Articles | Volume 18, issue 5
https://doi.org/10.5194/npg-18-735-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/npg-18-735-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ensemble Kalman filtering without the intrinsic need for inflation
M. Bocquet
Université Paris-Est, CEREA Joint Laboratory École des Ponts ParisTech/EDF R&D, France
INRIA, Paris Rocquencourt Research Center, France
Viewed
Total article views: 3,008 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,550 | 1,335 | 123 | 3,008 | 167 | 142 |
- HTML: 1,550
- PDF: 1,335
- XML: 123
- Total: 3,008
- BibTeX: 167
- EndNote: 142
Cited
64 citations as recorded by crossref.
- An ETKF approach for initial state and parameter estimation in ice sheet modelling B. Bonan et al. 10.5194/npg-21-569-2014
- Representation learning with unconditional denoising diffusion models for dynamical systems T. Finn et al. 10.5194/npg-31-409-2024
- Twin experiments with the equivalent weights particle filter and HadCM3 P. Browne & P. van Leeuwen 10.1002/qj.2621
- Characterizing viscoelastic materials via ensemble-based data assimilation of bubble collapse observations J. Spratt et al. 10.1016/j.jmps.2021.104455
- Combining a Fully Connected Neural Network With an Ensemble Kalman Filter to Emulate a Dynamic Model in Data Assimilation M. Fan et al. 10.1109/ACCESS.2021.3120482
- A sparse matrix formulation of model-based ensemble Kalman filter H. Gryvill & H. Tjelmeland 10.1007/s11222-023-10228-0
- A fast, single-iteration ensemble Kalman smoother for sequential data assimilation C. Grudzien & M. Bocquet 10.5194/gmd-15-7641-2022
- Covariance Inflation in the Ensemble Kalman Filter: A Residual Nudging Perspective and Some Implications X. Luo & I. Hoteit 10.1175/MWR-D-13-00067.1
- Deterministic ensemble Kalman filter based on two localization techniques for mitigating sampling errors with a quasi-geostrophic model M. Chang et al. 10.1007/s00703-024-01015-1
- A non-Gaussian analysis scheme using rank histograms for ensemble data assimilation S. Metref et al. 10.5194/npg-21-869-2014
- Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures P. Raanes et al. 10.1002/qj.3386
- On the influence of model nonlinearity and localization on ensemble Kalman smoothing L. Nerger et al. 10.1002/qj.2293
- The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies A. Berchet et al. 10.5194/gmd-14-5331-2021
- Local ensemble transform Kalman filter, a fast non-stationary control law for adaptive optics on ELTs: theoretical aspects and first simulation results M. Gray et al. 10.1364/OE.22.020894
- Covariance Matrix Estimation for Ensemble-Based Kalman Filters with Multiple Ensembles S. Gratton et al. 10.1007/s11004-023-10063-z
- An Adjoint-Based Adaptive Ensemble Kalman Filter H. Song et al. 10.1175/MWR-D-12-00244.1
- Reinforcement Twinning: From digital twins to model-based reinforcement learning L. Schena et al. 10.1016/j.jocs.2024.102421
- Chaotic System Prediction Using Data Assimilation and Machine Learning G. Yanan et al. 10.1051/e3sconf/202018502025
- Four-dimensional ensemble variational data assimilation and the unstable subspace M. Bocquet & A. Carrassi 10.1080/16000870.2017.1304504
- State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems S. Vetra-Carvalho et al. 10.1080/16000870.2018.1445364
- Ensemble-based seismic inversion for a stratified medium M. Gineste et al. 10.1190/geo2019-0017.1
- An Iterative EnKF for Strongly Nonlinear Systems P. Sakov et al. 10.1175/MWR-D-11-00176.1
- Impact of non‐stationarity on hybrid ensemble filters: A study with a doubly stochastic advection‐diffusion‐decay model M. Tsyrulnikov & A. Rakitko 10.1002/qj.3556
- Data assimilation in the geosciences: An overview of methods, issues, and perspectives A. Carrassi et al. 10.1002/wcc.535
- Ensemble Kalman Filtering with Residual Nudging: An Extension to State Estimation Problems with Nonlinear Observation Operators X. Luo & I. Hoteit 10.1175/MWR-D-13-00328.1
- Effect of model error representation in the Yellow and East China Sea modeling system based on the ensemble Kalman filter K. Kwon et al. 10.1007/s10236-015-0909-8
- Spatially-aware diffusion models with cross-attention for global field reconstruction with sparse observations Y. Zhuang et al. 10.1016/j.cma.2024.117623
- A potential implicit particle method for high-dimensional systems B. Weir et al. 10.5194/npg-20-1047-2013
- Uncertainty quantification of pollutant source retrieval: comparison of Bayesian methods with application to the Chernobyl and Fukushima Daiichi accidental releases of radionuclides Y. Liu et al. 10.1002/qj.3138
- Enhanced Adaptive Inflation Algorithm for Ensemble Filters M. El Gharamti 10.1175/MWR-D-17-0187.1
- An ensemble square root filter for the joint assimilation of surface soil moisture and leaf area index within the Land Data Assimilation System LDAS-Monde: application over the Euro-Mediterranean region B. Bonan et al. 10.5194/hess-24-325-2020
- Data assimilation for nonlinear systems with a hybrid nonlinear Kalman ensemble transform filter L. Nerger 10.1002/qj.4221
- Ensemble variational method with adaptive covariance inflation for learning neural network-based turbulence models Q. Luo et al. 10.1063/5.0199175
- Comparative evaluation of maximum likelihood ensemble filter and ensemble Kalman filter for real-time assimilation of streamflow data into operational hydrologic models A. Rafieeinasab et al. 10.1016/j.jhydrol.2014.06.052
- An assessment of ocean climate reanalysis by the data assimilation system of KIOST from 1947 to 2012 Y. Kim et al. 10.1016/j.ocemod.2015.02.006
- Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model J. Brajard et al. 10.1016/j.jocs.2020.101171
- Stochastic parametrization: An alternative to inflation in ensemble Kalman filters B. Dufée et al. 10.1002/qj.4247
- Extending the Square Root Method to Account for Additive Forecast Noise in Ensemble Methods P. Raanes et al. 10.1175/MWR-D-14-00375.1
- A hybrid particle-ensemble Kalman filter for problems with medium nonlinearity I. Grooms et al. 10.1371/journal.pone.0248266
- On Temporal Scale Separation in Coupled Data Assimilation with the Ensemble Kalman Filter M. Tondeur et al. 10.1007/s10955-020-02525-z
- Lyapunov vectors and assimilation in the unstable subspace: theory and applications L. Palatella et al. 10.1088/1751-8113/46/25/254020
- Flow-dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian Climate Prediction Model F. Counillon et al. 10.3402/tellusa.v68.32437
- Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems M. Bocquet & P. Sakov 10.5194/npg-19-383-2012
- A Hierarchical Bayes Ensemble Kalman Filter M. Tsyrulnikov & A. Rakitko 10.1016/j.physd.2016.07.009
- An adaptive covariance relaxation method for ensemble data assimilation Y. Ying & F. Zhang 10.1002/qj.2576
- Integration of microseismic monitoring data into coupled flow and geomechanical models with ensemble Kalman filter M. Tarrahi et al. 10.1002/2014WR016264
- Comparing Adaptive Prior and Posterior Inflation for Ensemble Filters Using an Atmospheric General Circulation Model M. El Gharamti et al. 10.1175/MWR-D-18-0389.1
- Objectified quantification of uncertainties in Bayesian atmospheric inversions A. Berchet et al. 10.5194/gmd-8-1525-2015
- A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes: L95-GRS (v1.0) J. Haussaire & M. Bocquet 10.5194/gmd-9-393-2016
- Data Assimilation in Density‐Dependent Subsurface Flows via Localized Iterative Ensemble Kalman Filter C. Xia et al. 10.1029/2017WR022369
- Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation M. Bocquet et al. 10.5194/npg-22-645-2015
- An improved framework for the dynamic likelihood filtering approach to data assimilation D. Foster & J. Restrepo 10.1063/5.0083071
- Observation-Informed Generalized Hybrid Error Covariance Models E. Satterfield et al. 10.1175/MWR-D-18-0016.1
- Gaussian approximations in filters and smoothers for data assimilation M. Morzfeld & D. Hodyss 10.1080/16000870.2019.1600344
- A flexible additive inflation scheme for treating model error in ensemble Kalman filters M. Sommer & T. Janjić 10.1002/qj.3254
- Accounting for model error due to unresolved scales within ensemble Kalman filtering L. Mitchell & A. Carrassi 10.1002/qj.2451
- Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error C. Grudzien et al. 10.5194/npg-25-633-2018
- An iterative ensemble Kalman smoother M. Bocquet & P. Sakov 10.1002/qj.2236
- Quasi-static ensemble variational data assimilation: a theoretical and numerical study with the iterative ensemble Kalman smoother A. Fillion et al. 10.5194/npg-25-315-2018
- Online learning of both state and dynamics using ensemble Kalman filters M. Bocquet et al. 10.3934/fods.2020015
- Data Assimilation Networks P. Boudier et al. 10.1029/2022MS003353
- Boundary Conditions for the Parametric Kalman Filter Forecast M. Sabathier et al. 10.1029/2022MS003462
- Interaction of Lyapunov vectors in the formulation of the nonlinear extension of the Kalman filter L. Palatella & A. Trevisan 10.1103/PhysRevE.91.042905
- History matching using traditional and finite size ensemble Kalman filter H. Abdolhosseini & E. Khamehchi 10.1016/j.jngse.2015.10.041
Latest update: 22 Jan 2025