Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
Volume 21, issue 2
Nonlin. Processes Geophys., 21, 505–519, 2014
https://doi.org/10.5194/npg-21-505-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Complex network approaches to analyzing and modeling nonlinear...

Nonlin. Processes Geophys., 21, 505–519, 2014
https://doi.org/10.5194/npg-21-505-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Apr 2014

Research article | 14 Apr 2014

Force chain and contact cycle evolution in a dense granular material under shallow penetration

A. Tordesillas1,2,3, C. A. H. Steer1, and D. M. Walker1 A. Tordesillas et al.
  • 1Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
  • 2School of Earth Sciences, University of Melbourne, Victoria 3010, Australia
  • 3Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708, USA

Abstract. The mechanical response of a dense granular material submitted to indentation by a rigid flat punch is examined. The resultant deformation is viewed as a process of self-organisation. Four aspects of the mechanical response (i.e. indentation resistance, failure, Reynolds' dilatancy, the undeforming "dead zone") are explored with respect to the linear and cyclic structural building blocks of granular media self-organisation: force chains and contact network cycles. Formation and breaking of 3-cycle contacts preferentially occur around and close to the punch uncovering a "dilation zone". This zone encapsulates (i) most of the indentation resistance and is populated by force chains consisting of six or more particles, (ii) all buckling force chains, and (iii) a central, near-triangular, undeforming cluster of grains beneath the punch face. Force chain buckling is confined to the zone's outer regions, beneath the corners and to the sides of the punch where surface material heave forms. Grain rearrangements here involve the creation of 6-, 7-, and 8-cycles – in contrast with Reynolds' postulated cubic packing rearrangements (i.e. 3-cycles opening up to form 4-cycles). In between these intensely dilatant regions lies a compacted triangular grain cluster which moves in near-rigid body with the punch when jammed, but this dead zone unjams and deforms in the failure regimes when adjacent force chains buckle. The long force chains preferentially percolate from the punch face, through the dead zone, fanning downwards and outwards into the material.

Publications Copernicus
Download
Citation