Articles | Volume 18, issue 1
https://doi.org/10.5194/npg-18-111-2011
https://doi.org/10.5194/npg-18-111-2011
Research article
 | 
15 Feb 2011
Research article |  | 15 Feb 2011

Role of multifractal analysis in understanding the preparation zone for large size earthquake in the North-Western Himalaya region

S. S. Teotia and D. Kumar

Abstract. Seismicity has power law in space, time and magnitude distributions and same is expressed by the fractal dimension D, Omori's exponent p and b-value. The spatio-temporal patterns of epicenters have heterogeneous characteristics. As the crust gets self-organised into critical state, the spatio-temporal clustering of epicenters emerges to heterogeneous nature of seismicity. To understand the heterogeneous characteristics of seismicity in a region, multifractal studies hold promise to characterise the dynamics of region. Multifractal study is done on seismicity data of the North-Western Himalaya region which mainly involve seismogenic region of 1905 Kangra great earthquake in the North-Western Himalaya region. The seismicity data obtained from USGS catalogue for time period 1973–2009 has been analysed for the region which includes the October 2005 Muzafrabad-Kashmir earthquake (Mw =7.6). Significant changes have been observed in generalised dimension Dq, Dq spectra and b-value. The significant temporal changes in generalised dimension Dq, b-value and Dq−q spectra prior to occurrence of Muzaffrabad-Kashmir earthquake relates to distribution of epicenters in the region. The decrease in generalised dimension and b-value observed in our study show the relationship with the clustering of seismicity as is expected in self-organised criticality behaviour of earthquake occurrences. Such study may become important in understanding the preparation zone of large and great size earthquake in various tectonic regions.