Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
Volume 9, issue 5/6
Nonlin. Processes Geophys., 9, 399–407, 2002
https://doi.org/10.5194/npg-9-399-2002
© Author(s) 2002. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: New Perspectives in Magnetospheric Dynamics: Chaos, Fractals,...

Nonlin. Processes Geophys., 9, 399–407, 2002
https://doi.org/10.5194/npg-9-399-2002
© Author(s) 2002. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  31 Dec 2002

31 Dec 2002

Evaluation on the analogy between the dynamic magnetosphere and a forced and/or self-organized critical system

A. T. Y. Lui A. T. Y. Lui
  • The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723, USA

Abstract. The dissipation power and size of auroral blobs are investigated in detail to examine the possible analogy between the dynamic magnetosphere and a forced and/or self-organized critical system. The distributions of these auroral parameters are sorted in terms of different levels of activity, namely substorms, pseudo-breakups, and quiet conditions. A power law (scale-free) component is seen in all these distributions. In addition, a peak distribution is found for substorm intervals and a hump for pseudo-breakup intervals. The peak distribution is present prominently during magnetic storms, i.e. when the magnetosphere is strongly driven by the solar wind. It is interpreted that the scale-free component is associated with the activity of the diffuse aurora, corresponding to disturbances at all permissible scales within the plasma sheet. Ionospheric feedback appears to be essential for the presence of two components in the distribution for auroral dissipation power. These results are consistent with the concept that the magnetosphere is in a forced and/or self-organized critical state, although they do not constitute conclusive evidence for the analogy.

Publications Copernicus
Download
Citation