Articles | Volume 21, issue 2
https://doi.org/10.5194/npg-21-393-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/npg-21-393-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Provision of boundary conditions for a convection-permitting ensemble: comparison of two different approaches
C. Marsigli
ARPA-SIMC, HydroMeteoClimate Service of ARPA Emilia-Romagna, Bologna, Italy
A. Montani
ARPA-SIMC, HydroMeteoClimate Service of ARPA Emilia-Romagna, Bologna, Italy
T. Paccagnella
ARPA-SIMC, HydroMeteoClimate Service of ARPA Emilia-Romagna, Bologna, Italy
Related authors
Michele Salmi, Chiara Marsigli, and Manfred Dorninger
Adv. Sci. Res., 19, 29–38, https://doi.org/10.5194/asr-19-29-2022, https://doi.org/10.5194/asr-19-29-2022, 2022
Short summary
Short summary
High resolution, probabilistic weather prediction systems are increasingly able to model lightning activity with unprecedented accuracy. Is the probabilistic approach skillful when applied to localized, deep convection? This work shows that the ensemble prediction system maintained by the German Weather Service is able to provide a useful forecast of lightning activity at a scale of around 200 km and that the probabilistic approach can anticipate possible lack of accuracy in both time and space.
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021, https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary
Short summary
This paper reviews new observations for the verification of high-impact weather and provides advice for their usage in objective verification. New observations include remote sensing datasets, products developed for nowcasting, datasets derived from telecommunication systems, data collected from citizens, reports of impacts and reports from insurance companies. This work has been performed in the framework of the Joint Working Group on Forecast Verification Research (JWGFVR) of the WMO.
Thomas Gastaldo, Virginia Poli, Chiara Marsigli, Pier Paolo Alberoni, and Tiziana Paccagnella
Nonlin. Processes Geophys., 25, 747–764, https://doi.org/10.5194/npg-25-747-2018, https://doi.org/10.5194/npg-25-747-2018, 2018
Short summary
Short summary
Accuracy of numerical weather prediction forecasts is strongly related to the quality of initial conditions employed. To improve them, it seems advantageous to use radar reflectivity observations because of their high spatial and temporal resolution. This is tested in a high-resolution model whose domain covers Italy. Results show that the employment of reflectivity observations improves precipitation forecast accuracy, but the positive impact is lost after a few hours of forecast.
Lidia Bressan, Andrea Valentini, Tiziana Paccagnella, Andrea Montani, Chiara Marsigli, and Maria Stefania Tesini
Adv. Sci. Res., 14, 77–84, https://doi.org/10.5194/asr-14-77-2017, https://doi.org/10.5194/asr-14-77-2017, 2017
Short summary
Short summary
This study presents the sensitivity of an oceanic model of the Adriatic Sea to the horizontal resolution and to the meteorological forcing. The model is run with two different configurations and with two horizontal grids at 1 and 2 km resolution. To study the influence of the meteorological forcing, the two storms have been reproduced by running ROMS in ensemble mode. Possible optimizations of the model set-up are deduced by the comparison of the different run outputs.
R. Ferretti, E. Pichelli, S. Gentile, I. Maiello, D. Cimini, S. Davolio, M. M. Miglietta, G. Panegrossi, L. Baldini, F. Pasi, F. S. Marzano, A. Zinzi, S. Mariani, M. Casaioli, G. Bartolini, N. Loglisci, A. Montani, C. Marsigli, A. Manzato, A. Pucillo, M. E. Ferrario, V. Colaiuda, and R. Rotunno
Hydrol. Earth Syst. Sci., 18, 1953–1977, https://doi.org/10.5194/hess-18-1953-2014, https://doi.org/10.5194/hess-18-1953-2014, 2014
S. Davolio, M. M. Miglietta, T. Diomede, C. Marsigli, and A. Montani
Hydrol. Earth Syst. Sci., 17, 2107–2120, https://doi.org/10.5194/hess-17-2107-2013, https://doi.org/10.5194/hess-17-2107-2013, 2013
Michele Salmi, Chiara Marsigli, and Manfred Dorninger
Adv. Sci. Res., 19, 29–38, https://doi.org/10.5194/asr-19-29-2022, https://doi.org/10.5194/asr-19-29-2022, 2022
Short summary
Short summary
High resolution, probabilistic weather prediction systems are increasingly able to model lightning activity with unprecedented accuracy. Is the probabilistic approach skillful when applied to localized, deep convection? This work shows that the ensemble prediction system maintained by the German Weather Service is able to provide a useful forecast of lightning activity at a scale of around 200 km and that the probabilistic approach can anticipate possible lack of accuracy in both time and space.
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021, https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary
Short summary
This paper reviews new observations for the verification of high-impact weather and provides advice for their usage in objective verification. New observations include remote sensing datasets, products developed for nowcasting, datasets derived from telecommunication systems, data collected from citizens, reports of impacts and reports from insurance companies. This work has been performed in the framework of the Joint Working Group on Forecast Verification Research (JWGFVR) of the WMO.
Thomas Gastaldo, Virginia Poli, Chiara Marsigli, Pier Paolo Alberoni, and Tiziana Paccagnella
Nonlin. Processes Geophys., 25, 747–764, https://doi.org/10.5194/npg-25-747-2018, https://doi.org/10.5194/npg-25-747-2018, 2018
Short summary
Short summary
Accuracy of numerical weather prediction forecasts is strongly related to the quality of initial conditions employed. To improve them, it seems advantageous to use radar reflectivity observations because of their high spatial and temporal resolution. This is tested in a high-resolution model whose domain covers Italy. Results show that the employment of reflectivity observations improves precipitation forecast accuracy, but the positive impact is lost after a few hours of forecast.
Matteo Vasconi, Andrea Montani, and Tiziana Paccagnella
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-21, https://doi.org/10.5194/npg-2018-21, 2018
Revised manuscript has not been submitted
Lidia Bressan, Andrea Valentini, Tiziana Paccagnella, Andrea Montani, Chiara Marsigli, and Maria Stefania Tesini
Adv. Sci. Res., 14, 77–84, https://doi.org/10.5194/asr-14-77-2017, https://doi.org/10.5194/asr-14-77-2017, 2017
Short summary
Short summary
This study presents the sensitivity of an oceanic model of the Adriatic Sea to the horizontal resolution and to the meteorological forcing. The model is run with two different configurations and with two horizontal grids at 1 and 2 km resolution. To study the influence of the meteorological forcing, the two storms have been reproduced by running ROMS in ensemble mode. Possible optimizations of the model set-up are deduced by the comparison of the different run outputs.
R. Ferretti, E. Pichelli, S. Gentile, I. Maiello, D. Cimini, S. Davolio, M. M. Miglietta, G. Panegrossi, L. Baldini, F. Pasi, F. S. Marzano, A. Zinzi, S. Mariani, M. Casaioli, G. Bartolini, N. Loglisci, A. Montani, C. Marsigli, A. Manzato, A. Pucillo, M. E. Ferrario, V. Colaiuda, and R. Rotunno
Hydrol. Earth Syst. Sci., 18, 1953–1977, https://doi.org/10.5194/hess-18-1953-2014, https://doi.org/10.5194/hess-18-1953-2014, 2014
S. Davolio, M. M. Miglietta, T. Diomede, C. Marsigli, and A. Montani
Hydrol. Earth Syst. Sci., 17, 2107–2120, https://doi.org/10.5194/hess-17-2107-2013, https://doi.org/10.5194/hess-17-2107-2013, 2013
A. Ceppi, G. Ravazzani, A. Salandin, D. Rabuffetti, A. Montani, E. Borgonovo, and M. Mancini
Nat. Hazards Earth Syst. Sci., 13, 1051–1062, https://doi.org/10.5194/nhess-13-1051-2013, https://doi.org/10.5194/nhess-13-1051-2013, 2013
Special issue