Articles | Volume 12, issue 4
https://doi.org/10.5194/npg-12-491-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Special issue:
https://doi.org/10.5194/npg-12-491-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Ensemble Kalman filter assimilation of temperature and altimeter data with bias correction and application to seasonal prediction
C. L. Keppenne
Science Applications International Corporation, 4600 Powder Mill Road, Beltsville, Maryland 20705, USA
M. M. Rienecker
Global Modeling and Assimilation Office, Mail Code 610.1, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
N. P. Kurkowski
Science Applications International Corporation, 4600 Powder Mill Road, Beltsville, Maryland 20705, USA
D. A. Adamec
Oceans and Ice Branch, Laboratory for Hydrospheric Processes, Mail Code 614.2, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
Viewed
Total article views: 2,143 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,130 | 878 | 135 | 2,143 | 150 | 148 |
- HTML: 1,130
- PDF: 878
- XML: 135
- Total: 2,143
- BibTeX: 150
- EndNote: 148
Cited
49 citations as recorded by crossref.
- Using sea-level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter L. Nerger et al. 10.1007/s10236-006-0083-0
- State and bias estimation for soil moisture profiles by an ensemble Kalman filter: Effect of assimilation depth and frequency G. De Lannoy et al. 10.1029/2006WR005100
- Multiscale forecasting in the western North Atlantic: Sensitivity of model forecast skill to glider data assimilation A. Gangopadhyay et al. 10.1016/j.csr.2012.09.013
- Constrained ensemble Kalman filter based on Kullback–Leibler divergence R. Li et al. 10.1016/j.jprocont.2019.05.011
- Improving assimilation of SeaWiFS data by the application of bias correction with a local SEIK filter L. Nerger & W. Gregg 10.1016/j.jmarsys.2007.09.007
- An Inflated Ensemble Filter for Ocean Data Assimilation with a Biased Coupled GCM S. Zhang & A. Rosati 10.1175/2010MWR3326.1
- Systematic Bias in Land Surface Models G. Abramowitz et al. 10.1175/JHM628.1
- The Potential Benefits of Handling Mixture Statistics via a Bi‐Gaussian EnKF: Tests With All‐Sky Satellite Infrared Radiances M. Chan et al. 10.1029/2022MS003357
- Accounting for Model Errors in Ensemble Data Assimilation H. Li et al. 10.1175/2009MWR2766.1
- Predictability of Two Types of El Niño Assessed Using an Extended Seasonal Prediction System by MIROC Y. Imada et al. 10.1175/MWR-D-15-0007.1
- Estimating river bathymetry from data assimilation of synthetic SWOT measurements Y. Yoon et al. 10.1016/j.jhydrol.2012.07.028
- Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter G. De Lannoy et al. 10.1029/2006WR005449
- A comparison of the performance of the 3-D super-ensemble and an ensemble Kalman filter for short-range regional ocean prediction B. Mourre & J. Chiggiato 10.3402/tellusa.v66.21640
- A Time-Averaged Covariance Method in the EnKF for Argo Data Assimilation Z. Deng et al. 10.1080/07055900.2012.719823
- A homogeneous linear estimation method for system error in data assimilation W. Wu et al. 10.1007/s11802-013-1918-1
- Correcting for Surface Pressure Background Bias in Ensemble-Based Analyses S. Baek et al. 10.1175/2008MWR2787.1
- Correcting circulation biases in a lower-resolution global general circulation model with data assimilation M. Canter et al. 10.1007/s10236-016-1022-3
- Data assimilation methods in the Earth sciences R. Reichle 10.1016/j.advwatres.2008.01.001
- The ensemble Kalman filter for combined state and parameter estimation G. Evensen 10.1109/MCS.2009.932223
- Observation bias correction with an ensemble Kalman filter E. Fertig et al. 10.1111/j.1600-0870.2008.00378.x
- Assimilation of SeaWiFS data into a global ocean-biogeochemical model using a local SEIK filter L. Nerger & W. Gregg 10.1016/j.jmarsys.2006.11.009
- 4-D-Var or ensemble Kalman filter? E. Kalnay et al. 10.1111/j.1600-0870.2007.00261.x
- Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data G. El Serafy et al. 10.1007/s12601-011-0015-x
- Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of High-Frequency radar surface currents – application to the German Bight A. Barth et al. 10.5194/os-6-161-2010
- Ensemble Data Assimilation with the NCEP Global Forecast System J. Whitaker et al. 10.1175/2007MWR2018.1
- Filtering inertia-gravity waves from the initial conditions of the linear shallow water equations A. Barth et al. 10.1016/j.ocemod.2007.06.007
- Evaluation of several model error schemes in the EnKF assimilation: Applied to Argo profiles in the Pacific Ocean Z. Deng et al. 10.1029/2011JC006942
- Error Covariance Modeling in the GMAO Ocean Ensemble Kalman Filter C. Keppenne et al. 10.1175/2007MWR2243.1
- A Dynamic Approach to Addressing Observation-Minus-Forecast Bias in a Land Surface Skin Temperature Data Assimilation System C. Draper et al. 10.1175/JHM-D-14-0087.1
- An ensemble recentering Kalman filter with an application to Argo temperature data assimilation into the NASA GEOS-5 coupled model C. Keppenne 10.1016/j.ocemod.2014.03.001
- Evolutionary Algorithm-Based Error Parameterization Methods for Data Assimilation Y. Bai & X. Li 10.1175/2011MWR3641.1
- Comparison of 4DVAR and EnKF state estimates and forecasts in the Gulf of Mexico G. Gopalakrishnan et al. 10.1002/qj.3493
- Evaluation of an Adaptive Soil Moisture Bias Correction Approach in the ECMWF Land Data Assimilation System D. Fairbairn et al. 10.3390/rs16030493
- A Regional multi-Air Pollutant Assimilation System (RAPAS v1.0) for emission estimates: system development and application S. Feng et al. 10.5194/gmd-16-5949-2023
- Comparison and Sensitivity of ODASI Ocean Analyses in the Tropical Pacific C. Sun et al. 10.1175/MWR3405.1
- The impact of covariance localization on the performance of an ocean EnKF system assimilating glider data in the Ligurian Sea S. Falchetti & A. Alvarez 10.1016/j.jmarsys.2017.12.008
- An Ensemble Ocean Data Assimilation System for Seasonal Prediction Y. Yin et al. 10.1175/2010MWR3419.1
- Sound speed profiles in high spatiotemporal resolution using multigrid three-dimensional variational method: a coastal experiment off northern Shandong Peninsula G. Hou et al. 10.1007/s00343-022-1295-y
- An ensemble data assimilation modeling system for operational outdoor microalgae growth forecasting H. Yan et al. 10.1002/bit.28272
- Bred Vectors and Tropical Pacific Forecast Errors in the NASA Coupled General Circulation Model S. Yang et al. 10.1175/2007MWR2118.1
- Inferred variables in data assimilation: quantifying sensitivity to inaccurate error statistics M. JUCKES & B. LAWRENCE 10.1111/j.1600-0870.2008.00376.x
- Controllability, not chaos, key criterion for ocean state estimation G. Gebbie & T. Hsieh 10.5194/npg-24-351-2017
- Data assimilation with the EnKF in a 1-D numerical model of a North Sea station S. Ponsar & P. Luyten 10.1007/s10236-009-0224-3
- Estimating forecast model bias in coupled global and limited-area models M. Kretschmer et al. 10.3402/tellusa.v67.28040
- An Ensemble Adjustment Kalman Filter for the CCSM4 Ocean Component A. Karspeck et al. 10.1175/JCLI-D-12-00402.1
- Improving estimated soil moisture fields through assimilation of AMSR-E soil moisture retrievals with an ensemble Kalman filter and a mass conservation constraint B. Li et al. 10.5194/hess-16-105-2012
- Obstacles to High-Dimensional Particle Filtering C. Snyder et al. 10.1175/2008MWR2529.1
- Assessing the utility of frequency dependent nudging for reducing biases in biogeochemical models K. Lagman et al. 10.1016/j.ocemod.2014.06.006
- Comparing Assimilation of Synthetic Soil Moisture Versus C‐Band Backscatter for Hyper‐Resolution Land Surface Modeling L. Sun et al. 10.1029/2020WR028921
Latest update: 21 Nov 2024
Special issue