11, 603–615, https://doi.org/10.5194/esd-11-603-2020, https://doi.org/10.5194/esd-11-603-2020, 2020
Short summary
Short summary
We construct a conceptual model to understand the interplay between the atmosphere and the ocean biosphere in a climate change framework, including couplings between extraction of carbon dioxide by phytoplankton and climate change, temperature and carrying capacity of phytoplankton, and wind energy and phytoplankton production. We find that sufficiently strong mixing can result in decaying global phytoplankton content.
Tímea Haszpra, Mátyás Herein, and Tamás Bódai
Earth Syst. Dynam., 11, 267–280, https://doi.org/10.5194/esd-11-267-2020, https://doi.org/10.5194/esd-11-267-2020, 2020
Short summary
Short summary
We investigate the changes in the ENSO phenomenon and the alterations of its precipitation-related teleconnections in the CESM-LE. To avoid the disadvantages of the subjective choices of traditional temporal methods, we use an ensemble-based snapshot framework providing instantaneous quantities computed over the ensemble dimension of the simulation. We find that ENSO teleconnections undergo considerable changes, and the ENSO amplitude remarkably increases by 2100.
T. Haszpra and T. Tél
Nonlin. Processes Geophys., 20, 867–881, https://doi.org/10.5194/npg-20-867-2013, https://doi.org/10.5194/npg-20-867-2013, 2013