Articles | Volume 8, issue 1/2
Nonlin. Processes Geophys., 8, 55–67, 2001
https://doi.org/10.5194/npg-8-55-2001
Nonlin. Processes Geophys., 8, 55–67, 2001
https://doi.org/10.5194/npg-8-55-2001

  30 Apr 2001

30 Apr 2001

Long range predictability of atmospheric flows

R. Robert1 and C. Rosier2 R. Robert and C. Rosier
  • 1CNRS UMR 5582, Institut Fourier, 100 Rue des mathématiques, BP 74, 38402 Saint Martin d’Hères Cedex, France
  • 2CNRS UMR 5585, Laboratoire d’analyse numérique, Université Lyon 1, 43 Bd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

Abstract. In the light of recent advances in 2D turbulence, we investigate the long range predictability problem of atmospheric flows. Using 2D Euler equations, we show that the full nonlinearity acting on a large number of degrees of freedom can, paradoxically, improve the predictability of the large scale motion, giving a picture opposite to the one largely popularized by Lorenz: a small local perturbation of the atmosphere will progressively gain larger and larger scales by nonlinear interaction and will finally cause large scale change in the atmospheric flow.

Download