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Abstract. Conventional streamflow models operate under
the assumption of constant variance or season-dependent
variances (e.g. ARMA (AutoRegressive Moving Average)
models for deseasonalized streamflow series and PARMA
(Periodic AutoRegressive Moving Average) models for sea-
sonal streamflow series). However, with McLeod-Li test
and Engle’s Lagrange Multiplier test, clear evidences are
found for the existence of autoregressive conditional het-
eroskedasticity (i.e. the ARCH (AutoRegressive Conditional
Heteroskedasticity) effect), a nonlinear phenomenon of the
variance behaviour, in the residual series from linear models
fitted to daily and monthly streamflow processes of the up-
per Yellow River, China. It is shown that the major cause
of the ARCH effect is the seasonal variation in variance of
the residual series. However, while the seasonal variation
in variance can fully explain the ARCH effect for monthly
streamflow, it is only a partial explanation for daily flow.
It is also shown that while the periodic autoregressive mov-
ing average model is adequate in modelling monthly flows,
no model is adequate in modelling daily streamflow pro-
cesses because none of the conventional time series mod-
els takes the seasonal variation in variance, as well as the
ARCH effect in the residuals, into account. Therefore, an
ARMA-GARCH (Generalized AutoRegressive Conditional
Heteroskedasticity) error model is proposed to capture the
ARCH effect present in daily streamflow series, as well as to
preserve seasonal variation in variance in the residuals. The
ARMA-GARCH error model combines an ARMA model
for modelling the mean behaviour and a GARCH model for
modelling the variance behaviour of the residuals from the
ARMA model. Since the GARCH model is not followed
widely in statistical hydrology, the work can be a useful ad-
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dition in terms of statistical modelling of daily streamflow
processes for the hydrological community.

1 Introduction to autoregressive conditional het-
eroskedasticity

When modelling hydrologic time series, we usually focus on
modelling and predicting the mean behaviour, or the first
order moments, and are rarely concerned with the condi-
tional variance, or their second order moments, although
unconditional season-dependent variances are usually con-
sidered. The increased importance played by risk and un-
certainty considerations in water resources management and
flood control practice, as well as in modern hydrology the-
ory, however, has necessitated the development of new time
series techniques that allow for the modelling of time varying
variances.

ARCH-type models, which originate from econometrics,
give us an appropriate framework for studying this prob-
lem. Volatility (i.e. time-varying variance) clustering, in
which large changes tend to follow large changes, and
small changes tend to follow small changes, has been well
recognized in financial time series. This phenomenon is
called conditional heteroskedasticity, and can be modeled by
ARCH-type models, including the ARCH model proposed
by Engle (1982) and the later extension GARCH (general-
ized ARCH) model proposed by Bollerslev (1986), etc. Ac-
cordingly, when a time series exhibits autoregressive condi-
tionally heteroskedasticity, we say it has the ARCH effect or
GARCH effect. ARCH-type models have been widely used
to model the ARCH effect for economic and financial time
series.

The ARCH-type model is a nonlinear model that includes
past variances in the explanation of future variances. ARCH-
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Figure 1 Daily streamflow (m3/s) of the upper Yellow River at Tangnaihai 

0
200
400
600
800

1000
1200
1400
1600

1-Jan 2-Mar 1-May 30-Jun 29-Aug 28-Oct 27-Dec
Date

D
is

ch
ar

ge
 (m

3 /S
) daily mean

standard deviation

 

Figure 2 Variation in daily mean and standard deviation of the streamflow at Tangnaihai 
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Figure 3 ACF and PACF of deseasonalized daily flow series 

Fig. 1. Daily streamflow (m3/s) of the upper Yellow River at Tang-
naihai.

type models can generate accurate forecasts of future volatil-
ity, especially over short horizons, therefore providing a bet-
ter estimate of the forecast uncertainty which is valuable for
water resource management and flood control. And they take
into account excess kurtosis (i.e. fat tail behaviour), which
is common in hydrologic processes. Therefore, ARCH-
type models could be very useful for hydrologic time se-
ries modelling. Some authors propose new models to repro-
duce the asymmetric periodic behaviour with large fluctua-
tions around large streamflow and small fluctuations around
small streamflow (e.g. Livina et al., 2003), which basically
can be handled with those conventional time series mod-
els that have taken season-dependent variance into account,
such as PARMA models and deseasonalized ARMA models.
However, little attention has been paid so far by the hydro-
logic community to test and model the possible presence of
the ARCH effect with which large fluctuations tend to follow
large fluctuations, and small fluctuations tend to follow small
fluctuations in streamflow series.

In this paper, we will take the daily and monthly stream-
flow of the upper Yellow River at Tangnaihai in China as
case study hydrologic time series to test for the existence
of the ARCH effect, and propose an ARMA-GARCH error
model for daily flow series. The paper is organized as fol-
lows. First, the method of testing conditional heteroskedas-
ticity of streamflow process is described. Then, the causes of
the ARCH effect and the inadequacy of commonly used sea-
sonal time series models for modelling streamflow are dis-
cussed. Finally, an ARMA-GARCH error model is proposed
for capturing the ARCH effect existing in daily streamflow
series.

2 Case study area and data set

The case study area is the headwaters of the Yellow River,
located in the northeastern Tibet Plateau. In this area, the
discharge gauging station Tangnaihai has a 133 650 km2 con-
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Figure 3 ACF and PACF of deseasonalized daily flow series 

Fig. 2. Variation in daily mean and standard deviation of the stream-
flow at Tangnaihai.

tributing watershed, including a permanently snow-covered
area of 192 km2. The length of the main channel of this wa-
tershed is over 1500 km. Most of the area is 3000∼6000
meters above sea level. Snowmelt water composes about 5%
of total runoff. Most rain falls in summer. Because the water-
shed is partly permanently snow-covered and sparsely pop-
ulated, without any large-scale hydraulic works, it is fairly
pristine. The average annual runoff volume (during 1956–
2000) at Tangnaihai gauging station is 20.4 billion cubic me-
ters, about 35% of the whole Yellow River Basin, and it is the
major runoff producing area of the Yellow River basin. Daily
average streamflow at Tangnaihai has been recorded since 1
January 1956. Monthly series is obtained from daily data by
taking the average of daily discharges in every month. In this
study, data from 1 January 1956 to 31 December 2000 are
used. The daily streamflow series from 1956 to 2000 is plot-
ted in Fig. 1, and variations in the daily mean discharge and
daily standard deviation of the streamflow at Tangnaihai are
shown in Fig. 2.

3 Tests for the ARCH effect of streamflow process

The detection of the ARCH effect in a streamflow series is
actually a test of serial independence applied to the serially
uncorrelated fitting error of some model, usually a linear au-
toregressive (AR) model. We assume that linear serial depen-
dence inside the original series is removed with a well-fitted,
pre-whitening model; any remaining serial dependence must
be due to some nonlinear generating mechanism which is
not captured by the model. Here, the nonlinear mechanism
we are concerned with is the conditional heteroskedastic-
ity. We will show that the nonlinear mechanism remaining
in the pre-whitened streamflow series, namely the residual
series, can be well interpreted as autoregressive conditional
heteroskedasticity.

3.1 Linear ARMA models fitted to daily and monthly flows

Three types of seasonal time series models are commonly
used to model hydrologic processes which usually have
strong seasonality (Hipel and McLeod, 1994): 1) seasonal
autoregressive integrated moving average (SARIMA) mod-
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Figure 3 ACF and PACF of deseasonalized daily flow series Fig. 3. ACF and PACF of deseasonalized daily flow series.
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Figure 4 ACF and PACF of deseasonalized monthly flow series 
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Figure 5 Segments of the residual series from (a) ARMA(20,1) for daily flow and (b) AR(4) 

for monthly flow at Tangnaihai.  
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Figure 6 ACFs of residuals from (a) ARMA(20,1) model for daily flow and (b) AR(4) model 

for monthly flow at Tangnaihai 
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Fig. 4. ACF and PACF of deseasonalized monthly flow series.

els; 2) deseasonalized ARMA models; and 3) periodic
ARMA models. The deseasonalized modelling approach is
adopted in this study. The procedure of fitting deseasonalized
ARMA models to daily and monthly streamflow at Tang-
naihai includes two steps. First, logarithmize both flow se-
ries, and deseasonalize them by subtracting the seasonal (e.g.
daily or monthly) mean values and dividing by the seasonal
standard deviations of the logarithmized series. To alleviate
the stochastic fluctuations of the daily means and standard
deviations, we smooth them with first 8 Fourier harmonics
before using them for standardization. Then, according to the
ACF (AutoCorrelation Function) and PACF (Periodic Auto-
Correlation Function) structures of the two series, as well as
the model selection criterion AIC, two linear ARMA-type
models (one ARMA(20,1) and one AR(4)) are fitted to the
logarithmized and deseasonalized daily and monthly flow se-
ries, respectively, following the model construction proce-
dures suggested by Box and Jenkins (1976). Figures 3 and
4 show the ACF and PACF of the deseasonalized daily and
monthly series. Figure 5 shows parts of the two residual se-
ries obtained from the two models.

Before applying ARCH tests to the residual series, to en-
sure that the null hypothesis of no ARCH effect is not re-
jected due to the failure of the pre-whitening linear models,
we must check the goodness-of-fit of the linear models.

Firstly, we inspect the ACF of the residuals. It is well-
known that for random and independent series of lengthn,
the lagk autocorrelation coefficient is normally distributed
with a mean of zero and a variance of 1/n, and the 95%
confidence limits are given by±1.96/

√
n. The ACF plots

in Fig. 6 show that there is no significant autocorrelation left
in the residuals from both ARMA-type models for daily and
monthly flow.

Then, more formally, we apply the Ljung-Box test (Ljung
and Box, 1978) to the residual series, which tests whether
the firstL autocorrelationŝr2

k (ε
2) (k = 1, ...,L) from a pro-

cess are collectively small in magnitude. Suppose we have
the firstL autocorrelationŝrk(ε) (k = 1, ..., L) from any
ARMA(p, d, q) process. For a fixed sufficiently largeL,
the usual Ljung-BoxQ-statistic is given by

Q = N(N + 2)
L∑
k=1

r̂2
k (ε)

N − k
, (1)

whereN = sample size,L= the number of autocorrelations
included in the statistic, and̂r2

k is the squared sample auto-
correlation of residual series{εt } at lag k. Under the null
hypothesis of model adequacy, the test statistic is asymp-
totically χ2(L−p−q) distributed. Thus, we would reject
the null hypothesis at levelα if the value ofQ exceeds the
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Figure 4 ACF and PACF of deseasonalized monthly flow series 
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Fig. 5. Segments of the residual series from(a) ARMA(20,1) for daily flow and(b) AR(4) for monthly flow at Tangnaihai.
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Figure 5 Segments of the residual series from (a) ARMA(20,1) for daily flow and (b) AR(4) 

for monthly flow at Tangnaihai.  
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Figure 6 ACFs of residuals from (a) ARMA(20,1) model for daily flow and (b) AR(4) model 

for monthly flow at Tangnaihai 
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Fig. 6. ACFs of residuals from(a) the ARMA(20,1) model for daily flow and(b) the AR(4) model for monthly flow at Tangnaihai.

(1−α)-quantile of theχ2(L−p−q) distribution. The Ljung-
Box test results for ARMA(20,1) and AR(4) are shown in
Fig. 7. The p-values’ exceedance of 0.05 indicates the ac-
ceptance of the null hypothesis of model adequacy at signif-
icance level 0.05.

However, while the residuals seem statistically uncorre-
lated according to ACF and PACF shown in Fig. 6, they
are not identically distributed from visual inspection of the
Fig. 5, that is, the residuals are not independent and identi-
cally distributed (i.i.d.) through time. There is a tendency,
especially for daily flow, that large (small) absolute values of
the residual process are followed by other large (small) val-
ues of unpredictable sign, which is a common behaviour of
GARCH processes. Granger and Andersen (1978) found that
some of the series modelled by Box and Jenkins (1976) ex-
hibit autocorrelated squared residuals even though the resid-
uals themselves do no seem to be correlated over time, and
therefore suggested that the ACF of the squared time series
could be useful in identifying nonlinear time series. Boller-
slev (1986) stated that the ACF and PACF of squared process
are useful in identifying and checking GARCH behaviour.

Figure 8 shows the ACFs of the squared residual series
from the ARMA(20,1) model for daily flow and the AR(4)
model for monthly flow at Tangnaihai. It is shown that al-
though the residuals are almost uncorrelated, as shown in

Fig. 6, the squared residual series are autocorrelated, and the
ACF structures of both squared residual series exhibit strong
seasonality. This indicates that the variance of residual series
is conditional on its past history, namely, the residual series
may exhibit an ARCH effect.

There are some formal methods to test for the ARCH
effect of a process, such as the McLeod-Li test (McLeod
and Li, 1983), the Engle’s Lagrange Multiplier test (Engle,
1982), the BDS test (Brock et. al., 1996), etc. McLeod-
Li test and Engle’s Lagrange Multiplier test are used here
to check the existence of an ARCH effect in the streamflow
series.

3.2 McLeod-Li test for the ARCH effect

McLeod and Li (1983) proposed a formal test for ARCH
effect based on the Ljung-Box test. It looks at the auto-
correlation function of the squares of the pre-whitened data,
and tests whether the firstL autocorrelations for the squared
residuals are collectively small in magnitude.

Similar to Eq. (1), for fixed sufficiently largeL, the Ljung-
BoxQ-statistic of Mcleod-Li test is given by

Q = N(N + 2)
L∑
k=1

r̂2
k (ε

2)

N − k
, (2)
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Figure 7 Ljung-Box lack-of-fit tests for (a) ARMA(20,1) model for daily flow and (b) AR(4) 

model for monthly flow.  
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Figure 8 ACFs of the squared residuals from (a) ARMA(20,1) model for daily flow and (b) 

AR(4) model for monthly flow at Tangnaihai 
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Figure 9 McLeod-Li test for the residuals from (a) ARMA(20,1) model for daily flow and 

(b) AR(4) model for monthly flow 
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Fig. 7. Ljung-Box lack-of-fit tests for(a) the ARMA(20,1) model for daily flow and(b) the AR(4) model for monthly flow.
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AR(4) model for monthly flow at Tangnaihai 

 

0
0. 01
0. 02
0. 03
0. 04
0. 05
0. 06

0 5 10 15 20 25 30
Lag

p-
va

lu
e

0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8

0 5 10 15 20 25 30
Lag

p-
va

lu
e

 

Figure 9 McLeod-Li test for the residuals from (a) ARMA(20,1) model for daily flow and 
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Fig. 8. ACFs of the squared residuals from(a) the ARMA(20,1) model for daily flow and(b) the AR(4) model for monthly flow at Tangnaihai.

whereN is the sample size, and̂r2
k is the squared sample

autocorrelation of squared residual series at lagk. Under
the null hypothesis of a linear generating mechanism for the
data, namely, no ARCH effect in the data, the test statistic is
asymptoticallyχ2(L) distributed. Figure 9 shows the results
of the McLeod-Li test for daily and monthly flow. It illus-
trates that the null hypothesis of no ARCH effect is rejected
for both daily and monthly flow series.

3.3 Engle’s Lagrange Multiplier test for the ARCH effect

Since the ARCH model has the form of an autoregres-
sive model, Engle (1982) proposed the Lagrange Multiplier
(LM) test, in order to test for the existence of ARCH be-
haviour based on the regression. The test statistic is given
by TR2, whereR is the sample multiple correlation coef-
ficient computed from the regression ofε2

t on a constant
andε2

t−1,. . . ,ε2
t−q , andT is the sample size. Under the null

hypothesis that there is no ARCH effect, the test statistic
is asymptotically distributed as chi-square distribution with
q degrees of freedom. As Bollerslev (1986) suggested, it
should also have power against GARCH alternatives.

Figure 10 shows Engle’s LM test results for the residu-
als from the ARMA(20,1) model for daily flow and from the
AR(4) model for monthly flow. The results also firmly in-
dicate the existence of an ARCH effect in both the residual
series.

One point that should be noticed is that although Figs. 8b,
9b and 10b show that for monthly flow, autocorrelations at

lags less than 4 are removed by the AR(4) model, when we
take autocorrelations at longer lags into consideration, sig-
nificant autocorrelations remain and the null hypothesis of
no ARCH effect is rejected. Because it is required for the
McLeod-Li test to use sufficiently largeL, namely, a suf-
ficient number of autocorrelations to calculate the Ljung-
Box statistic (typically around 20), we still consider that the
monthly flow has the ARCH effect.

On the whole, evidences are clear with the McLeod-Li test
and Engle’s LM test about the existence of conditional het-
eroskedasticity in the residual series from linear models fitted
to the logarithmized and deseasonalized daily and monthly
streamflow processes of the upper Yellow River at Tangnai-
hai.

4 Discussion of the causes of ARCH effects and inade-
quacy of commonly used seasonal time series models

4.1 Causes of ARCH effects in the residuals from ARMA-
type models for daily and monthly flow

From the above analyses, it is clear that although the resid-
uals are serially uncorrelated, they are not independent
through time. At the mean time, we notice that seasonal-
ity dominates autocorrelation structures of squared residual
series for both daily and monthly flow processes (as shown
in Fig. 8). This suggests that there are seasonal variations in
the variance of the residual series, and we should standardize
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Figure 8 ACFs of the squared residuals from (a) ARMA(20,1) model for daily flow and (b) 

AR(4) model for monthly flow at Tangnaihai 
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Figure 9 McLeod-Li test for the residuals from (a) ARMA(20,1) model for daily flow and 

(b) AR(4) model for monthly flow 
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Fig. 9. McLeod-Li test for the residuals from(a) the ARMA(20,1) model for daily flow and(b) the AR(4) model for monthly flow.
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Figure 10 Engle’s LM test for residuals from (a) ARMA(20,1) model for daily flow and 

(b) AR(4) model for monthly flow 
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Figure 11 Seasonal standard deviations (SD) of the residuals form (a) ARMA(20,1) model for 

daily flow and (b) AR(4) model for monthly flow 

(Note: the smoothed line in Figure 11(a) is given by the first 8 Fourier harmonics of the 

seasonal SD series.) 
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Figure 12 ACFs of squared seasonally standardized residuals from (a) ARMA(20,1) model 

for daily flow and (b) AR(4) model for monthly flow 
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Fig. 10. Engle’s LM test for residuals from(a) the ARMA(20,1) model for daily flow and(b) the AR(4) model for monthly flow.

the residual series from linear models with seasonal standard
deviations of the residuals first, then look at the standard-
ized series to check whether seasonal variances can explain
ARCH effects.

Seasonal standard deviations of the residual series from
the ARMA(20,1) model for daily flow and the AR(4) model
for monthly flow are calculated and shown in Figs. 11a and
11b. They are used to standardize the residual series from
the ARMA(20,1) model and the AR(4) model. Figure 12
shows the ACFs of the squared standardized residual series
of daily and monthly flow. It is illustrated that, after sea-
sonal standardized autocorrelation, as well as the seasonality
in the squared standardized residual series for monthly flow
is basically removed (Fig. 12b), the significant autocorrela-
tion still exists in the squared standardized residual series for
daily flow (Fig. 12a), despite the fact that the autocorrela-
tions are significantly reduced compared with Fig. 8a and the
seasonality in the ACF structure is removed. This means that
the seasonality, as well as the autocorrelation in the squared
residuals from the AR model of monthly flow series is basi-
cally caused by seasonal variances. But seasonal variances
only explain partly the autocorrelation in the squared residu-
als of daily flow series.

The residual series of daily flow and monthly flow stan-
dardized by seasonal standard deviation are also tested for
ARCH effects with the McLeod-Li test and Engle’s LM
test. Figure 13 shows that the seasonally standardized
residual series of daily flow still cannot pass the LM test
(Fig. 13a), whereas the seasonally standardized residual se-
ries of monthly flow pass the LM test with highp-values
(Fig. 13b). The McLeod-Li test gives similar results.

From the above analyses, it is clear that the ARCH effect is
fully caused by seasonal variances for monthly flow, but only
partly for daily flow. Other causes, besides the seasonal vari-
ation in variance, of the ARCH effect in daily flow may in-
clude the perturbations of the temperature fluctuations which
is an influential factor for snowmelt, as well as evapotran-
spiration, and the precipitation variation which is the domi-
nant factor for streamflow processes. As reported by Miller
(1979), when modelling a daily average streamflow series,
the residuals from a fitted AR(4) model signaled white-noise
errors, but the squared residuals signaled bilinearity. When
precipitation covariates were included in the model, Miller
found that neither the residuals nor the squared residuals sig-
naled any problems. While we agree that the autocorrela-
tion existing in the squared residuals is basically caused by
a precipitation process, we want to show that the autocorre-
lation in the squared residuals can be well described by an
ARCH model, which is very close to the bilinear model (En-
gle, 1982).

4.2 Inadequacy of commonly used seasonal time series
models for modelling streamflow processes

As mentioned in Sect. 3.1, SARIMA models, deseasonal-
ized ARMA models and periodic models are commonly used
to model hydrologic processes (Hipel and McLeod, 1994).
Given a time series (xt ), the general form of SARIMA model,
denoted by SARIMA(p,d,q)×(P,D,Q)S , is

φ(B)8(Bs)∇d
∇
D
s xt = θ(B)2(Bs)εt , (3)

whereφ(B) andθ(B) of ordersp andq represent the ordi-
nary autoregressive and moving average components;8(Bs)
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Figure 10 Engle’s LM test for residuals from (a) ARMA(20,1) model for daily flow and 

(b) AR(4) model for monthly flow 
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Figure 11 Seasonal standard deviations (SD) of the residuals form (a) ARMA(20,1) model for 

daily flow and (b) AR(4) model for monthly flow 

(Note: the smoothed line in Figure 11(a) is given by the first 8 Fourier harmonics of the 

seasonal SD series.) 
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Figure 12 ACFs of squared seasonally standardized residuals from (a) ARMA(20,1) model 

for daily flow and (b) AR(4) model for monthly flow 
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Fig. 11. Seasonal standard deviations (SD) of the residuals from(a) the ARMA(20,1) model for daily flow and(b) the AR(4) model for
monthly flow (note: the smoothed line in (a) is given by the first 8 Fourier harmonics of the seasonal SD series).
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Figure 10 Engle’s LM test for residuals from (a) ARMA(20,1) model for daily flow and 

(b) AR(4) model for monthly flow 
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Figure 11 Seasonal standard deviations (SD) of the residuals form (a) ARMA(20,1) model for 

daily flow and (b) AR(4) model for monthly flow 
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Figure 12 ACFs of squared seasonally standardized residuals from (a) ARMA(20,1) model 

for daily flow and (b) AR(4) model for monthly flow 

(a) (b) 

(a) (b) 

(a) (b)

Fig. 12. ACFs of squared seasonally standardized residuals from(a) the ARMA(20,1) model for daily flow and(b) the AR(4) model for
monthly flow.

and2(Bs) of ordersP andQ represent the seasonal autore-
gressive and moving average components;∇

d=(1−B)d and
∇
D
S =(1−Bs)D are the ordinary and seasonal difference com-

ponents.

The general form of the ARMA(p, q) model fitted to de-
seasonalized series is

φ(B)xt = θ(B)εt . (4)

From the model equations we know that although the sea-
sonal variation in the variance present in the original time
series is basically dealt with well by the deseasonalized ap-
proach, the seasonal variation in variance in the residual se-
ries is not considered by either of the two models, because in
both cases the innovation seriesεt is assumed to be i.i.d.N(0,
σ 2). Therefore, both SARIMA models and deseasonalized
models cannot capture the ARCH effect that we observed in
the residual series.

In contrast, the periodic model, which is basically a group
of ARMA models fitted to separate seasons, allows for sea-
sonal variances in not only the original series but also the
residual series. Taking the special case PAR(p) model (pe-
riodic autoregressive model of orderp) as an example of
a PARMA model, given a hydrological time seriesxn,s , in
whichn defines the year ands defines the season (could rep-

resent a day, week, month or season), we have the following
PAR(p) model (Salas, 1993):

xn,s = µs +

p∑
j=1

φj,s(xv,s−j − µs−j )+ εn,s, (5)

whereεn,s is an uncorrelated normal variable with mean zero
and varianceσ 2

s . For daily streamflow series, to make the
model parsimonious, we can cluster the days in the year
into several groups and fit separate AR models to separate
groups (Wang et al., 2004). Periodic models would per-
form better than the SARIMA model and the deseasonal-
ized ARMA model for capturing the ARCH effect, because
it takes season-varying variances into account. However,
as analyzed in Sect. 4.1, while considering seasonal vari-
ances could be sufficient for describing the ARCH effect in
monthly flow series because the ARCH effect in monthly
flow series is fully caused by seasonal variances, it is still
insufficient to fully capture the ARCH effect in daily flow
series.

In summary, while the PARMA model is adequate for
modelling the variance behaviour for monthly flow, none of
the commonly used seasonal models is efficient enough to
describe the ARCH effect for daily flow, although PARMA
can partly describe it by considering seasonal variances. It
is necessary to apply the GARCH model to achieve the pur-
pose.
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Figure 13 Engle’s LM test for seasonally standardized residuals from (a) ARMA(20,1) model 

for daily flow and (b) from AR(4) model for monthly flow 
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Figure 14 PACF of the squared seasonally starndardized residual series from ARMA(20,1) 

for daily flow 
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Figure 15 A segment of (a) the seasonally standardized residuals from ARMA(20,1) and (b) 

its corresponding conditional standard deviation sequence estimated with ARCH(21) model 
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Fig. 13.Engle’s LM test for seasonally standardized residuals from(a) the ARMA(20,1) model for daily flow and(b) from the AR(4) model
for monthly flow.
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Figure 13 Engle’s LM test for seasonally standardized residuals from (a) ARMA(20,1) model 

for daily flow and (b) from AR(4) model for monthly flow 
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Figure 14 PACF of the squared seasonally starndardized residual series from ARMA(20,1) 

for daily flow 
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Figure 15 A segment of (a) the seasonally standardized residuals from ARMA(20,1) and (b) 

its corresponding conditional standard deviation sequence estimated with ARCH(21) model 
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Fig. 14. PACF of the squared seasonally starndardized residual se-
ries from ARMA(20,1) for daily flow.

5 Modelling the daily steamflow with ARMA-GARCH
error model

5.1 Model building

Weiss (1984) proposed ARMA models with ARCH errors.
This approach is adopted and extended by many researchers
for modelling economic time series (e.g. Hauser and Kunst,
1998; Karanasos, 2001). In the field of geo-sciences, Tol
(1996) fitted a GARCH model for the conditional variance
and the conditional standard deviation, in conjunction with
an AR(2) model for the mean, to model daily mean temper-
ature. In this paper, we propose to use ARMA-GARCH er-
ror (or, for notation convenience, called ARMA-GARCH)
model for modelling daily streamflow processes.

The ARMA-GARCH model may be interpreted as a com-
bination of an ARMA model which is used to model mean
behaviour, and an ARCH model which is used to model
the ARCH effect in the residual series from the ARMA
model. The ARMA model has the form as in Eq. (4). The

GARCH(p, q) model has the form (Bollerslev, 1986)
εt |ψt−1 ∼ N(0, ht )

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i
, (6)

where,εt denotes a real-valued discrete-time stochastic pro-
cess, andψ t the available information set,p ≥0, q >0,
α0 >0, αi ≥0, β i ≥0. Whenp=0, the GARCH(p,q) model
reduces to the ARCH(q) model. Under the GARCH(p, q)
model, the conditional variance ofεt , ht , depends on the
squared residuals in the previousq time steps, and the condi-
tional variance in the previousp time steps. Since GARCH
models can be treated as ARMA models for squared residu-
als, the order of GARCH can be determined with the method
for selecting the order of ARMA models, and traditional
model selection criteria, such as Akaike information criterion
(AIC) and Bayesian information criterion (BIC), can also be
used for selecting models. The unknown model parameters
αi (i = 0, · · · , q) andβj (j= 1, · · · , p) can be es-
timated using (conditional) maximum likelihood estimation
(MLE). Estimates of the conditional standard deviationh1/2

t

are also obtained as a side product with the MLE method.
When there is obvious seasonality present in the residuals

(as in the case of daily streamflow at Tangnaihai), to preserve
the seasonal variances in the residuals, instead of fitting the
ARCH model to the residual series directly, we fit the ARCH
model to the seasonally standardized residual series, which
is obtained by dividing the residual series by seasonal stan-
dard deviations (i.e. daily standard deviations for daily flow).
Therefore, the general ARMA-GARCH model with seasonal
standard deviations we propose here has the following form


φ(B)xt = θ(B)εt
εt = σszt , zt∼N(0, ht )

ht = α0 +

q∑
i=1

αiz
2
t−i +

p∑
i=1

βiht−i

, (7)

whereσ s is the seasonal standard deviation ofεt , s is the sea-
son number depending on which season the timet belongs to.
For daily series,s ranges from 1 to 366. Other notations are
the same as in Eqs. (4) and (6).

The model building procedure proceeds in the following
steps:
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Figure 13 Engle’s LM test for seasonally standardized residuals from (a) ARMA(20,1) model 

for daily flow and (b) from AR(4) model for monthly flow 
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Figure 14 PACF of the squared seasonally starndardized residual series from ARMA(20,1) 

for daily flow 

0 200 400 600 800 1000

-4
-2

0
2

4
6

Day

R
es

id
ua

ls

  
0 200 400 600 800 1000

1.
0

1.
5

2.
0

2.
5

3.
0

Day

C
on

di
tio

na
l s

ta
nd

ar
d 

de
vi

at
io

n

 

Figure 15 A segment of (a) the seasonally standardized residuals from ARMA(20,1) and (b) 

its corresponding conditional standard deviation sequence estimated with ARCH(21) model 
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Fig. 15. A segment of(a) the seasonally standardized residuals from ARMA(20,1) and(b) its corresponding conditional standard deviation
sequence estimated with the ARCH(21) model.
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Figure 16 ACFs of (a) the standardized residuals and (b) squared standardized residuals from 

ARMA(20,1)-ARCH(21) model. The standardization is accomplished by dividing the 

seasonally standardized residuals from ARMA(20,1) by the conditional standard deviation 

estimated with ARCH(21). 
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Figure 17 ACF and PACF of seasonally standardized residuals from ARMA(20,1) model 
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Figure 18 ACFs of (a) the second-residuals and (b) the squared second-residuals from the 

ARMA(20,1)-AR(16) model 

(a) (b) 

(a) (b) 

Fig. 16. ACFs of (a) the standardized residuals and(b) squared standardized residuals from the ARMA(20,1)-ARCH(21) model. The
standardization is accomplished by dividing the seasonally standardized residuals from ARMA(20,1) by the conditional standard deviation
estimated with ARCH(21).

1. Logarithmize and deseasonalize the original flow series;

2. Fit an ARMA model to the logarithmized and deseason-
alized flow series;

3. Calculate seasonal standard deviations of the residuals
obtained from ARMA model, and seasonally standard-
ize the residuals with the first 8 Fourier harmonics of
the seasonal standard deviations;

4. Fit a GARCH model to the seasonally standardized
residual series.

For forecasting and simulation, inverse transformation (in-
cluding logarithmization and deseasonalization) is needed.
When forecasting, the ARMA part of the ARMA-GARCH
model forecasts future mean values of the underlying time se-
ries following the traditional approach for ARMA prediction,
whereas the GARCH part gives forecasts of future volatility,
especially over short horizons.

Following the above-mentioned steps, a preliminary
ARMA-GARCH model is fitted to the daily streamflow
series at Tangnaihai. The ACF and PACF structure of

the squared seasonally standardized residuals are shown in
Fig. 12a and Fig. 14, respectively. According to the AIC, as
well as the ACF and PACF structure, a GARCH(0,21) model,
i.e. ARCH(21) model, which has the smallest AIC value is
selected. Therefore, the prelimilary ARMA-GARCH model
fitted to the daily streamflow series at Tangnaihai is com-
posed of an ARMA(20,1) model and an ARCH(21) model.
The model is constructed with statistics software S-Plus
(Zivot and Wang, 2003).

5.2 Model diagnostic and modification

If the ARMA-GARCH model is successful in modelling the
serial correlation structure in the conditional mean and con-
ditional variance, then there should be no autocorrelation left
in both the residuals and the squared residuals standardized
by the estimated conditional standard deviation.

A segment of the seasonally standardized residual se-
ries from the ARMA(20,1) model and its corresponding
conditional standard deviation sequence estimated with the
ARCH(21) model are shown in Figs. 15a and 15b. We
standardize the seasonally standardized residual series from
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Figure 17 ACF and PACF of seasonally standardized residuals from ARMA(20,1) model 
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Figure 18 ACFs of (a) the second-residuals and (b) the squared second-residuals from the 

ARMA(20,1)-AR(16) model 
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Fig. 17. ACF and PACF of seasonally standardized residuals from the ARMA(20,1) model.
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Figure 18 ACFs of (a) the second-residuals and (b) the squared second-residuals from the 
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Fig. 18. ACFs of(a) the second-residuals and(b) the squared second-residuals from the ARMA(20,1)-AR(16) model.

the ARMA(20,1) model by dividing it by the estimated
conditional standard deviation sequence. The autocorrela-
tions of the standardized residuals and squared standardized
residuals are plotted in Fig. 16. It is shown that although
there is no autocorrelation left in the squared standardized
residuals, which means that the ARCH effect has been re-
moved (Fig. 16b), however, in the non-squared standardized
residuals of daily flow significant autocorrelation remains
(Fig. 16a).

Because the GARCH model is designed to deal with the
conditional variance behavior, rather than mean behavior, the
autocorrelation in the non-squared residual series must arise
from the seasonally standardized residuals obtained in step 3
of the ARMA-GARCH model building procedure. Therefore
we revisit the seasonally standardized residuals. It is found
that although the residuals from the ARMA(20,1) model
present no obvious autocorrelation as shown in Fig. 6a, weak
but significant autocorrelations in the residuals are revealed
after the residuals are seasonally standardized, as shown by
the ACF and PACF in Fig. 17. We refer to this weak autocor-
relation as the hidden weak autocorrelation.

The mechanism underlying such weak autocorrelation is
not clear yet. Similar phenomena are also found for some
other daily streamflow processes (such as the daily stream-

flow of the Umpqua River near Elkton and the Wisconsin
River near Wisconsin Dells, available on the USGS website
http://water.usgs.gov/waterwatch), which have strong sea-
sonality in the ACF structures of their original series, as well
as their residual series. To handle the problem of the weak
correlations, an additional ARMA model is needed to model
the mean behaviour in the seasonally standardized residuals,
and a GARCH is then fitted to the residuals from this ad-
ditional ARMA model. Therefore, we obtain an extended
version of the model in Eq. (7) as

φ(B)xt = θ(B)εt
εt = σsyt
φ′(B)yt = θ ′(B)zt , zt∼N(0, ht )

ht = α0 +

q∑
i=1

αiz
2
t−i +

p∑
i=1

βiht−i

, (8)

whereyt is the seasonally standardized residuals from the
first ARMA model, zt is the residuals (for notation conve-
nience, we call it second-residuals) from the second ARMA
model fitted toyt .

An AR(16) model, whose autoregressive order is cho-
sen according to AIC, is fitted to the seasonally standard-
ized residuals from the ARMA(20,1) model of the daily flow
series at Tangnaihai, and we obtain a second-residual se-

http://water.usgs.gov/waterwatch
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Fig. 19. ACFs of (a) the standardized second-residuals and(b) the squared standardized second-residuals from the ARMA(20,1)-AR(16)-
ARCH(21) model. The second-residuals are obtained from AR(16) fitted to the seasonally standardized residuals from ARMA(20,1).

ries from this AR(16) model. The autocorrelations of the
second-residual series and the squared second-residual series
from the ARMA(20,1)-AR(16) combined model are shown
in Fig. 18. From visual inspection, we find that no autocorre-
lation is left in the second-residual series, but there is strong
autocorrelation in the squared second-residual series which
indicates the existence of an ARCH effect.

Because the squared second-residual series has similar
ACF and PACF stucture to the seasonally standardized resid-
uals from the ARMA(21,0) model, the same structure of
the GARCH model, i.e. an ARCH(21) model, is fitted to
the second-residual series. Therefore, the ultimate ARMA-
GARCH model fitted to the daily streamflow at Tangnai-
hai is ARMA(20,1)-AR(16)-ARCH(21), composed of an
ARMA(20,1) model fitted to logarithmized and deseasonal-
ized series, an AR(16) model fitted to the seasonally stan-
dardized residuals from the ARMA(20,1) model, and an
ARCH(21) model fitted to the second-residuals from the
AR(16) model.

We standardize the second-residual series with the con-
ditional standard deviation sequence obtained with the
ARCH(21) model. The autocorrelations of the standard-
ized second-residuals and the squared standardized second-
residuals are shown in Fig. 19. Compared with Fig. 16, the
autocorrelations are basically removed for both the squared
and non-squared series, although the autocorrelation at lag
1 of the standardized second-residuals slightly exceeds the
5% significance level. The McLeod-Li test and the LM-
test (shown in Fig. 20) for standardized second-residuals also
confirm that the ARCH(21) model fits the second-residual se-
ries well. The small lag-1 autocorrelation in the standardized
second-residual series (shown in Fig. 19) is a hidden autocor-
relation covered by conditional heteroskedasticity. This au-
tocorrelation can be further modeled with another AR model,
but because the autocorrelation is very small, it could be ne-
glected.
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Figure 20 Engle’s LM test for the standardized second-residuals from the ARMA(20,1)-
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Fig. 20.Engle’s LM test for the standardized second-residuals from
the ARMA(20,1)-AR(16)-ARCH(21) model.

6 Conclusions

The nonlinear mechanism conditional heteroskedasticity in
hydrologic processes has not received much attention in the
literature so far. Modelling data with time varying condi-
tional variance could be attempted in various ways, includ-
ing nonparametric and semi-parametric approaches (see Lall,
1995; Sankarasubramanian and Lall, 2003). A parametric
approach with ARCH model is proposed in this paper to de-
scribe the conditional variance behavior. ARCH-type mod-
els which originate from econometrics can provide accurate
forecasts of variances. As a consequence, they can be ap-
plied to such diverse fields as water management risk anal-
ysis, prediction uncertainty analysis and streamflow series
simulation.

The existence of conditional heteroskedasticity is verified
in the residual series from linear models fitted to the daily
and monthly streamflow processes of the upper Yellow River
with the McLeod-Li test and the Engle’s Lagrange Multi-
plier test. It is shown that the ARCH effect is fully caused
by seasonal variation in variance for monthly flow, but sea-
sonal variation in variance only partly explains the ARCH
effect for daily streamflow. Among three types of conven-
tional seasonal time series model (i.e. SARIMA, deseasonal-
ized ARMA and PARMA), none of them is efficient enough
to describe the ARCH effect for daily flow, although the
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PARMA model is enough for monthly flow by considering
season-dependent variances. Therefore, to fully capture the
ARCH effect, as well as the seasonal variances inspected in
the residuals from linear ARMA models fitted to the daily
flow series, the ARMA-GARCH error model with seasonal
standard deviations is proposed. The ARMA-GARCH model
is basically a combination of an ARMA model which is used
to model mean behaviour, and a GARCH model to model
the ARCH effect in the residuals from the ARMA model. To
preserve the seasonal variation in variance in the residuals,
the ARCH model is not fitted to the residual series directly,
but to the seasonally standardized residuals. Therefore, an
important feature of the ARMA-GARCH model is that the
unconditional seasonal variance of the process is seasonally
constant but the conditional variance is not. To resolve the
problem of the weak hidden autocorrelation revealed after
the residuals are seasonally standarized, the ARMA-GARCH
model is extended by applying an additional ARMA model
to model the mean behaviour in the seasonally standard-
ized residual series. With such a modified ARMA-GARCH
model, the daily streamflow series is well-fitted.

Because the ARCH effect in daily streamflow mainly
arises from daily variations in temperature and precipita-
tion, and given that we have reasonably good skill in pre-
dicting weather two to three days in advance (for example,
seehttp://weather.gov/riverstab.php), the use in developing
an ARMA-GARCH model would be limited. However, be-
cause (1) on the one hand, the relationship between runoff
and rainfall and temperature is hard to capture precisely by
any model so far; (2) on the other hand, usually there are
not enough rainfall data available to fully capture the rain-
fall spatial pattern, especially for remote areas, such as Ti-
bet Plateau, and (3) the accuracy of the weather forecasts for
these areas are very limited, the ARCH effect cannot be fully
removed even after limited rainfall data and temperature data
are included in the model. Therefore, the ARMA-GARCH
model would be a very useful addition in terms of statistical
modelling of daily streamflow processes for the hydrological
community.
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