Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 1.558
IF1.558
IF 5-year value: 1.475
IF 5-year
1.475
CiteScore value: 2.8
CiteScore
2.8
SNIP value: 0.921
SNIP0.921
IPP value: 1.56
IPP1.56
SJR value: 0.571
SJR0.571
Scimago H <br class='widget-line-break'>index value: 55
Scimago H
index
55
h5-index value: 22
h5-index22
Volume 10, issue 6
Nonlin. Processes Geophys., 10, 565–571, 2003
https://doi.org/10.5194/npg-10-565-2003
© Author(s) 2003. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Nonlin. Processes Geophys., 10, 565–571, 2003
https://doi.org/10.5194/npg-10-565-2003
© Author(s) 2003. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  31 Dec 2003

31 Dec 2003

Forecasting characteristic earthquakes in a minimalist model

M. Vázquez-Prada1, Á. González2, J. B. Gómez2, and A. F. Pacheco1 M. Vázquez-Prada et al.
  • 1Departamento de Física Teórica and BIFI, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
  • 2Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain

Abstract. Using error diagrams, we quantify the forecasting of characteristic-earthquake occurrence in a recently introduced minimalist model. Initially we connect the earthquake alarm at a fixed time after the ocurrence of a characteristic event. The evaluation of this strategy leads to a one-dimensional numerical exploration of the loss function. This first strategy is then refined by considering a classification of the seismic cycles of the model according to the presence, or not, of some factors related to the seismicity observed in the cycle. These factors, statistically speaking, enlarge or shorten the length of the cycles. The independent evaluation of the impact of these factors in the forecast process leads to two-dimensional numerical explorations. Finally, and as a third gradual step in the process of refinement, we combine these factors leading to a three-dimensional exploration. The final improvement in the loss function is about 8.5%.

Publications Copernicus
Download
Citation