Articles | Volume 21, issue 6
Nonlin. Processes Geophys., 21, 1075–1083, 2014
https://doi.org/10.5194/npg-21-1075-2014
Nonlin. Processes Geophys., 21, 1075–1083, 2014
https://doi.org/10.5194/npg-21-1075-2014

Research article 11 Nov 2014

Research article | 11 Nov 2014

Wavevector anisotropy of plasma turbulence at ion kinetic scales: solar wind observations and hybrid simulations

H. Comişel1,2, Y. Narita3,4, and U. Motschmann1,5 H. Comişel et al.
  • 1Institut für Theoretische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
  • 2Institute for Space Sciences, Atomiştilor 409, P.O. Box MG-23, Bucharest-Măgurele 77125, Romania
  • 3Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
  • 4Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
  • 5Deutsches Zentrum für Luft- und Raumfahrt, Institut für Planetenforschung, Rutherfordstr. 2, 12489 Berlin, Germany

Abstract. Wavevector anisotropy of ion-scale plasma turbulence is studied at various values of ion beta. Two complementary methods are used. One is multi-point measurements of magnetic field in the near-Earth solar wind as provided by the Cluster spacecraft mission, and the other is hybrid numerical simulation of two-dimensional plasma turbulence. Both methods demonstrate that the wavevector anisotropy is reduced with increasing values of ion beta. Furthermore, the numerical simulation study shows the existence of a scaling law between ion beta and the wavevector anisotropy of the fluctuating magnetic field that is controlled by the thermal or hybrid particle-in-cell simulation noise. Likewise, there is weak evidence that the power-law scaling can be extended to the turbulent fluctuating cascade. This fact can be used to construct a diagnostic tool to determine or to constrain ion beta using multi-point magnetic field measurements in space.