Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
Volume 4, issue 4
Nonlin. Processes Geophys., 4, 223–235, 1997
https://doi.org/10.5194/npg-4-223-1997
© Author(s) 1997. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Nonlin. Processes Geophys., 4, 223–235, 1997
https://doi.org/10.5194/npg-4-223-1997
© Author(s) 1997. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  31 Dec 1997

31 Dec 1997

Eddy growth and mixing in mesoscale oceanographic flows

G. Haller and A. C. Poje G. Haller and A. C. Poje
  • Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA

Abstract. We study the relation between changes in the Eulerian topology of a two dimensional flow and the mixing of fluid particles between qualitatively different regions of the flow. In general time dependent flows, streamlines and particle paths are unrelated. However, for many mesoscale oceanographic features such as detaching rings and meandering jets, the rate at which the Euierian structures evolve is considerably slower than typical advection speeds of Lagrangian tracers. In this note we show that for two-dimensional, adiabatic fluid flows there is a direct relationship between observable changes in the topology of the Eulerian field and the rate of transport of fluid particles. We show that a certain class of flows is amenable to adiabatic or near adiabatic analysis, and, as an example, we use our results to study the chaotic mixing in the Dutkiewicz and Paldor (1994) kinematic model of the interaction of a meandering barotropic jet with a strong eddy.

Publications Copernicus
Download
Citation