Articles | Volume 10, issue 3
https://doi.org/10.5194/npg-10-253-2003
© Author(s) 2003. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Special issue:
https://doi.org/10.5194/npg-10-253-2003
© Author(s) 2003. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Sequential parameter estimation for stochastic systems
G. A. Kivman
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
Viewed
Total article views: 2,145 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,114 | 897 | 134 | 2,145 | 179 | 146 |
- HTML: 1,114
- PDF: 897
- XML: 134
- Total: 2,145
- BibTeX: 179
- EndNote: 146
Cited
59 citations as recorded by crossref.
- Sigma-Point Kalman Filter Data Assimilation Methods for Strongly Nonlinear Systems J. Ambadan & Y. Tang 10.1175/2008JAS2681.1
- An iterative ensemble Kalman filter with one-step-ahead smoothing for state-parameters estimation of contaminant transport models M. Gharamti et al. 10.1016/j.jhydrol.2015.05.004
- Assessing an ensemble Kalman filter inference of Manning’s n coefficient of an idealized tidal inlet against a polynomial chaos-based MCMC A. Siripatana et al. 10.1007/s10236-017-1074-z
- Coupled hydrogeophysical parameter estimation using a sequential Bayesian approach J. Rings et al. 10.5194/hess-14-545-2010
- Parameter Estimation Using a Particle Method: Inferring Mixing Coefficients from Sea Level Observations F. Vossepoel & P. Jan van Leeuwen 10.1175/MWR3328.1
- A new method based on remote sensing observations and data assimilation for estimation of evapotranspiration over field crops J. Qin et al. 10.1080/00288230709510378
- State and Parameter Estimation with an SIR Particle Filter in a Three-Dimensional Groundwater Pollutant Transport Model S. Chang et al. 10.1061/(ASCE)EE.1943-7870.0000584
- Sampling-free linear Bayesian updating of model state and parameters using a square root approach O. Pajonk et al. 10.1016/j.cageo.2012.05.017
- Estimating Model Parameters with Ensemble-Based Data Assimilation: A Review J. RUIZ et al. 10.2151/jmsj.2013-201
- The estimation of time-invariant parameters of noisy nonlinear oscillatory systems M. Khalil et al. 10.1016/j.jsv.2014.10.002
- Parameter estimation for ocean background vertical diffusivity coefficients in the Community Earth System Model (v1.2.1) and its impact on El Niño–Southern Oscillation forecasts Z. Shen et al. 10.5194/gmd-17-1651-2024
- Assessing clustering strategies for Gaussian mixture filtering a subsurface contaminant model B. Liu et al. 10.1016/j.jhydrol.2016.01.048
- Efficient Kernel-Based Ensemble Gaussian Mixture Filtering B. Liu et al. 10.1175/MWR-D-14-00292.1
- Performance assessment, diagnosis, and optimal selection of non-linear state filters A. Tulsyan et al. 10.1016/j.jprocont.2013.10.015
- Sigma-point particle filter for parameter estimation in a multiplicative noise environment J. Ambadan & Y. Tang 10.1029/2011MS000065
- Model-Based Heterogeneous Data Fusion for Reliable Force Estimation in Dynamic Structures under Uncertainties B. Khodabandeloo et al. 10.3390/s17112656
- Implicit Estimation of Ecological Model Parameters B. Weir et al. 10.1007/s11538-012-9801-6
- A simple numerical method based simultaneous stochastic perturbation for estimation of high dimensional matrices H. Hoang & R. Baraille 10.1007/s11045-018-0551-y
- Particle Filtering in Geophysical Systems P. van Leeuwen 10.1175/2009MWR2835.1
- Parameter estimation using chaotic time series J. ANNAN 10.1111/j.1600-0870.2005.00143.x
- Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model A. Subramanian et al. 10.1175/JAS-D-11-0332.1
- An improved method for nonlinear parameter estimation: a case study of the Rössler model W. He et al. 10.1007/s00704-015-1528-5
- Parameter estimation using chaotic time series J. Annan 10.3402/tellusa.v57i5.14735
- Flood Routing Model with Particle Filter-Based Data Assimilation for Flash Flood Forecasting in the Micro-Model of Lower Yellow River, China M. Chen et al. 10.3390/w10111612
- An Efficient State–Parameter Filtering Scheme Combining Ensemble Kalman and Particle Filters B. Ait-El-Fquih & I. Hoteit 10.1175/MWR-D-16-0485.1
- A Note on the Particle Filter with Posterior Gaussian Resampling X. Xiong et al. 10.1111/j.1600-0870.2006.00185.x
- Model Error Estimation Employing an Ensemble Data Assimilation Approach D. Zupanski & M. Zupanski 10.1175/MWR3125.1
- Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall‐runoff models A. Weerts & G. El Serafy 10.1029/2005WR004093
- Parameter variations in prediction skill optimization at ECMWF P. Ollinaho et al. 10.5194/npg-20-1001-2013
- A two-stage inflation method in parameter estimation to compensate for constant parameter evolution in Community Earth System Model Z. Shen & Y. Tang 10.1007/s13131-021-1856-5
- Up the ante on bioeconomic submodels of marine food webs: A data assimilation-based approach N. Ekerhovd & S. Kvamsdal 10.1016/j.ecolecon.2016.09.005
- On closure parameter estimation in chaotic systems J. Hakkarainen et al. 10.5194/npg-19-127-2012
- A particle‐filter based adaptive inflation scheme for the ensemble Kalman filter B. Ait‐El‐Fquih & I. Hoteit 10.1002/qj.3716
- Tracking noisy limit cycle oscillation with nonlinear filters M. Khalil et al. 10.1016/j.jsv.2009.09.009
- Online tuning of ocean biogeochemical model parameters using ensemble estimation techniques: Application to a one-dimensional model in the North Atlantic M. Gharamti et al. 10.1016/j.jmarsys.2016.12.003
- Adaptive Filter for High Dimensional Inverse Engineering Problems: From Theory to Practical Implementation H. Hoang & R. Barailles 10.4236/eng.2013.55A010
- Necessary conditions for algorithmic tuning of weather prediction models using OpenIFS as an example L. Tuppi et al. 10.5194/gmd-13-5799-2020
- Sequential weak constraint parameter estimation in an ecosystem model S. Losa et al. 10.1016/j.jmarsys.2003.06.001
- Bayesian system ID: optimal management of parameter, model, and measurement uncertainty N. Galioto & A. Gorodetsky 10.1007/s11071-020-05925-8
- Estimating parameters in stochastic systems: A variational Bayesian approach M. Vrettas et al. 10.1016/j.physd.2011.08.013
- Nonlinear filters for chaotic oscillatory systems M. Khalil et al. 10.1007/s11071-008-9349-z
- A new method for parameter estimation in nonlinear dynamical equations L. Wang et al. 10.1007/s00704-014-1113-3
- A Weak-Constraint-Based Data Assimilation Scheme for Estimating Surface Turbulent Fluxes J. Qin et al. 10.1109/LGRS.2007.904004
- A New Approximate Solution of the Optimal Nonlinear Filter for Data Assimilation in Meteorology and Oceanography I. Hoteit et al. 10.1175/2007MWR1927.1
- Sampling free iterative PCE filter for state and parameter estimation of nonlinear dynamical systems W. van Dijk et al. 10.1016/j.jcp.2024.113118
- Data assimilation for marine monitoring and prediction: The MERCATOR operational assimilation systems and the MERSEA developments P. Brasseur et al. 10.1256/qj.05.142
- Ocean state estimation from hydrography and velocity observations during EIFEX with a regional biogeochemical ocean circulation model M. Losch et al. 10.1016/j.jmarsys.2013.09.003
- Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments M. Tong & M. Xue 10.1175/2007MWR2071.1
- Parameter identification of river current and diffusion by reduced Kalman filter finite element method O. Kanai & M. Kawahara 10.1002/fld.2694
- Using the Kalman filter for parameter estimation in biogeochemical models C. Trudinger et al. 10.1002/env.910
- THE ENSEMBLE KALMAN FILTER FOR MULTIDIMENSIONAL BIOECONOMIC MODELS S. KVAMSDAL & L. SANDAL 10.1111/nrm.12070
- A variational Bayesian approach for ensemble filtering of stochastically parametrized systems B. Ait‐El‐Fquih et al. 10.1002/qj.4481
- Prediction error sampling procedure based on dominant Schur decomposition. Application to state estimation in high dimensional oceanic model H. Hoang & R. Baraille 10.1016/j.amc.2011.09.012
- Machine Learning With Data Assimilation and Uncertainty Quantification for Dynamical Systems: A Review S. Cheng et al. 10.1109/JAS.2023.123537
- Gaussian anamorphosis extension of the DEnKF for combined state parameter estimation: Application to a 1D ocean ecosystem model E. Simon & L. Bertino 10.1016/j.jmarsys.2011.07.007
- Data assimilation with the weighted ensemble Kalman filter N. Papadakis et al. 10.1111/j.1600-0870.2010.00461.x
- Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data S. Losa et al. 10.1016/j.jmarsys.2012.07.008
- Ensemble Kalman filter inference of spatially-varying Manning’s n coefficients in the coastal ocean A. Siripatana et al. 10.1016/j.jhydrol.2018.05.021
- Parameter and state estimation with ensemble Kalman filter based algorithms for convective‐scale applications Y. Ruckstuhl & T. Janjić 10.1002/qj.3257
Latest update: 21 Nov 2024
Special issue