Articles | Volume 12, issue 4
Nonlin. Processes Geophys., 12, 557–567, 2005

Special issue: Nonlinear deterministic dynamics in hydrologic systems: present...

Nonlin. Processes Geophys., 12, 557–567, 2005

  07 Jun 2005

07 Jun 2005

Aggregation and sampling in deterministic chaos: implications for chaos identification in hydrological processes

J. D. Salas1, H. S. Kim2, R. Eykholt3, P. Burlando4, and T. R. Green5 J. D. Salas et al.
  • 1Department of Civil Engineering, Colorado State University, Fort Collins, Colorado, USA
  • 2Department of Civil Engineering, Inha University, Incheon, Korea
  • 3Department of Physics, Colorado State University, Fort Collins, Colorado, USA
  • 4Institute of Hydromechanics & Water Resources Management, ETH Hoenggerberg, 8093 Zurich, Switzerland
  • 5Agriculture Research Service, USDA, Fort Collins, Colorado, USA

Abstract. A review of the literature reveals conflicting results regarding the existence and inherent nature of chaos in hydrological processes such as precipitation and streamflow, i.e. whether they are low dimensional chaotic or stochastic. This issue is examined further in this paper, particularly the effect that certain types of transformations, such as aggregation and sampling, may have on the identification of the dynamics of the underlying system. First, we investigate the dynamics of daily streamflows for two rivers in Florida, one with strong surface and groundwater storage contributions and the other with a lesser basin storage contribution. Based on estimates of the delay time, the delay time window, and the correlation integral, our results suggest that the river with the stronger basin storage contribution departs significantly from the behavior of a chaotic system, while the departure is less significant for the river with the smaller basin storage contribution. We pose the hypothesis that the chaotic behavior depicted on continuous precipitation fields or small time-step precipitation series becomes less identifiable as the aggregation (or sampling) time step increases. Similarly, because streamflows result from a complex transformation of precipitation that involves accumulating and routing excess rainfall throughout the basin and adding surface and groundwater flows, the end result may be that streamflows at the outlet of the basin depart from low dimensional chaotic behavior. We also investigate the effect of aggregation and sampling using series derived from the Lorenz equations and show that, as the aggregation and sampling scales increase, the chaotic behavior deteriorates and eventually ceases to show evidence of low dimensional determinism.