Articles | Volume 21, issue 2
https://doi.org/10.5194/npg-21-463-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/npg-21-463-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Extreme fluctuations of vertical velocity in the unstable atmospheric surface layer
L. Liu
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
F. Hu
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
X.-L. Cheng
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Related authors
Lei Liu, Yu Shi, and Fei Hu
Nonlin. Processes Geophys., 29, 123–131, https://doi.org/10.5194/npg-29-123-2022, https://doi.org/10.5194/npg-29-123-2022, 2022
Short summary
Short summary
We find a new kind of non-stationarity. This new kind of non-stationarity is caused by the intrinsic randomness. Results show that the new kind of non-stationarity is widespread in small-scale variations of CO2 turbulent fluxes. This finding reminds us that we need to handle the short-term averaged turbulent fluxes carefully, and we also need to re-screen the existing non-stationarity diagnosis methods because they could make a wrong diagnosis due to this new kind of non-stationarity.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Jianping Guo, Jian Zhang, Jia Shao, Tianmeng Chen, Kaixu Bai, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data, 16, 1–14, https://doi.org/10.5194/essd-16-1-2024, https://doi.org/10.5194/essd-16-1-2024, 2024
Short summary
Short summary
A global continental merged high-resolution (PBLH) dataset with good accuracy compared to radiosonde is generated via machine learning algorithms, covering the period from 2011 to 2021 with 3-hour and 0.25º resolution in space and time. The machine learning model takes parameters derived from the ERA5 reanalysis and GLDAS product as input, with PBLH biases between radiosonde and ERA5 as the learning targets. The merged PBLH is the sum of the predicted PBLH bias and the PBLH from ERA5.
Yingqi Zheng, Minttu Havu, Huizhi Liu, Xueling Cheng, Yifan Wen, Hei Shing Lee, Joyson Ahongshangbam, and Leena Järvi
Geosci. Model Dev., 16, 4551–4579, https://doi.org/10.5194/gmd-16-4551-2023, https://doi.org/10.5194/gmd-16-4551-2023, 2023
Short summary
Short summary
The performance of the Surface Urban Energy and Water Balance Scheme (SUEWS) is evaluated against the observed surface exchanges (fluxes) of heat and carbon dioxide in a densely built neighborhood in Beijing. The heat flux modeling is noticeably improved by using the observed maximum conductance and by optimizing the vegetation phenology modeling. SUEWS also performs well in simulating carbon dioxide flux.
Xingxia Kou, Zhen Peng, Meigen Zhang, Fei Hu, Xiao Han, Ziming Li, and Lili Lei
Atmos. Chem. Phys., 23, 6719–6741, https://doi.org/10.5194/acp-23-6719-2023, https://doi.org/10.5194/acp-23-6719-2023, 2023
Short summary
Short summary
A CMAQ EnSRF-based regional inversion system was extended to resolve satellite retrievals into biogenic source–sink changes. The size of the assimilated biosphere sink in China inferred from GOSAT was −0.47 Pg C yr−1. The biosphere flux at the provincial scale was re-estimated following the refined description in the regional inversion.
Lei Liu, Yu Shi, and Fei Hu
Nonlin. Processes Geophys., 29, 123–131, https://doi.org/10.5194/npg-29-123-2022, https://doi.org/10.5194/npg-29-123-2022, 2022
Short summary
Short summary
We find a new kind of non-stationarity. This new kind of non-stationarity is caused by the intrinsic randomness. Results show that the new kind of non-stationarity is widespread in small-scale variations of CO2 turbulent fluxes. This finding reminds us that we need to handle the short-term averaged turbulent fluxes carefully, and we also need to re-screen the existing non-stationarity diagnosis methods because they could make a wrong diagnosis due to this new kind of non-stationarity.
Yu Shi, Fei Hu, Guangqiang Fan, and Zhe Zhang
Atmos. Meas. Tech., 12, 4887–4901, https://doi.org/10.5194/amt-12-4887-2019, https://doi.org/10.5194/amt-12-4887-2019, 2019
Short summary
Short summary
In this paper, the boundary layer structure, and especially turbulence characteristics, were studied during a severe pollution episode. The data were taken from multiple observation techniques, such as lidar, wind profiler radar, radiosonde and a 325 m meteorological tower. Vertical distribution of wind and temperature, evolution of the atmospheric boundary layer (ABL) height, and turbulent flux quantities were compared and analyzed.
Qingqing Wang, Yele Sun, Weiqi Xu, Wei Du, Libo Zhou, Guiqian Tang, Chen Chen, Xueling Cheng, Xiujuan Zhao, Dongsheng Ji, Tingting Han, Zhe Wang, Jie Li, and Zifa Wang
Atmos. Chem. Phys., 18, 2495–2509, https://doi.org/10.5194/acp-18-2495-2018, https://doi.org/10.5194/acp-18-2495-2018, 2018
Short summary
Short summary
We conducted the first real-time continuous vertical measurements of particle extinction, NO2, and BC from ground level to 260 m during two severe winter haze episodes in urban Beijing, China. Our results show very complex and dynamic vertical profiles that interact closely with boundary layer and meteorological conditions. Further analysis demonstrate that vertical convection, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles.
K. Wang, C. Liu, X. Zheng, M. Pihlatie, B. Li, S. Haapanala, T. Vesala, H. Liu, Y. Wang, G. Liu, and F. Hu
Biogeosciences, 10, 6865–6877, https://doi.org/10.5194/bg-10-6865-2013, https://doi.org/10.5194/bg-10-6865-2013, 2013