Articles | Volume 20, issue 1
https://doi.org/10.5194/npg-20-143-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/npg-20-143-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A tri-stage cluster identification model for accurate analysis of seismic catalogs
S. J. Nanda
School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Orissa, 751013, India
K. F. Tiampo
Department of Earth Sciences, Western University, London, ON, N6A 5B7, Canada
G. Panda
School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Orissa, 751013, India
L. Mansinha
Department of Earth Sciences, Western University, London, ON, N6A 5B7, Canada
N. Cho
Department of Earth Sciences, Western University, London, ON, N6A 5B7, Canada
A. Mignan
Swiss Seismological Service, ETH, NO H66, Sonneggstrasse 5, 8092 Zurich, Switzerland
Related authors
No articles found.
Sandeep Kumar Mondal, Rishikesh Bharti, and Kristy F. Tiampo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2253, https://doi.org/10.5194/egusphere-2023-2253, 2023
Preprint archived
Short summary
Short summary
This study explains the capabilities of C-band Synthetic Aperture Radar (SAR) system in detection of glacial deformation due to earthquakes. Due to the remote location of the Himalayan glaciers associated with harsh weather conditions and rugged topography, the method of differential interferometric SAR (DInSAR) can be very useful in studying the impact of earthquakes in the glaciated regions where field-based seismological study is extremely tough to execute.
Elsa S. Culler, Ben Livneh, Balaji Rajagopalan, and Kristy F. Tiampo
Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023, https://doi.org/10.5194/nhess-23-1631-2023, 2023
Short summary
Short summary
Landslides have often been observed in the aftermath of wildfires. This study explores regional patterns in the rainfall that caused landslides both after fires and in unburned locations. In general, landslides that occur after fires are triggered by less rainfall, confirming that fire helps to set the stage for landslides. However, there are regional differences in the ways in which fire impacts landslides, such as the size and direction of shifts in the seasonality of landslides after fires.
Sergey Samsonov, Kristy Tiampo, and Ryan Cassotto
The Cryosphere, 15, 4221–4239, https://doi.org/10.5194/tc-15-4221-2021, https://doi.org/10.5194/tc-15-4221-2021, 2021
Short summary
Short summary
The direction and intensity of glacier surface flow adjust in response to a warming climate, causing sea level rise, seasonal flooding and droughts, and changing landscapes and habitats. We developed a technique that measures the evolution of surface flow for a glaciated region in three dimensions with high temporal and spatial resolution and used it to map the temporal evolution of glaciers in southeastern Alaska (Agassiz, Seward, Malaspina, Klutlan, Walsh, and Kluane) during 2016–2021.
Mylène Jacquemart and Kristy Tiampo
Nat. Hazards Earth Syst. Sci., 21, 629–642, https://doi.org/10.5194/nhess-21-629-2021, https://doi.org/10.5194/nhess-21-629-2021, 2021
Short summary
Short summary
We used interferometric radar coherence – a data quality indicator typically used to assess the reliability of radar interferometry data – to document the destabilization of the Mud Creek landslide in California, 5 months prior to its catastrophic failure. We calculated a time series of coherence on the slide relative to the surrounding hillslope and suggest that this easy-to-compute metric might be useful for assessing the stability of a hillslope.
P. Sharma, J. Wang, M. Zhang, C. Woods, B. Kar, D. Bausch, Z. Chen, K. Tiampo, M. Glasscoe, G. Schumann, M. Pierce, and R. Eguchi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VI-3-W1-2020, 107–113, https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-107-2020, https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-107-2020, 2020
Marco Broccardo, Arnaud Mignan, Francesco Grigoli, Dimitrios Karvounis, Antonio Pio Rinaldi, Laurentiu Danciu, Hannes Hofmann, Claus Milkereit, Torsten Dahm, Günter Zimmermann, Vala Hjörleifsdóttir, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 20, 1573–1593, https://doi.org/10.5194/nhess-20-1573-2020, https://doi.org/10.5194/nhess-20-1573-2020, 2020
Short summary
Short summary
This study presents a first-of-its-kind pre-drilling probabilistic induced seismic risk analysis for the Geldinganes (Iceland) deep-hydraulic stimulation. The results of the assessment indicate that the individual risk within a radius of 2 km around the injection point is below the safety limits. However, the analysis is affected by a large variability due to the presence of pre-drilling deep uncertainties. This suggests the need for online risk updating during the stimulation.
Linus Villiger, Valentin Samuel Gischig, Joseph Doetsch, Hannes Krietsch, Nathan Oliver Dutler, Mohammadreza Jalali, Benoît Valley, Paul Antony Selvadurai, Arnaud Mignan, Katrin Plenkers, Domenico Giardini, Florian Amann, and Stefan Wiemer
Solid Earth, 11, 627–655, https://doi.org/10.5194/se-11-627-2020, https://doi.org/10.5194/se-11-627-2020, 2020
Short summary
Short summary
Hydraulic stimulation summarizes fracture initiation and reactivation due to high-pressure fluid injection. Several borehole intervals covering intact rock and pre-existing fractures were targets for high-pressure fluid injections within a decameter-scale, crystalline rock volume. The observed induced seismicity strongly depends on the target geology. In addition, the severity of the induced seismicity per experiment counter correlates with the observed transmissivity enhancement.
Ahoura Jafarimanesh, Arnaud Mignan, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-167, https://doi.org/10.5194/nhess-2018-167, 2018
Revised manuscript not accepted
Arnaud Mignan
Nonlin. Processes Geophys., 25, 241–250, https://doi.org/10.5194/npg-25-241-2018, https://doi.org/10.5194/npg-25-241-2018, 2018
Short summary
Short summary
The Utsu productivity law, one of the main relationships in seismicity statistics, gives the average number of aftershocks produced by a mainshock of a given magnitude. I demonstrate that the law can be formulated in the solid seismicity theory, where it is parameterized in terms of aftershock density within a geometrical solid, constrained by the mainshock size. This suggests that aftershocks can be studied by applying simple rules of analytic geometry on a static stress field.
Arnaud Mignan
Nonlin. Processes Geophys., 23, 107–113, https://doi.org/10.5194/npg-23-107-2016, https://doi.org/10.5194/npg-23-107-2016, 2016
Short summary
Short summary
Induced seismicity is a concern for the industries relying on fluid injection in the deep parts of the Earth’s crust. At the same time, fluid injection sites provide natural laboratories to study the impact of increased fluid pressure on earthquake generation. In this study, I show that simple geometric operations on a static stress field produced by volume change at depth explains two empirical laws of induced seismicity without having recourse to complex models derived from rock mechanics.
S. V. Samsonov, P. J. González, K. F. Tiampo, and N. d'Oreye
Nat. Hazards Earth Syst. Sci., 14, 247–257, https://doi.org/10.5194/nhess-14-247-2014, https://doi.org/10.5194/nhess-14-247-2014, 2014
Special issue