Articles | Volume 20, issue 5
Nonlin. Processes Geophys., 20, 921–933, 2013

Special issue: Nonlinear dynamics in oceanic and atmospheric flows: theory...

Nonlin. Processes Geophys., 20, 921–933, 2013

Research article 31 Oct 2013

Research article | 31 Oct 2013

Lagrangian transport in a microtidal coastal area: the Bay of Palma, island of Mallorca, Spain

I. Hernández-Carrasco1, C. López1, A. Orfila2, and E. Hernández-García1 I. Hernández-Carrasco et al.
  • 1IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), 07122 Palma de Mallorca, Spain
  • 2IMEDEA, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), 07190 Esporles, Spain

Abstract. Coastal transport in the Bay of Palma, a small region in the island of Mallorca, Spain, is characterized in terms of Lagrangian descriptors. The data sets used for this study are the output for two months (one in autumn and one in summer) of a high resolution numerical model, ROMS (Regional Ocean Model System), forced atmospherically and with a spatial resolution of 300 m. The two months were selected because of their different wind regime, which is the main driver of the sea dynamics in this area. Finite-size Lyapunov exponents (FSLEs) were used to locate semi-persistent Lagrangian coherent structures (LCS) and to understand the different flow regimes in the bay. The different wind directions and regularity in the two months have a clear impact on the surface bay dynamics, whereas only topographic features appear clearly in the bottom structures. The fluid interchange between the bay and the open ocean was studied by computing particle trajectories and residence time (RT) maps. The escape rate of particles out of the bay is qualitatively different, with a 32% greater escape rate of particles to the ocean in October than in July, owing to the different geometric characteristics of the flow. We show that LCSs separate regions with different transport properties by displaying spatial distributions of residence times on synoptic Lagrangian maps together with the location of the LCSs. Correlations between the time-dependent behavior of FSLE and RT are also investigated, showing a negative dependence when the stirring characterized by FSLE values moves particles in the direction of escape.