Articles | Volume 26, issue 3
https://doi.org/10.5194/npg-26-227-2019
https://doi.org/10.5194/npg-26-227-2019
Research article
 | 
14 Aug 2019
Research article |  | 14 Aug 2019

Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data

Fei Lu, Nils Weitzel, and Adam H. Monahan

Viewed

Total article views: 3,686 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,249 1,343 94 3,686 114 148
  • HTML: 2,249
  • PDF: 1,343
  • XML: 94
  • Total: 3,686
  • BibTeX: 114
  • EndNote: 148
Views and downloads (calculated since 23 Apr 2019)
Cumulative views and downloads (calculated since 23 Apr 2019)

Viewed (geographical distribution)

Total article views: 3,686 (including HTML, PDF, and XML) Thereof 3,169 with geography defined and 517 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 21 Oct 2025
Download
Short summary
ll-posedness of the inverse problem and sparse noisy data are two major challenges in the modeling of high-dimensional spatiotemporal processes. We present a Bayesian inference method with a strongly regularized posterior to overcome these challenges, enabling joint state-parameter estimation and quantifying uncertainty in the estimation. We demonstrate the method on a physically motivated nonlinear stochastic partial differential equation arising from paleoclimate construction.
Share