Articles | Volume 10, issue 3
https://doi.org/10.5194/npg-10-233-2003
© Author(s) 2003. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Special issue:
https://doi.org/10.5194/npg-10-233-2003
© Author(s) 2003. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Use of the breeding technique to estimate the structure of the analysis "errors of the day"
M. Corazza
INFM, Dipartimento di Fisica, Università di Genova, Italy
University of Maryland, College Park, MD 20742-2425, USA
E. Kalnay
University of Maryland, College Park, MD 20742-2425, USA
D. J. Patil
University of Maryland, College Park, MD 20742-2425, USA
S.-C. Yang
University of Maryland, College Park, MD 20742-2425, USA
R. Morss
NCAR, Boulder, Colorado, USA
M. Cai
University of Maryland, College Park, MD 20742-2425, USA
I. Szunyogh
University of Maryland, College Park, MD 20742-2425, USA
B. R. Hunt
University of Maryland, College Park, MD 20742-2425, USA
J. A. Yorke
University of Maryland, College Park, MD 20742-2425, USA
Viewed
Total article views: 2,119 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,128 | 833 | 158 | 2,119 | 158 | 144 |
- HTML: 1,128
- PDF: 833
- XML: 158
- Total: 2,119
- BibTeX: 158
- EndNote: 144
Cited
53 citations as recorded by crossref.
- Observation Strategies Based on Singular Value Decomposition for Ocean Analysis and Forecast M. Fattorini & C. Brandini 10.3390/w12123445
- Hybrid Gain Data Assimilation Using Variational Corrections in the Subspace Orthogonal to the Ensemble C. Chang et al. 10.1175/MWR-D-19-0128.1
- Ensemble Dynamics and Bred Vectors N. Balci et al. 10.1175/MWR-D-10-05054.1
- Predictability of the thermally driven laboratory rotating annulus R. Young & P. Read 10.1002/qj.2694
- Attractor radius and global attractor radius and their application to the quantification of predictability limits J. Li et al. 10.1007/s00382-017-4017-y
- Estimating trajectory uncertainties due to flow dependent errors in the atmospheric analysis A. Engström & L. Magnusson 10.5194/acp-9-8857-2009
- Coupled bred vectors in the tropical Pacific and their application to ENSO prediction Y. Ham et al. 10.1016/j.pocean.2012.04.005
- Adaptive covariance relaxation methods for ensemble data assimilation: experiments in the real atmosphere S. Kotsuki et al. 10.1002/qj.3060
- Comparison of Local Ensemble Transform Kalman Filter, 3DVAR, and 4DVAR in a Quasigeostrophic Model S. Yang et al. 10.1175/2008MWR2396.1
- Bred Vectors and Tropical Pacific Forecast Errors in the NASA Coupled General Circulation Model S. Yang et al. 10.1175/2007MWR2118.1
- Diagnosing the possible dynamics controlling Sahel precipitation in the short-range ensemble community atmospheric model hindcasts Y. Tseng et al. 10.1007/s00382-016-2995-9
- Impact of the surface temperature and vertical shear of zonal wind on the dynamics of a simple two-layer model of the atmosphere R. Brojewski et al. 10.2478/s11600-006-0035-6
- New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector J. Kug et al. 10.1007/s00382-009-0664-y
- The geometric norm improves ensemble forecasting with the breeding method D. Pazó et al. 10.1002/qj.2115
- Coupled initialization in an ocean–atmosphere tropical cyclone prediction system P. Sandery & T. O'Kane 10.1002/qj.2117
- Predicting air quality: Improvements through advanced methods to integrate models and measurements G. Carmichael et al. 10.1016/j.jcp.2007.02.024
- Ensemble singular vectors and their use as additive inflation in EnKF S. Yang et al. 10.3402/tellusa.v67.26536
- Ensemble singular vectors as additive inflation in the Local Ensemble Transform Kalman Filter (LETKF) framework with a global NWP model S. Shin et al. 10.1002/qj.3429
- Handling Nonlinearity in an Ensemble Kalman Filter: Experiments with the Three-Variable Lorenz Model S. Yang et al. 10.1175/MWR-D-11-00313.1
- Bred vectors of the Lorenz63 system Y. Zhang et al. 10.1007/s00376-015-4275-8
- Identifying Martian atmospheric instabilities and their physical origins using bred vectors S. Greybush et al. 10.1002/qj.1990
- Ensemble Kalman filtering without the intrinsic need for inflation M. Bocquet 10.5194/npg-18-735-2011
- Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble prediction K. Saito et al. 10.3402/tellusa.v64i0.11594
- Optimal initial perturbations for El Nino ensemble prediction with ensemble Kalman filter Y. Ham et al. 10.1007/s00382-009-0582-z
- Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter H. Li et al. 10.1002/qj.371
- Predicting the East Australian Current T. O’Kane et al. 10.1016/j.ocemod.2011.04.003
- The Application of Nonlinear Local Lyapunov Vectors to Ensemble Predictions in Lorenz Systems J. Feng et al. 10.1175/JAS-D-13-0270.1
- Tailored Ensemble Prediction Systems: Application of Seamless Scale Bred Vectors A. HERMOSO et al. 10.2151/jmsj.2020-053
- Empirical singular vector method for ensemble El Niño–Southern Oscillation prediction with a coupled general circulation model J. Kug et al. 10.1029/2010JC006851
- Ensemble kalman variational objective: a variational inference framework for sequential variational auto-encoders T. Ishizone et al. 10.1587/nolta.14.691
- Maximizing the Statistical Diversity of an Ensemble of Bred Vectors by Using the Geometric Norm D. Pazó et al. 10.1175/2011JAS3729.1
- Model error and sequential data assimilation: A deterministic formulation A. Carrassi et al. 10.1002/qj.284
- Flow-dependent empirical singular vector with an ensemble Kalman filter data assimilation for El Nino prediction Y. Ham & M. Rienecker 10.1007/s00382-012-1302-7
- Impact Analysis of Variable Resolution of MPAS on Intrinsic Predictability Using Bred Vectors J. Kang et al. 10.3390/atmos13122070
- The Relationship between Deterministic and Ensemble Mean Forecast Errors Revealed by Global and Local Attractor Radii J. Feng et al. 10.1007/s00376-018-8123-5
- Proper orthogonal decomposition reduced-order model of the global oceans V. Kitsios et al. 10.1007/s00162-024-00719-9
- The temporal cascade structure of reanalyses and global circulation models J. Stolle et al. 10.1002/qj.1916
- Data Assimilation as Synchronization of Truth and Model: Experiments with the Three-Variable Lorenz System* S. Yang et al. 10.1175/JAS3739.1
- Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models A. Sandu et al. 10.1260/1748-3018.5.4.667
- The 1000-Member Ensemble Kalman Filtering with the JMA Nonhydrostatic Mesoscale Model on the K Computer M. KUNII 10.2151/jmsj.2014-607
- Comparison of Nonlinear Local Lyapunov Vectors and Bred Vectors in Estimating the Spatial Distribution of Error Growth J. Feng et al. 10.1175/JAS-D-17-0266.1
- Stochastically perturbed bred vectors in multi‐scale systems B. Giggins & G. Gottwald 10.1002/qj.3457
- Investigating atmospheric predictability on Mars using breeding vectors in a general‐circulation model C. Newman et al. 10.1256/qj.03.209
- Bred Vector and ENSO Predictability in a Hybrid Coupled Model during the Period 1881–2000 Y. Tang & Z. Deng 10.1175/2010JCLI3491.1
- Stochastically perturbed bred vectors in single‐scale systems B. Giggins & G. Gottwald 10.1002/qj.3888
- A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF S. Kotsuki et al. 10.5194/gmd-15-8325-2022
- Reducing manipulations in a control simulation experiment based on instability vectors with the Lorenz-63 model M. Ouyang et al. 10.5194/npg-30-183-2023
- A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics R. Bannister 10.1002/qj.340
- A fast, single-iteration ensemble Kalman smoother for sequential data assimilation C. Grudzien & M. Bocquet 10.5194/gmd-15-7641-2022
- Forecast Sensitivity Observation Impact in the 4DVAR and Hybrid-4DVAR Data Assimilation Systems S. Kim & H. Kim 10.1175/JTECH-D-18-0240.1
- Logarithmic bred vectors. A new ensemble method with adjustable spread and calibration time C. Primo et al. 10.1029/2007JD008998
- Model Error Representation Using the Stochastically Perturbed Hybrid Physical–Dynamical Tendencies in Ensemble Data Assimilation System S. Lim et al. 10.3390/app10249010
- Low-dimensional nonlinearity of ENSO and its impact on predictability Y. Tang & Z. Deng 10.1016/j.physd.2009.11.006
Latest update: 21 Nov 2024
Special issue