Articles | Volume 22, issue 5
https://doi.org/10.5194/npg-22-601-2015
https://doi.org/10.5194/npg-22-601-2015
Research article
 | 
09 Oct 2015
Research article |  | 09 Oct 2015

A framework for variational data assimilation with superparameterization

I. Grooms and Y. Lee

Viewed

Total article views: 2,680 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,416 1,093 171 2,680 177 229
  • HTML: 1,416
  • PDF: 1,093
  • XML: 171
  • Total: 2,680
  • BibTeX: 177
  • EndNote: 229
Views and downloads (calculated since 20 Mar 2015)
Cumulative views and downloads (calculated since 20 Mar 2015)
Latest update: 26 Dec 2025
Download
Short summary
Superparameterization is a multiscale computational method that significantly improves the representation of cloud processes in global atmosphere and climate models. We present a framework for assimilating observational data into superparameterized models to initialize them for forecasts. The framework is demonstrated in the context of a new system of ordinary differential equations that constitutes perhaps the simplest model of superparameterization.
Share