Articles | Volume 18, issue 5
Research article
12 Oct 2011
Research article |  | 12 Oct 2011

Inferring internal properties of Earth's core dynamics and their evolution from surface observations and a numerical geodynamo model

J. Aubert and A. Fournier

Abstract. Over the past decades, direct three-dimensional numerical modelling has been successfully used to reproduce the main features of the geodynamo. Here we report on efforts to solve the associated inverse problem, aiming at inferring the underlying properties of the system from the sole knowledge of surface observations and the first principle dynamical equations describing the convective dynamo. To this end we rely on twin experiments. A reference model time sequence is first produced and used to generate synthetic data, restricted here to the large-scale component of the magnetic field and its rate of change at the outer boundary. Starting from a different initial condition, a second sequence is next run and attempts are made to recover the internal magnetic, velocity and buoyancy anomaly fields from the sparse surficial data. In order to reduce the vast underdetermination of this problem, we use stochastic inversion, a linear estimation method determining the most likely internal state compatible with the observations and some prior knowledge, and we also implement a sequential evolution algorithm in order to invert time-dependent surface observations. The prior is the multivariate statistics of the numerical model, which are directly computed from a large number of snapshots stored during a preliminary direct run. The statistics display strong correlation between different harmonic degrees of the surface observations and internal fields, provided they share the same harmonic order, a natural consequence of the linear coupling of the governing dynamical equations and of the leading influence of the Coriolis force. Synthetic experiments performed with a weakly nonlinear model yield an excellent quantitative retrieval of the internal structure. In contrast, the use of a strongly nonlinear (and more realistic) model results in less accurate static estimations, which in turn fail to constrain the unobserved small scales in the time integration of the evolution scheme. Evaluating the quality of forecasts of the system evolution against the reference solution, we show that our scheme can improve predictions based on linear extrapolations on forecast horizons shorter than the system e-folding time. Still, in the perspective of forthcoming data assimilation activities, our study underlines the need of advanced estimation techniques able to cope with the moderate to strong nonlinearities present in the geodynamo.