Resonant excitation of coastal Kelvin waves in the two-layer rotating shallow water model
Abstract. Resonant excitation of coastal Kelvin waves by free inertia–gravity waves impinging on the coast is studied in the framework of the simplest baroclinic model: two-layer rotating shallow water with an idealized straight coast. It is shown that, with respect to the previous results obtained with the one-layer model, new resonances leading to a possible excitation of Kelvin waves appear. The most interesting ones, described in the paper, are resonances of a baroclinic inertia–gravity wave with either another wave of this kind, or with a coastal current, leading to generation of a barotropic Kelvin wave. A forced Hopf equation results in any case for the evolution of the Kelvin wave amplitude.