Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
Volume 20, issue 1
Nonlin. Processes Geophys., 20, 179–188, 2013
https://doi.org/10.5194/npg-20-179-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Nonlinear dynamics of the coastal zone

Nonlin. Processes Geophys., 20, 179–188, 2013
https://doi.org/10.5194/npg-20-179-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Feb 2013

Research article | 26 Feb 2013

A typical wave wake from high-speed vessels: its group structure and run-up

I. Didenkulova1,2 and A. Rodin1,2 I. Didenkulova and A. Rodin
  • 1Laboratory of Wave Engineering, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
  • 2Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia

Abstract. High-amplitude water waves induced by high-speed vessels are regularly observed in Tallinn Bay, the Baltic Sea, causing intense beach erosion and disturbing marine habitants in the coastal zone. Such a strong impact on the coast may be a result of a certain group structure of the wave wake. In order to understand it, here we present an experimental study of the group structure of these wakes at Pikakari beach, Tallinn Bay. The most energetic vessel waves at this location (100 m from the coast at the water depth 2.7 m) have amplitudes of about 1 m and periods of 8–10 s and cause maximum run-up heights on a beach up to 1.4 m. These waves represent frequency modulated packets where the largest and longest waves propagate ahead of other smaller amplitude and period waves. Sometimes the groups of different heights and periods can be separated even within one wave wake event. The wave heights within a wake are well described by the Weibull distribution, which has different parameters for wakes from different vessels. Wave run-up heights can also be described by Weibull distribution and its parameters can be connected to the parameters of the distribution of wave heights 100 m from the coast. Finally, the run-up of individual waves within a packet is studied. It is shown that the specific structure of frequency modulated wave packets, induced by high-speed vessels, leads to a sequence of high wave run-ups at the coast, even when the original wave heights are rather moderate. This feature can be a key to understanding the significant impact on coasts caused by fast vessels.

Publications Copernicus
Download
Citation