Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 1.558
IF1.558
IF 5-year value: 1.475
IF 5-year
1.475
CiteScore value: 2.8
CiteScore
2.8
SNIP value: 0.921
SNIP0.921
IPP value: 1.56
IPP1.56
SJR value: 0.571
SJR0.571
Scimago H <br class='widget-line-break'>index value: 55
Scimago H
index
55
h5-index value: 22
h5-index22
Volume 10, issue 6
Nonlin. Processes Geophys., 10, 589–597, 2003
https://doi.org/10.5194/npg-10-589-2003
© Author(s) 2003. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Nonlin. Processes Geophys., 10, 589–597, 2003
https://doi.org/10.5194/npg-10-589-2003
© Author(s) 2003. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  31 Dec 2003

31 Dec 2003

Linear and nonlinear modulus surfaces in stress space, from stress-strain measurements on Berea sandstone

M. Boudjema1, I. B. Santos1, K. R. McCall1, R. A. Guyer2, and G. N. Boitnott3 M. Boudjema et al.
  • 1Department of Physics, University of Nevada, Reno, USA
  • 2Department of Physics, University of Massachusetts, Amherst, USA
  • 3New England Research Incorporated, White River Junction, Vermont, USA

Abstract. The elastic response of many rocks to quasistatic stress changes is highly nonlinear and hysteretic, displaying discrete memory. Rocks also display unusual nonlinear response to dynamic stress changes. A model to describe the elastic behavior of rocks and other consolidated materials is called the Preisach-Mayergoyz (PM) space model. In contrast to the traditional analytic approach to stress-strain, the PM space picture establishes a relationship between the quasistatic data and a number density of hysteretic mesoscopic elastic elements in the rock. The number density allows us to make quantitative predictions of dynamic elastic properties. Using the PM space model, we analyze a complex suite of quasistatic stress-strain data taken on Berea sandstone. We predict a dynamic bulk modulus and a dynamic shear modulus surface as a function of mean stress and shear stress. Our predictions for the dynamic moduli compare favorably to moduli derived from time of flight measurements. We derive a set of nonlinear elastic constants and a set of constants that describe the hysteretic behavior of the sandstone.

Publications Copernicus
Download
Citation