Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
Volume 20, issue 6
Nonlin. Processes Geophys., 20, 945–954, 2013
https://doi.org/10.5194/npg-20-945-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Nonlinear dynamics in oceanic and atmospheric flows: theory...

Nonlin. Processes Geophys., 20, 945–954, 2013
https://doi.org/10.5194/npg-20-945-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Nov 2013

Research article | 06 Nov 2013

Numerical investigation of algebraic oceanic turbulent mixing-layer models

T. Chacón-Rebollo1, M. Gómez-Mármol2, and S. Rubino1 T. Chacón-Rebollo et al.
  • 1Dpto. EDAN & IMUS, Universidad de Sevilla, C/Tarfia, s/n. 41012, Seville, Spain
  • 2Dpto. EDAN, Universidad de Sevilla, C/Tarfia, s/n. 41012, Seville, Spain

Abstract. In this paper we investigate the finite-time and asymptotic behaviour of algebraic turbulent mixing-layer models by numerical simulation. We compare the performances given by three different settings of the eddy viscosity. We consider Richardson number-based vertical eddy viscosity models. Two of these are classical algebraic turbulence models usually used in numerical simulations of global oceanic circulation, i.e. the Pacanowski–Philander and the Gent models, while the other one is a more recent model (Bennis et al., 2010) proposed to prevent numerical instabilities generated by physically unstable configurations. The numerical schemes are based on the standard finite element method. We perform some numerical tests for relatively large deviations of realistic initial conditions provided by the Tropical Atmosphere Ocean (TAO) array. These initial conditions correspond to states close to mixing-layer profiles, measured on the Equatorial Pacific region called the West-Pacific Warm Pool. We conclude that mixing-layer profiles could be considered as kinds of "absorbing configurations" in finite time that asymptotically evolve to steady states under the application of negative surface energy fluxes.

Publications Copernicus
Download
Citation