Articles | Volume 12, issue 1
https://doi.org/10.5194/npg-12-55-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
https://doi.org/10.5194/npg-12-55-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes
W. Wang
Faculty of Water Resources and Environment, Hohai University, Nanjing, 210098, China
Faculty of Civil Engineering & Geosciences, Section of Hydraulic Engineering, Delft University of Technology, P.O.Box 5048, 2600 GA Delft, The Netherlands
P. H. A. J. M Van Gelder
Faculty of Civil Engineering & Geosciences, Section of Hydraulic Engineering, Delft University of Technology, P.O.Box 5048, 2600 GA Delft, The Netherlands
J. K. Vrijling
Faculty of Civil Engineering & Geosciences, Section of Hydraulic Engineering, Delft University of Technology, P.O.Box 5048, 2600 GA Delft, The Netherlands
J. Ma
Yellow River Conservancy Commission, Hydrology Bureau, Zhengzhou, 450004, China
Viewed
Total article views: 5,933 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,767 | 3,965 | 201 | 5,933 | 190 | 204 |
- HTML: 1,767
- PDF: 3,965
- XML: 201
- Total: 5,933
- BibTeX: 190
- EndNote: 204
Cited
73 citations as recorded by crossref.
- Efficacy of statistical algorithms in imputing missing data of streamflow discharge imparted with variegated variances and seasonalities Y. Gao et al. 10.1007/s12665-023-11139-z
- Closure to the discussion of Ebtehaj et al. on “Comparative assessment of time series and artificial intelligence models to estimate monthly streamflow: A local and external data analysis approach” S. Mehdizadeh et al. 10.1016/j.jhydrol.2021.126459
- The Empirical Test on the Impact of Climate Volatility on Tourism Demand: A Case of Japanese Tourists Visiting Korea Y. Hwang et al. 10.3390/su10103569
- Uncertainty analysis of hydrological processes based on ARMA-GARCH model H. Wang et al. 10.1007/s11431-012-4909-3
- The role of anthropogenic activities in karst spring discharge volatility J. Wu et al. 10.1002/hyp.10407
- Big Data for Cybersecurity: Vulnerability Disclosure Trends and Dependencies M. Tang et al. 10.1109/TBDATA.2017.2723570
- Characterizing and forecasting climate indices using time series models T. Lee et al. 10.1007/s00704-023-04434-z
- A prediction of future flows of ephemeral rivers by using stochastic modeling (AR autoregressive modeling) M. Malakoutian et al. 10.1016/j.susoc.2022.05.003
- Impacts of the Three Gorges Dam on the streamflow fluctuations in the downstream region S. Guo et al. 10.1016/j.jhydrol.2021.126480
- Flood forecasting for heteroscedastic streamflow processes F. Pianosi & L. Raso 10.3182/20080706-5-KR-1001.02462
- Hybrid Forecasting of Daily River Discharges Considering Autoregressive Heteroscedasticity E. Szolgayová et al. 10.1515/sjce-2017-0011
- AR-GARCH with Exogenous Variables as a Postprocessing Model for Improving Streamflow Forecasts X. Zha et al. 10.1061/(ASCE)HE.1943-5584.0001955
- Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model M. Nazeri-Tahroudi et al. 10.1007/s11269-022-03065-9
- Crytic period analysis model of hydrological process and its application H. Wang et al. 10.1002/hyp.7313
- The Impact of Climate Change on Stochastic Variations of the Hydrology of the Flow of the Indus River M. Yonus & S. Hassan 10.2478/sjce-2022-0004
- Forecasting Wind Speed in Peninsular Malaysia: An Application of ARIMA and ARIMA-GARCH Models N. Hussin et al. 10.47836/pjst.29.1.02
- Comparison of forecasting performance of nonlinear models of hydrological time series J. Komorník et al. 10.1016/j.pce.2006.05.006
- Annual, seasonal, and monthly baseflow trend in an arid area in Loss Plateau, China Y. Sun et al. 10.2166/ws.2023.322
- Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: An empirical examination G. Napolitano et al. 10.1016/j.jhydrol.2011.06.015
- Statistical simulation of flood variables: incorporating short‐term sequencing Y. Cai et al. 10.1111/j.1753-318X.2008.00002.x
- Bivariate simulation of river flow using hybrid intelligent models in sub-basins of Lake Urmia, Iran V. Eslamitabar et al. 10.1007/s11600-022-00933-1
- Updating urban design floods for changes in central tendency and variability using regression J. Hecht & R. Vogel 10.1016/j.advwatres.2019.103484
- A nonstationary extreme value distribution for analysing the cessation of karst spring discharge Y. Liu et al. 10.1002/hyp.10013
- Trivariate Flood Frequency Analysis Using Discharge Time Series with Possible Different Lengths: Cuyahoga River Case Study L. Zhang & V. Singh 10.1061/(ASCE)HE.1943-5584.0001003
- Estimating weak periodic vector autoregressive time series Y. Boubacar Maïnassara & E. Ursu 10.1007/s11749-023-00859-w
- Hidden Markov and Semi-Markov Models with Multivariate Leptokurtic-Normal Components for Robust Modeling of Daily Returns Series A. Maruotti et al. 10.1093/jjfinec/nby019
- Development of resistance to sarcoptic mange in ibex J. Pérez et al. 10.1002/jwmg.22224
- Management strategies for run-of-river hydropower plants: an optimal switching approach M. Olofsson et al. 10.1007/s11081-021-09683-3
- Enhancing the Prediction Accuracy of Data-Driven Models for Monthly Streamflow in Urmia Lake Basin Based upon the Autoregressive Conditionally Heteroskedastic Time-Series Model N. Attar et al. 10.3390/app10020571
- Modeling streamflow time series using nonlinear SETAR-GARCH models F. Fathian et al. 10.1016/j.jhydrol.2019.03.072
- The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting S. Barbetta et al. 10.1016/j.jhydrol.2017.06.030
- The application of the hybrid copula-GARCH approach in the simulation of extreme discharge values M. Nazeri Tahroudi et al. 10.1007/s13201-022-01788-z
- Para Politikası Uygulamalarının Gelişmekte Olan Ülkelerin Ülke Kredi Riski Üzerindeki Yayılma Etkisi F. DURAL & Z. SEÇME 10.25095/mufad.1036868
- Enhancing decadal snowfall forecasts in the Mediterranean mountains through informed atmospheric variability and climate data N. Diodato et al. 10.1080/02626667.2024.2427356
- Is the volatility and non-stationarity of the Atlantic Multidecadal Oscillation (AMO) changing? O. Beyraghdar Kashkooli & R. Modarres 10.1016/j.gloplacha.2020.103160
- Multi-step SETARMA predictors in the analysis of hydrological time series A. Amendola et al. 10.1016/j.pce.2006.04.040
- Reducing the uncertainty of time-varying hydrological model parameters using spatial coherence within a hierarchical Bayesian framework Z. Pan et al. 10.1016/j.jhydrol.2019.123927
- Diagnostic checking of periodic vector autoregressive time series models with dependent errors Y. Boubacar Maïnassara & E. Ursu 10.1016/j.jmva.2024.105379
- Improving Prediction Accuracy of Rainfall Time Series By Hybrid SARIMA–GARCH Modeling P. Pandey et al. 10.1007/s11053-018-9442-z
- Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models C. Francq et al. 10.1111/j.1467-9892.2011.00728.x
- Generalized autoregressive conditional heteroscedasticity modelling of hydrologic time series R. Modarres & T. Ouarda 10.1002/hyp.9452
- Application of copula-based and ARCH-based models in storm prediction Y. Ramezani et al. 10.1007/s00704-022-04333-9
- Volatility modeling of rainfall time series F. Yusof & I. Kane 10.1007/s00704-012-0778-8
- Time-Varying Effects of Precipitation and Temperature on Daily Streamflow Determined Using the DCC Model H. Wang et al. 10.1061/JWRMD5.WRENG-6062
- Copula-based statistical refinement of precipitation in RCM simulations over complex terrain P. Laux et al. 10.5194/hess-15-2401-2011
- Modeling Radar Rainfall Estimation Uncertainties: Random Error Model A. AghaKouchak et al. 10.1061/(ASCE)HE.1943-5584.0000185
- Application of copula functions to construct confidence intervals of bivariate drought frequency curve J. Yoo et al. 10.1016/j.jher.2014.10.002
- Regional scale rainfall–runoff modeling using VARX–MGARCH approach F. Fathian et al. 10.1007/s00477-017-1428-6
- Exploring the Regional Variance using ARMA-GARCH Models H. Xie et al. 10.1007/s11269-016-1367-x
- Mevsimsel Değişkenliklerin Borsa İstanbul Üzerindeki Oynaklık Etkisi: Ramazan Ayı Örneği A. Yılmaz & Z. Can Ergün 10.30803/adusobed.354767
- Modeling the relationship between climate oscillations and drought by a multivariate GARCH model R. Modarres & T. Ouarda 10.1002/2013WR013810
- Simulation of Nonstationary Spring Discharge Using Time Series Models Y. Liu et al. 10.1007/s11269-017-1783-6
- The application of multiple linear regression method in reference evapotranspiration trend calculation N. Khanmohammadi et al. 10.1007/s00477-017-1378-z
- Forecasting East Belitung Regency Rainfall Data by Reviewing Heteroscedasticity E. Kustiawan & . Adriyansyah 10.1088/1755-1315/926/1/012018
- Conditional Heteroscedasticity in Streamflow Process: Paradox or Reality? M. Otache et al. 10.4236/ojmh.2012.24010
- Modelling heteroscedasticty of streamflow times series R. Modarres & T. Ouarda 10.1080/02626667.2012.743662
- A farmer-centric agricultural decision support system for market dynamics in a volatile agricultural supply chain P. Tripathi et al. 10.1108/BIJ-12-2021-0780
- Multiple streamflow time series modeling using VAR–MGARCH approach F. Fathian et al. 10.1007/s00477-019-01651-9
- Influence of whooping crane population dynamics on its recovery and management M. Butler et al. 10.1016/j.biocon.2013.04.003
- Development of a partial copula-based algorithm for disclosing variability of dependence structures between hydro-meteorological factors under consideration of covariate-effect A. Guo et al. 10.1016/j.jhydrol.2020.124570
- Stochastic Volatility Modeling of Daily Streamflow Time Series H. Wang et al. 10.1029/2021WR031662
- Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields S. Vogl et al. 10.5194/hess-16-2311-2012
- Testing for nonlinearity of streamflow processes at different timescales W. Wang et al. 10.1016/j.jhydrol.2005.02.045
- Point and Interval Forecasting of Groundwater Depth Using Nonlinear Models T. Guo et al. 10.1029/2021WR030209
- A review on missing hydrological data processing Y. Gao et al. 10.1007/s12665-018-7228-6
- Rutting prediction using deep learning for time series modeling and K-means clustering based on RIOHTrack data J. Liu et al. 10.1016/j.conbuildmat.2023.131515
- Wavelets Based Artificial Neural Network Technique for Forecasting Agricultural Prices R. Paul & S. Garai 10.1007/s41096-022-00128-3
- Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition W. Wang et al. 10.1007/s11269-015-0962-6
- Combined deterministic – stochastic forecasting of monthly river flows for water management E. Peksova Szolgayova et al. 10.1088/1755-1315/92/1/012052
- Returns and volatility of water investments R. Reza et al. 10.1080/23322039.2018.1438724
- Clustering diagnosis of rolling element bearing fault based on integrated Autoregressive/Autoregressive Conditional Heteroscedasticity model G. Wang et al. 10.1016/j.jsv.2012.05.006
- Applying time series models to estimate time lags between sap flux and micro-meteorological factors X. Zhao et al. 10.1080/11956860.2016.1202885
- Genetic modeling for the optimal forecasting of hydrologic time-series: Application in Nestos River T. Koutroumanidis et al. 10.1016/j.jhydrol.2009.01.041
Latest update: 21 Nov 2024