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Abstract. Conventional streamflow models operate underdition in terms of statistical modelling of daily streamflow
the assumption of constant variance or season-dependeptocesses for the hydrological community.

variances (e.g. ARMA (AutoRegressive Moving Average)

models for deseasonalized streamflow series and PARMA ) , .

(Periodic AutoRegressive Moving Average) models for sea-L Introduction to  autoregressive conditional ~het-
sonal streamflow series). However, with McLeod-Li test ~ €roskedasticity

and Engle’s Lagrange Multiplier test, glear ev@gnces A"SWhen modelling hydrologic time series, we usually focus on
found for the existence of autoregressive conditional het- : L . .
modelling and predicting the mean behaviour, or the first

eroskedasticity (i.e. the ARCH (AutoRegressive CondltlonalOroler moments, and are rarely concerned with the condi-

Heteroskedasticity) effect), a nonlinear phenomenon of thetional variance, or their second order moments, although
variance behaviour, in the residual series from linear models o ’ ) '
. . unconditional season-dependent variances are usually con-
fitted to daily and monthly streamflow processes of the up-_. : . . i
or Yellow River. China. It is shown that the maior cause sidered. The increased importance played by risk and un
P S at the majol certainty considerations in water resources management and
of the ARCH effect is the seasonal variation in variance of

. : . -~ . flood control practice, as well as in modern hydrology the-
the residual series. However, while the seasonal variation . _
. . : ory, however, has necessitated the development of new time
in variance can fully explain the ARCH effect for monthly

. . ) : series techniques that allow for the modelling of time varyin
streamflow, it is only a partial explanation for daily flow. q 9 ying

. . N . variances.
It is also shown that while the periodic autoregressive mov-

. : . . ARCH-type models, which originate from econometrics,
ing average model is adequate in modelling monthly flows, . . X .

; : . : give us an appropriate framework for studying this prob-
no model is adequate in modelling daily streamflow pro-

cesses because none of the conventional time series moéjem' \olatility (i.e. time-varying variance) clustering, in

L X which large changes tend to follow large changes, and
els takes the seasonal variation in variance, as well as thgmall chanaes tend to follow small chanaes. has been well
ARCH effect in the residuals, into account. Therefore, an 9 ges,

ARMA-GARCH (Generalized AutoRegressive Conditional reTIO%mze(:rm fw;a;]nmal t'km% Series. TS'S phbenomgnloré;)s
Heteroskedasticity) error model is proposed to capture theC alled conditiona et_eros © asticity, and can be modeled by
ARCH-type models, including the ARCH model proposed

ARCH effect present " d_auly_streamflow series, as well as toby Engle (1982) and the later extension GARCH (general-
preserve seasonal variation in variance in the residuals. Thlezed ARCH) model proposed by Bollerslev (1986), etc. Ac-
ARMA-GARCH error model combines an ARMA model prop y ’ )

for modelling the mean behaviour and a GARCH model for cprdmgly, when a time series exh|p|ts autoregressive condi-
. . . : tionally heteroskedasticity, we say it has the ARCH effect or
modelling the variance behaviour of the residuals from the

ARMA model. Since the GARCH model is not followed GARCH effect. ARCH-type models ha_ve beer_1 W|de_|y U.SEd
. . . to model the ARCH effect for economic and financial time
widely in statistical hydrology, the work can be a useful ad-

series.
Correspondence tddV. Wang The ARCH-type model is a nonlinear model that includes
(w.wang@126.com) past variances in the explanation of future variances. ARCH-
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Fig. 2. Variation in daily mean and standard deviation of the stream-
flow at Tangnaihai.
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tributing watershed, including a permanently snow-covered
Fig. 1. Daily streamflow (/s) of the upper Yellow River at Tang- area of 192 ki The length of the main channel of this wa-
naihai. tershed is over 1500 km. Most of the area is 306000

meters above sea level. Snowmelt water composes about 5%

of total runoff. Most rain falls in summer. Because the water-
type models can generate accurate forecasts of future volatikhed is partly permanently snow-covered and sparsely pop-
ity, especially over short horizons, therefore providing a bet-ulated, without any large-scale hydraulic works, it is fairly
ter estimate of the forecast uncertainty which is valuable forpristine. The average annual runoff volume (during 1956—
water resource management and flood control. And they tak@000) at Tangnaihai gauging station is 20.4 billion cubic me-
into account excess kurtosis (i.e. fat tail behaviour), WhiChters, about 35% of the whole Yellow River Basin, and it is the
is common in hydrologic processes. Therefore, ARCH-major runoff producing area of the Yellow River basin. Daily
type models could be very useful for hydrologic time se- average streamflow at Tangnaihai has been recorded since 1
ries modelling. Some authors propose new models to reprojanuary 1956. Monthly series is obtained from daily data by
duce the asymmetric periodic behaviour with large fluctua-taking the average of daily discharges in every month. In this
tions around large streamflow and small fluctuations aroundstudy, data from 1 January 1956 to 31 December 2000 are
small streamflow (e.g. Livina et al., 2003), which basically used. The daily streamflow series from 1956 to 2000 is plot-
can be handled with those conventional time series modted in Fig. 1, and variations in the daily mean discharge and

els that have taken season-dependent variance into accourfaily standard deviation of the streamflow at Tangnaihai are
such as PARMA models and deseasonalized ARMA modelsshown in Fig. 2.

However, little attention has been paid so far by the hydro-

logic community to test and model the possible presence of

the ARCH effect with which large fluctuations tend to follow 3 Tests for the ARCH effect of streamflow process

large fluctuations, and small fluctuations tend to follow small

fluctuations in streamflow series. The detection of the ARCH effect in a streamflow series is
In this paper, we will take the daily and monthly stream- actually a test of serial independence applied to the serially

flow of the upper Yellow River at Tangnaihai in China as uncorrelated fitting error of some model, usually a linear au-

case study hydrologic time series to test for the existencdoregressive (AR) model. We assume that linear serial depen-

of the ARCH effect, and propose an ARMA-GARCH error dence inside the original series is removed with a well-fitted,

model for daily flow series. The paper is organized as fol-Pre-whitening model; any remaining serial dependence must

lows. First, the method of testing conditional heteroskedasbe due to some nonlinear generating mechanism which is

ticity of streamflow process is described. Then, the causes ofiot captured by the model. Here, the nonlinear mechanism

the ARCH effect and the inadequacy of Commomy used seaWwe are concerned with is the conditional heteroskedastic-

sonal time series models for modelling streamflow are dis-ty. We will show that the nonlinear mechanism remaining

cussed. Finally, an ARMA-GARCH error model is proposed in the pre-whitened streamflow series, namely the residual

for capturing the ARCH effect existing in daily streamflow Series, can be well interpreted as autoregressive conditional
series. heteroskedasticity.

3.1 Linear ARMA models fitted to daily and monthly flows

2 Case study area and data set
Three types of seasonal time series models are commonly

The case study area is the headwaters of the Yellow Riverused to model hydrologic processes which usually have
located in the northeastern Tibet Plateau. In this area, thetrong seasonality (Hipel and McLeod, 1994): 1) seasonal
discharge gauging station Tangnaihai has a 133 650dam- autoregressive integrated moving average (SARIMA) mod-
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Fig. 3. ACF and PACF of deseasonalized daily flow series.
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Fig. 4. ACF and PACF of deseasonalized monthly flow series.

els; 2) deseasonalized ARMA models; and 3) periodic Firstly, we inspect the ACF of the residuals. It is well-

ARMA models. The deseasonalized modelling approach isknown that for random and independent series of lemgth

adopted in this study. The procedure of fitting deseasonalizethe lagk autocorrelation coefficient is normally distributed

ARMA models to daily and monthly streamflow at Tang- with a mean of zero and a variance of:1&and the 95%

naihai includes two steps. First, logarithmize both flow se-confidence limits are given by-1.964/n. The ACF plots

ries, and deseasonalize them by subtracting the seasonal (eig.Fig. 6 show that there is no significant autocorrelation left

daily or monthly) mean values and dividing by the seasonalin the residuals from both ARMA-type models for daily and

standard deviations of the logarithmized series. To alleviatemonthly flow.

the stochastic fluctuations of the daily means and standard Then, more formally, we apply the Ljung-Box test (Ljung

deviations, we smooth them with first 8 Fourier harmonicsand Box, 1978) to the residual series, which tests whether

before using them for standardization. Then, according to thehe first L autocorrelations?,f(ez) (k=1,..,L) from a pro-

ACF (AutoCorrelation Function) and PACF (Periodic Auto- cess are collectively small in magnitude. Suppose we have

Correlation Function) structures of the two series, as well aghe first L autocorrelations(s) (k = 1, ..., L) from any

the model selection criterion AIC, two linear ARMA-type ARMA(p, d, q) process. For a fixed sufficiently large

models (one ARMA(20,1) and one AR(4)) are fitted to the the usual Ljung-BoxQ-statistic is given by

logarithmized and deseasonalized daily and monthly flow se-

ries, respectively, following the model construction proce- L f,f(s)

dures suggested by Box and Jenkins (1976). Figures 3 an = NN+ 2) Z N —k’ @)

4 show the ACF and PACF of the deseasonalized daily and k=1

monthly series. Figure 5 shows parts of the two residual sewhere N = sample sizeL.= the number of autocorrelations

ries obtained from the two models. included in the statistic, angf is the squared sample auto-
Before applying ARCH tests to the residual series, to en-correlation of residual serielg;} at lagk. Under the null

sure that the null hypothesis of no ARCH effect is not re- hypothesis of model adequacy, the test statistic is asymp-

jected due to the failure of the pre-whitening linear models, totically x2(L—p—gq) distributed. Thus, we would reject

we must check the goodness-of-fit of the linear models. the null hypothesis at level if the value of 9 exceeds the
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Fig. 5. Segments of the residual series fra ARMA(20,1) for daily flow and(b) AR(4) for monthly flow at Tangnaihai.
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Fig. 6. ACFs of residuals fronfa) the ARMA(20,1) model for daily flow an¢b) the AR(4) model for monthly flow at Tangnaihai.

(1—a)-quantile of they2(L— p—q) distribution. The Ljung-  Fig. 6, the squared residual series are autocorrelated, and the
Box test results for ARMA(20,1) and AR(4) are shown in ACF structures of both squared residual series exhibit strong
Fig. 7. The p-values’ exceedance of 0.05 indicates the acseasonality. This indicates that the variance of residual series
ceptance of the null hypothesis of model adequacy at signifis conditional on its past history, namely, the residual series
icance level 0.05. may exhibit an ARCH effect.

However, while the residuals seem statistically uncorre- There are some formal methods to test for the ARCH
lated according to ACF and PACF shown in Fig. 6, they effect of a process, such as the McLeod-Li test (McLeod
are not identically distributed from visual inspection of the and Li, 1983), the Engle’s Lagrange Multiplier test (Engle,
Fig. 5, that is, the residuals are not independent and identi1982), the BDS test (Brock et. al., 1996), etc. McLeod-
cally distributed (i.i.d.) through time. There is a tendency, Li test and Engle’s Lagrange Multiplier test are used here
especially for daily flow, that large (small) absolute values of to check the existence of an ARCH effect in the streamflow
the residual process are followed by other large (small) val-series.
ues of unpredictable sign, which is a common behaviour of
GARCH processes. Granger and Andersen (1978) found tha?.2 McLeod-Li test for the ARCH effect
some of the series modelled by Box and Jenkins (1976) ex-
hibit autocorrelated squared residuals even though the residcLeod and Li (1983) proposed a formal test for ARCH
uals themselves do no seem to be correlated over time, angffect based on the Ljung-Box test. It looks at the auto-
therefore suggested that the ACF of the squared time seriegorrelation function of the squares of the pre-whitened data,
could be useful in identifying nonlinear time series. Boller- and tests whether the firétautocorrelations for the squared
slev (1986) stated that the ACF and PACF of squared proceskesiduals are collectively small in magnitude.
are useful in identifying and checking GARCH behaviour. Similar to Eq. @), for fixed sufficiently largd_, the Ljung-

Figure 8 shows the ACFs of the squared residual serie$0* C-statistic of Mcleod-Li test is given by
from the ARMA(20,1) model for daily flow and the AR(4) L a2 2
model for monthly flow at Tangnaihai. It is shown that al- 0=NN+2) Z ;\1;(8 li @)

k=1

though the residuals are almost uncorrelated, as shown in
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Fig. 7. Ljung-Box lack-of-fit tests fofa) the ARMA(20,1) model for daily flow an¢b) the AR(4) model for monthly flow.
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Fig. 8. ACFs of the squared residuals frqa) the ARMA(20,1) model for daily flow an¢b) the AR(4) model for monthly flow at Tangnaihai.

where N is the sample size, antf is the squared sample lags less than 4 are removed by the AR(4) model, when we
autocorrelation of squared residual series atdagUnder  take autocorrelations at longer lags into consideration, sig-
the null hypothesis of a linear generating mechanism for thenificant autocorrelations remain and the null hypothesis of
data, namely, no ARCH effect in the data, the test statistic isno ARCH effect is rejected. Because it is required for the
asymptoticallyy2(L) distributed. Figure 9 shows the results McLeod-Li test to use sufficiently large, namely, a suf-

of the McLeod-Li test for daily and monthly flow. It illus- ficient number of autocorrelations to calculate the Ljung-
trates that the null hypothesis of no ARCH effect is rejectedBox statistic (typically around 20), we still consider that the
for both daily and monthly flow series. monthly flow has the ARCH effect.

On the whole, evidences are clear with the McLeod-Li test
and Engle’s LM test about the existence of conditional het-
) eroskedasticity in the residual series from linear models fitted
Since the ARCH model has the form of an autoregres-y the |ogarithmized and deseasonalized daily and monthly

sive model, Engle (1982) proposed the Lagrange Multipliersyreamflow processes of the upper Yellow River at Tangnai-
(LM) test, in order to test for the existence of ARCH be- pg;.

haviour based on the regression. The test statistic is given
by TR?, whereR is the sample multiple correlation coef-
ficient computed from the regression q? on a constant
ande? ... g7, andT is the sample size. Under the null
hypothesis that there is no ARCH effect, the test statistic
is asymptotically distributed as chi-square distribution with 4.1  Causes of ARCH effects in the residuals from ARMA-

g degrees of freedom. As Bollerslev (1986) suggested, it type models for daily and monthly flow

should also have power against GARCH alternatives.

Figure 10 shows Engle’s LM test results for the residu- From the above analyses, it is clear that although the resid-
als from the ARMA(20,1) model for daily flow and from the uals are serially uncorrelated, they are not independent
AR(4) model for monthly flow. The results also firmly in- through time. At the mean time, we notice that seasonal-
dicate the existence of an ARCH effect in both the residuality dominates autocorrelation structures of squared residual
series. series for both daily and monthly flow processes (as shown

One point that should be noticed is that although Figs. 8bjn Fig. 8). This suggests that there are seasonal variations in
9b and 10b show that for monthly flow, autocorrelations atthe variance of the residual series, and we should standardize

3.3 Engle’s Lagrange Multiplier test for the ARCH effect

4 Discussion of the causes of ARCH effects and inade-
quacy of commonly used seasonal time series models
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Fig. 9. McLeod-Li test for the residuals froif@) the ARMA(20,1) model for daily flow an¢b) the AR(4) model for monthly flow.
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Fig. 10. Engle’s LM test for residuals frorta) the ARMA(20,1) model for daily flow an¢b) the AR(4) model for monthly flow.

the residual series from linear models with seasonal standard From the above analyses, itis clear that the ARCH effectis
deviations of the residuals first, then look at the standardfully caused by seasonal variances for monthly flow, but only
ized series to check whether seasonal variances can explapartly for daily flow. Other causes, besides the seasonal vari-
ARCH effects. ation in variance, of the ARCH effect in daily flow may in-

Seasonal standard deviations of the residual series frorslude the perturbations of the temperature fluctuations which
the ARMA(20,1) model for daily flow and the AR(4) model is an influential factor for snowmelt, as well as evapotran-
for monthly flow are calculated and shown in Figs. 11a andspiration, and the precipitation variation which is the domi-
11b. They are used to standardize the residual series fromant factor for streamflow processes. As reported by Miller
the ARMA(20,1) model and the AR(4) model. Figure 12 (1979), when modelling a daily average streamflow series,
shows the ACFs of the squared standardized residual seridbe residuals from a fitted AR(4) model signaled white-noise
of daily and monthly flow. It is illustrated that, after sea- errors, but the squared residuals signaled bilinearity. When
sonal standardized autocorrelation, as well as the seasonaliyrecipitation covariates were included in the model, Miller
in the squared standardized residual series for monthly flowfound that neither the residuals nor the squared residuals sig-
is basically removed (Fig. 12b), the significant autocorrela-naled any problems. While we agree that the autocorrela-
tion still exists in the squared standardized residual series fotion existing in the squared residuals is basically caused by
daily flow (Fig. 12a), despite the fact that the autocorrela-a precipitation process, we want to show that the autocorre-
tions are significantly reduced compared with Fig. 8a and thdation in the squared residuals can be well described by an
seasonality in the ACF structure is removed. This means thaARCH model, which is very close to the bilinear model (En-
the seasonality, as well as the autocorrelation in the squaredle, 1982).
residuals from the AR model of monthly flow series is basi-
cally caused by seasonal variances. But seasonal variancds?2 Inadequacy of commonly used seasonal time series
only explain partly the autocorrelation in the squared residu- models for modelling streamflow processes
als of daily flow series.

The residual series of daily flow and monthly flow stan- As mentioned in Sect. 3.1, SARIMA models, deseasonal-
dardized by seasonal standard deviation are also tested fé#ed ARMA models and periodic models are commonly used
ARCH effects with the McLeod-Li test and Engle’s LM to model hydrologic processes (Hipel and McLeod, 1994).
test. Figure 13 shows that the seasonally standardize&iven atime series), the general form of SARIMA model,
residual series of daily flow still cannot pass the LM test denoted by SARIMA(p,d,a} (P,D,Q), is
(Fig. 13a), whereas the seasonally standardized residual se- edeD s
ries of monthly flow pass the LM test with high-values ¢ (B)®(B)V Vi x, = 0(B)O(B")e;, 3

(Fig. 13b). The McLeod-Li test gives similar results. whereg(B) andd(B) of ordersp andq represent the ordi-

nary autoregressive and moving average componéis;)



W. Wang et al.: Testing and modelling autoregressive conditional heteroskedasticity 61

(a) 04 (b) 1
0.3 | 0.8 1
0.6
% 02 @
0.4 1
0.1 |
0.2 1
0 : : : : : : 0 ‘ ‘ ‘ ‘
0 60 120 180 240 300 360 0 3 6 9 12
Day Month

Fig. 11. Seasonal standard deviations (SD) of the residuals ferthe ARMA(20,1) model for daily flow andb) the AR(4) model for
monthly flow (note: the smoothed line in (a) is given by the first 8 Fourier harmonics of the seasonal SD series).
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Fig. 12. ACFs of squared seasonally standardized residuals fegrthe ARMA(20,1) model for daily flow andb) the AR(4) model for
monthly flow.

and®(B*) of ordersP and Q represent the seasonal autore- resent a day, week, month or season), we have the following
gressive and moving average componeMé=(1—B)¢ and PAR(p) model (Salas, 1993):
Vv2=(1-B%)P are the ordinary and seasonal difference com-

p
ponents. Xn,s = MUs + Z ¢j,s(xv,s—j - /Ls—j) + én,s, )
The general form of the ARMA{, ¢) model fitted to de- j=1

seasonalized series is whereg,  is an uncorrelated normal variable with mean zero

and variances2. For daily streamflow series, to make the
b (B)x; = 0(B)e,. (4) _model parsimonious, we can cluster the days in the year
into several groups and fit separate AR models to separate
} groups (Wang et al., 2004). Periodic models would per-
From the model equations we know that although the seasorm petter than the SARIMA model and the deseasonal-
sonal variation in the variance present in the original timej;eq ARMA model for capturing the ARCH effect, because
proach, the seasonal variation in variance in the residual sesg analyzed in Sect. 4.1, while considering seasonal vari-
ries is not considered by either of the two models, because innces could be sufficient for describing the ARCH effect in
bgth cases the innovation serigss assumedtobe i.i.dV(0,  monthly flow series because the ARCH effect in monthly
o). Therefore, both SARIMA models and deseasonalizedioy series is fully caused by seasonal variances, it is still

models cannot capture the ARCH effect that we observed iNpgyficient to fully capture the ARCH effect in daily flow
the residual series. series.

In contrast, the periodic model, which is basically a group In summary, while the PARMA model is adequate for
of ARMA models fitted to separate seasons, allows for seamodelling the variance behaviour for monthly flow, none of
sonal variances in not only the original series but also thethe commonly used seasonal models is efficient enough to
residual series. Taking the special case PARGodel (pe- describe the ARCH effect for daily flow, although PARMA
riodic autoregressive model of ordel) as an example of can partly describe it by considering seasonal variances. |t
a PARMA model, given a hydrological time series;, in is necessary to apply the GARCH model to achieve the pur-
whichn defines the year anddefines the season (could rep- pose.
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Fig. 13. Engle’s LM test for seasonally standardized residuals ffapthe ARMA(20,1) model for daily flow an¢b) from the AR(4) model
for monthly flow.

GARCH(p, g) model has the form (Bollerslev, 1986)

o
C\!,
° elpr—1~ N(O, hy)
q p 6
‘Lr—>_, hy =a0+ ). (X,‘Stzil- + Y Bihi ©)
o i=1 i=1
3
<o| where,s; denotes a real-valued discrete-time stochastic pro-
S0 cess, and/, the available information sefp >0, ¢ >0,
Sm ag >0,a; >0, B; >0. Whenp=0, the GARCHp,q) model
2 reduces to the ARCH( model. Under the GARCHY, ¢)
model, the conditional variance &f, h,, depends on the
=) “ L, M ‘i o y e squared residuals in the previapsime steps, and the condi-
o [ e T T T T T tional variance in the previoys time steps. Since GARCH

‘ models can be treated as ARMA models for squared residu-

0 20 40 60 80 100 als, the order of GARCH can be determined with the method

Lag for selecting the order of ARMA models, and traditional

model selection criteria, such as Akaike information criterion

(AIC) and Bayesian information criterion (BIC), can also be

used for selecting models. The unknown model parameters
a; (i=0,-- -,¢9)andg; (j=1,- - -, p)canbe es-
timated using (conditional) maximum likelihood estimation

5 Modelling the daily steamflow with ARMA-GARCH (MLE). Estimgtes of the'conditional st.andard deviat,hjLﬁ2

error model are also obtained as a side product with the MLE method.
When there is obvious seasonality present in the residuals

(as in the case of daily streamflow at Tangnaihai), to preserve

5.1 Model building the seasonal variances in the residuals, instead of fitting the
ARCH model to the residual series directly, we fit the ARCH
model to the seasonally standardized residual series, which

Weiss (1984) proposed ARMA models with ARCH errors. is obtained by dividing the residual series by seasonal stan-

This approach is adopted and extended by many researche@érd deviations (i.e. daily standard deviations for daily flow).

for modelling economic time series (e.g. Hauser and Kunst,Therefore, the general ARMA-GARCH model with seasonal

1998; Karanasos, 2001). In the field of geo-sciences, Tobktandard deviations we propose here has the following form

(1996) fitted a GARCH model for the conditional variance

and the conditional standard deviation, in conjunction with ¢ (B)x; = 0(B)e

an AR(2) model for the mean, to model daily mean temper- ) & = 9sZ; 2~N (0, ) ’ @)

ature. In this paper, we propose to use ARMA-GARCH er- | p, — o+ i @iz?; + i Bihi_i

ror (or, for notation convenience, called ARMA-GARCH) i=1 i=1

model for modelling daily streamflow processes.

Fig. 14. PACF of the squared seasonally starndardized residual se,
ries from ARMA(20,1) for daily flow.

whereo  is the seasonal standard deviatior gfs is the sea-
The ARMA-GARCH model may be interpreted as a com- son number depending on which season the tibedongs to.

bination of an ARMA model which is used to model mean For daily seriess ranges from 1 to 366. Other notations are

behaviour, and an ARCH model which is used to modelthe same as in Eqs4and ©).

the ARCH effect in the residual series from the ARMA  The model building procedure proceeds in the following

model. The ARMA model has the form as in E4).(The  steps:
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Fig. 15. A segment ofa) the seasonally standardized residuals from ARMA(20,1)(ahds corresponding conditional standard deviation
sequence estimated with the ARCH(21) model.
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Fig. 16. ACFs of (a) the standardized residuals aflt) squared standardized residuals from the ARMA(20,1)-ARCH(21) model. The
standardization is accomplished by dividing the seasonally standardized residuals from ARMA(20,1) by the conditional standard deviation
estimated with ARCH(21).

1. Logarithmize and deseasonalize the original flow seriesthe squared seasonally standardized residuals are shown in
. _ Fig. 12a and Fig. 14, respectively. According to the AIC, as
2. Fitan ARMA model to the logarithmized and deseason-, e|| 45 the ACF and PACF structure, a GARCH(0,21) model,
alized flow series; i.e. ARCH(21) model, which has the smallest AIC value is

3. Calculate seasonal standard deviations of the residualgelected. Therefore, the prelimilary ARMA-GARCH model

obtained from ARMA model, and seasonally standarg-fitted to the daily streamflow series at Tangnaihai is com-
ize the residuals with the first 8 Fourier harmonics of Posed of an ARMA(20,1) model and an ARCH(21) model.

The model is constructed with statistics software S-Plus
(Zivot and Wang, 2003).
4. Fit a GARCH model to the seasonally standardized

residual series. 5.2 Model diagnostic and modification

the seasonal standard deviations;

For forecasting and simulation, inverse transformation (in-If the ARMA-GARCH model is successful in modelling the
cluding logarithmization and deseasonalization) is neededserial correlation structure in the conditional mean and con-
When forecasting, the ARMA part of the ARMA-GARCH ditional variance, then there should be no autocorrelation left
model forecasts future mean values of the underlying time sein both the residuals and the squared residuals standardized
ries following the traditional approach for ARMA prediction, by the estimated conditional standard deviation.
whereas the GARCH part gives forecasts of future volatility, A segment of the seasonally standardized residual se-
especially over short horizons. ries from the ARMA(20,1) model and its corresponding
Following the above-mentioned steps, a preliminary conditional standard deviation sequence estimated with the
ARMA-GARCH model is fitted to the daily streamflow ARCH(21) model are shown in Figs. 15a and 15b. We
series at Tangnaihai. The ACF and PACF structure ofstandardize the seasonally standardized residual series from
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Fig. 17. ACF and PACF of seasonally standardized residuals from the ARMA(20,1) model.
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Fig. 18. ACFs of(a) the second-residuals afio) the squared second-residuals from the ARMA(20,1)-AR(16) model.

the ARMA(20,1) model by dividing it by the estimated flow of the Umpqua River near Elkton and the Wisconsin
conditional standard deviation sequence. The autocorrelaRiver near Wisconsin Dells, available on the USGS website
tions of the standardized residuals and squared standardizddtp://water.usgs.gov/waterwaldchwhich have strong sea-
residuals are plotted in Fig. 16. It is shown that althoughsonality in the ACF structures of their original series, as well
there is no autocorrelation left in the squared standardizeds their residual series. To handle the problem of the weak
residuals, which means that the ARCH effect has been reeorrelations, an additional ARMA model is needed to model
moved (Fig. 16b), however, in the non-squared standardizethe mean behaviour in the seasonally standardized residuals,
residuals of daily flow significant autocorrelation remains and a GARCH is then fitted to the residuals from this ad-
(Fig. 16a). ditional ARMA model. Therefore, we obtain an extended
Because the GARCH model is designed to deal with theversion of the model in Eq7j as
conditional variance behavior, rather than mean behavior, the
lation in the non-squared residual series must aris ¢ (B)xi = 0(Bex
?rgtrzctzgeseasonally standargized residuals obtained instepd &, . 7Y
/ /
of the ARMA-GARCH model building procedure. Therefore | ¢ %) = eq(B)Z“ Z’lev(o’ he)., ®)
we revisit the seasonally standardized residuals. Itis found| A =ao+ > aizf,i + > Bihi—i
that although the residuals from the ARMA(20,1) model i=1 i=1

present no obvious autocorrelation as shown in Fig. 6a, wealyhere y, is the seasonally standardized residuals from the
but significant autocorrelations in the residuals are revealegirst ARMA model, z, is the residuals (for notation conve-
after the residuals are seasonally standardized, as shown Ryence, we call it second-residuals) from the second ARMA
the ACF and PACF in Fig. 17. We refer to this weak autocor- model fitted toy, .

relation as the hidden weak autocorrelation. An AR(16) model, whose autoregressive order is cho-

The mechanism underlying such weak autocorrelation issen according to AIC, is fitted to the seasonally standard-
not clear yet. Similar phenomena are also found for someazed residuals from the ARMA(20,1) model of the daily flow
other daily streamflow processes (such as the daily streanseries at Tangnaihai, and we obtain a second-residual se-
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Fig. 19. ACFs of (a) the standardized second-residuals éndhe squared standardized second-residuals from the ARMA(20,1)-AR(16)-
ARCH(21) model. The second-residuals are obtained from AR(16) fitted to the seasonally standardized residuals from ARMA(20,1).

ries from this AR(16) model. The autocorrelations of the 1 T o0 _00000000000000000000000000

second-residual series and the squared second-residual seri 0.8 - T e

from the ARMA(20,1)-AR(16) combined model are shown

in Fig. 18. From visual inspection, we find that no autocorre- % 0.6

lation is left in the second-residual series, but there is strong ; 0.4

autocorrelation in the squared second-residual series whicl 0.2 -

indicates the existence of an ARCH effect. I

O T T T T T T
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Because the squared second-residual series has simile.. Lag

ACF and PACF stucture to the seasonally standardized residrig. 20. Engle’s LM test for the standardized second-residuals from
uals from the ARMA(21,0) model, the same structure of the ARMA(20,1)-AR(16)-ARCH(21) model.
the GARCH model, i.e. an ARCH(21) model, is fitted to
the second-residual series. Therefore, the ultimate ARMA-
GARCH model fitted to the daily streamflow at Tangnai- 6 Conclusions
hai is ARMA(20,1)-AR(16)-ARCH(21), composed of an
ARMA(20,1) model fitted to logarithmized and deseasonal-The nonlinear mechanism conditional heteroskedasticity in
ized series, an AR(16) model fitted to the seasonally stanhydrologic processes has not received much attention in the
dardized residuals from the ARMA(20,1) model, and an literature so far. Modelling data with time varying condi-
ARCH(21) model fitted to the second-residuals from thetional variance could be attempted in various ways, includ-
AR(16) model. ing nonparametric and semi-parametric approaches (see Lall,
1995; Sankarasubramanian and Lall, 2003). A parametric
approach with ARCH model is proposed in this paper to de-
We standardize the second-residual series with the conscribe the conditional variance behavior. ARCH-type mod-
ditional standard deviation sequence obtained with theels which originate from econometrics can provide accurate
ARCH(21) model. The autocorrelations of the standard-forecasts of variances. As a consequence, they can be ap-
ized second-residuals and the squared standardized secorfelied to such diverse fields as water management risk anal-
residuals are shown in Fig. 19. Compared with Fig. 16, theysis, prediction uncertainty analysis and streamflow series
autocorrelations are basically removed for both the squaregimulation.
and non-squared series, although the autocorrelation at lag The existence of conditional heteroskedasticity is verified
1 of the standardized second-residuals slightly exceeds thin the residual series from linear models fitted to the daily
5% significance level. The McLeod-Li test and the LM- and monthly streamflow processes of the upper Yellow River
test (shown in Fig. 20) for standardized second-residuals alswith the McLeod-Li test and the Engle’'s Lagrange Multi-
confirm that the ARCH(21) model fits the second-residual se-plier test. It is shown that the ARCH effect is fully caused
ries well. The small lag-1 autocorrelation in the standardizedby seasonal variation in variance for monthly flow, but sea-
second-residual series (shown in Fig. 19) is a hidden autocorsonal variation in variance only partly explains the ARCH
relation covered by conditional heteroskedasticity. This au-effect for daily streamflow. Among three types of conven-
tocorrelation can be further modeled with another AR model,tional seasonal time series model (i.e. SARIMA, deseasonal-
but because the autocorrelation is very small, it could be neized ARMA and PARMA), none of them is efficient enough
glected. to describe the ARCH effect for daily flow, although the
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