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Abstract. In this study the multi-scale dynamics of 38 oceanic and atmospheric pCO2 time series from fixed Eulerian buoys

recorded with three-hour resolution are considered and their multifractal properties are demonstrated. The difference between

these time series, the sea surface temperature and the sea surface salinity data were also studied. These series possess multi-scale

turbulent-like fluctuations and display scaling properties from three hours to the annual scale. Scaling exponents are estimated

through Fourier analysis and their average quantities considered globally for all parameters, as well as for different ecosystems5

such as coastal shelf, coral reefs and open ocean. Sea surface temperature is the only parameter for which a spectral slope close

to 5/3 is found, corresponding to a passive scalar in homogeneous and isotropic turbulence. The other parameters had smaller

spectral slopes, from 1.22 to 1.45. By using empirical mode decomposition of the time series, together with generalized Hilbert

spectral analysis, the intermittency of the time series was considered in the multifractal framework. Concave moment functions

were estimated and Hurst index H and intermittency parameters µ estimated in the framework of a lognormal multifractal fit.10

We obtained mean values of H = 0.26 and 0.21 respectively for oceanic and atmospheric pCO2 time series and µ= 0.08 for

both. It is the first time that atmospheric and oceanic pCO2 and their difference ∆pCO2 are studied using such intermittent

turbulence framework. The ∆pCO2 time series was shown to possess power-law scaling with an exponent of β = 1.36±0.19.

1 Introduction: turbulent CO2 fluxes at the air-sea interface

Anthropogenic global carbon dioxide (CO2) emissions have been rising since the last century (Pathak et al., 2022; Liu et al.,15

2022), increasing from around 4.6± 0.7 GtC y-1 in the 1960s to around 11.1± 0.9 GtC y-1 in recent years (Friedlingstein

et al., 2023), and are linked with climate change (Anderson et al., 2016; Alola and Kirikkaleli, 2021). These emissions are

partially counterbalanced by different mechanisms at different scales, from climate to small scale turbulence. This is especially

true in the oceans (Sabine et al., 2004), which absorbs around 25 % of annual anthropogenic emissions (Friedlingstein et al.,

2023). It is known that several other mechanisms influence the CO2 dynamics in the ocean and the atmosphere at different20

spatial and temporal scales. For example, terrestrial biology (Keenan et al., 2012; Crisp et al., 2022), land chemistry (Roland

et al., 2013), volcanism and human activities (Yue and Gao, 2018) can lead to variations of atmospheric CO2. Furthermore,
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the ocean plays a major role in the carbon cycle through its interactions with the atmosphere and can absorb or release CO2

via physical and biological pumps (De La Rocha and Passow, 2014; Yamamoto et al., 2018). These pumps are composed of

numerous oceanic processes which also enable carbon sequestration at different timescales in the water column, e.g. through25

phytoplankton blooms and the thermo-haline circulation (Falkowski et al., 2000; De La Rocha and Passow, 2014) and in the

sediment (Henson et al., 2019).

Globally, at large temporal (e.g. annual) and spatial (e.g. planetary) scales, the ocean is a sink of CO2. However, locally

in time and space, the ocean may be a sink or a source of CO2. In order to understand this better, in situ observations are

necessary. Here we consider high-frequency fixed points data at different parts of the global ocean, and focus on the influence30

of multiscale turbulence on their flux. The air-sea CO2 flux is usually written as (Wanninkhof, 2014):

FCO2
= k(U) ·K0 ·∆pCO2 (1)

where K0 is the solubility (mol L-1 atm-1), k(U) is the gas transfer velocity (cm h-1) which depends on the surface wind speed

U , and ∆pCO2 = pCO2 sw − pCO2 air is the difference between partial pressures of CO2 in equilibrium with surface water

and in the air above the seawater. Turbulence has a direct influence on the different components of this formula: K0 depends on35

temperature and salinity, which are turbulent scalars, k depends on wind turbulence on the atmospheric surface, and ∆pCO2

depends on two scalars both advected by turbulence. Since k and K0 are both positive parameters, the direction of the flux is

determined in the difference ∆pCO2: when ∆pCO2 > 0, the flux goes from the sea to the atmosphere, and when ∆pCO2 < 0

the ocean is locally a sink of CO2. In this work we focus on the scaling properties of atmospheric and oceanic CO2 partial

pressures and on their difference, using a database of Eulerian time series recorded at a time resolution of 3 hours. This is40

considered as high-frequency measurement, compared to lower-frequency measurements done from e.g. weekly or monthly

sampling. In oceanography, previous work from temperature Eulerian sampling (Derot et al., 2016) on pH and carbonate

dynamics (Schmitt et al., 2008; Zongo and Schmitt, 2011), as well as works in atmospheric turbulence in the boundary-layer

(Schmitt et al., 1994; Katul et al., 1995; Schmitt, 2007; Calif and Schmitt, 2012, 2014) have shown that turbulent fluctuations

at fixed points can be detected from hourly scales to a large scale of about 3 months. This means that in agreement with the45

Richardson cascade theory (Richardson, 1922), there is an inertial range where turbulence influence is present over a rather

large range of scales from the largest (e.g. months) to the smallest (e.g. seconds). The present data set is therefore analyzed

here using methods from the field of turbulence in order to consider pCO2 scaling properties.

In the following section, the database chosen in this work is presented in section 2. Then the power spectral exponents are

given and their averaged values are discussed in section 3. Section 4 presents intermittency analysis and the discussion and50

conclusion of this work are in section 5.

2 Presentation of the database

In this work, a published in situ observational database provided by Sutton et al. (2018, 2019) is analyzed. It contains obser-

vations from 40 fixed-point autonomous buoys distributed in the Pacific, Indian, Southern and Atlantic oceans. Two sites were

2



Figure 1. Maps of the position of 38 fixed position observation time series adapted from Sutton et al. (2018) with the same classification

corresponding to a color code for coastal shelf buoys, coral reefs, and open ocean ecosystems.
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Figure 2. Portions of time series from the BOBOA (Bay of Bengal, Indian Ocean), Cheeca Rocks (Caribbean, North Atlantic Ocean) and

Gulf of Maine (North Atlantic Ocean) buoys: (a) the sea surface temperature and salinity, (b) the atmospheric and oceanic pCO2, and (c)

their difference.

discarded due to different sampling frequencies, and we have considered here 38 time series, whose locations are illustrated55

in Fig. 1 and are listed in the Appendix. For each buoy, the following parameters are recorded every 3 hours: sea surface

temperature (SST), sea surface salinity (SSS), seawater partial pressure of CO2 (pCO2 sw) and atmospheric partial pressure of

CO2 (pCO2 air). SST and SSS are measured using a multiparameter sonde (Sea-Bird Electronics 16plus V2 SeaCAT or a SBE

37 MicroCAT depending on the site) in the upper layer at a depth of about 0.5 m. The pCO2 time series are calculated from

the molar fraction xCO2 by the MAPCO2 sensor, which is an optical sensor measuring the infrared absorption by the air in60
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comparison with the infrared absorption of a reference gas. Atmospheric measures are done between 0.5 and 1 m from the sea

surface (Sutton et al., 2014, 2019).

These buoys are classified by Sutton et al. (2019) in three categories based on the type of ecosystem in which the buoy is

located. In the present work, different properties according to these ecosystems are considered. Among the 38 series, there are

11 series belonging to the coastal shelf, 10 series belonging to coral reefs, and 17 series belonging to the open ocean. Sutton65

et al. (2019) have highlighted the appearance of anthropogenic trends and seasonality. The database has also been used in other

works: Torres et al. (2021) were interested in the mean and extreme diurnal variability of these series and have highlighted their

spatial and temporal properties. These data were also used for pCO2 data modelling purposes (Chau et al., 2022; Kwiatkowski

et al., 2023).

As an example, data from 3 sites, one from each ecosystem type, are shown in Fig. 2. They correspond to the BOBOA (Bay70

of Bengal, open ocean), Cheeca Rocks (Gulf of Mexico, coral reefs) and Gulf of Maine (North Atlantic Ocean, coastal shelf)

time series and illustrate the multiscale variability of all the studied parameters. It is also visible in this figure that for all cases

the time series of pCO2 air presents less relative fluctuations than pCO2 sw. In order to consider this property for all series, the

mean, the standard deviation, and the variation coefficient (ratio of the standard deviation to the mean value) of atmospheric

and oceanic CO2 partial pressures are estimated for all buoys. These quantities averaged for the three buoy categories are75

reported in Table 1. It shows that pCO2 air presents much less relative fluctuations than pCO2 sw: the mean values are of the

same order of magnitude whereas the variation coefficients are 6 to 8 times lower. For pCO2 air it is between 2 and 3 % and for

pCO2 sw it is between 13 and 25 %. Globally, the variation coefficient for coastal shelves is larger for atmospheric series and

much larger for oceanic time series. For coral reefs and open-ocean ecosystems, the mean and standard deviations are similar.

This property can be explained by the better mixing of the atmosphere (Sarmiento and Gruber, 2002). Indeed, the diffusivity80

coefficient of CO2 in the atmosphere (0.16 cm2 s-1 at 20.1 °C; Pritchard and Currie, 1982) is about 10,000 times higher than

in the seawater (1.6·10-5 cm2 s-1 at 20 °C; Emerson and Hamme, 2022).

Table 1. Statistical values based on all the raw pCO2 time series available in Sutton et al. (2019). The mean and standard deviation values

are given in µatm and variation coefficient are given in %.

Scalar Site category Mean ± σ (µatm) Variation coefficient (%)

pCO2 air Coastal shelf 393 ± 11 2.8

Coral reefs 382 ± 9 2.4

Open ocean 379 ± 9 2.4

pCO2 sw Coastal shelf 348 ± 85 24.4

Coral reefs 407 ± 53 13

Open ocean 406 ± 55 13.5

Next, the difference ∆pCO2 is considered. First, the conditional means and standard deviations of positive and negative

values are estimated, averaged over each site of each category, and shown in Table 2. The order of magnitude of the conditional
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Table 2. Conditional means, standard deviations and average proportions of positive and negative values of all the δ =∆pCO2 (µatm)

time series averaged for each buoy site category. Conditional averages are first estimated for each time series. Then the mean and standard

deviations indicated in the table are estimated from these mean values.

Mean ± σ (µatm) Average proportion (%)

Site category ⟨δ|δ > 0⟩ −⟨δ|δ < 0⟩ p+ =%δ>0 p− =%δ<0

Coastal shelf 50± 37 92± 32 24.7 75.3

Coral reefs 52± 26 26± 19 70.0 30.0

Open ocean 49± 42 22± 18 55.1 44.9

mean for positive values is of the same order for the three categories, while large variations (a ratio greater than 4) are found for85

the conditional average of negative values. For coral reefs and open ocean ecosystems, the overall average of positive values is

much larger (almost double) than the average of negative values (in amplitude). For coastal shelf ecosystems, this proportion is

reversed, and the conditional average of positive values is much smaller in amplitude than the conditional average of negative

values. The sink or source of CO2 of the different ecosystems depends on the proportion of time spent in the negative or

positive values: the global mean can be written as ⟨δ⟩= p+⟨δ|δ > 0⟩+ p−⟨δ|δ < 0⟩. Table 2 indicates that when it is a sink,90

globally the coastal shelf ecosystems are more active sinks compared to coral reefs or open ocean ecosystems. Concerning the

proportion of negative and positive values shown in the same table, it is seen that the coastal shelf sites are much more often

sinks than sources (75 % versus 25 %). For the coral reefs sites, it is the opposite: they are more often sources than sinks (70 %

versus 30 %). In the open ocean, there is a slight proportion in favor of sinks.

The probability density functions (PDF) of ∆pCO2 are also presented in Fig. 3 on a log scale. In these figures, the time95

series of ∆pCO2 are centered (subtraction of the mean and division by the standard deviation) and then considered globally

for each ecosystem (coral reefs, open ocean, coastal shelf). A Gaussian PDF is also shown for comparison. These figures show

that the difference ∆pCO2 is non-Gaussian, except for the negative values of the coastal shelf buoys. In all cases there are

more large positive values than in the Gaussian law. For open ocean buoys the PDF is symmetric whereas for the two other

categories it is asymmetric, with more large positive values than negative ones.100

3 Fourier spectral analysis

Fourier spectral analysis was applied to all series. Some portions of these time series have a time step shorter than 3 hours:

in order to have homogeneous time steps, these portions have been averaged to have a regular sampling of 3 hours. As shown

in Fig. 2, there are also large portions of missing values due to failures in measuring devices or maintenance operations. In

such a case, no interpolation or averaging is performed and the following method is used. First, the autocorrelation function is105

estimated, which by definition can be considered only for existing data and can deal with missing values: C(τ) = ⟨X(t)X(t+

τ)⟩ where X is a stationary time series with zero mean and τ is a time increment. Then the Wiener-Khinchine theorem is used
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Figure 3. Probability density function (PDF) of centered time series of ∆pCO2 considered for each site category. The black dotted lines are

the symmetric PDFs and the grey continuous lines are the Gaussian PDFs. The density has been calculated using a band with of 0.05. The

value represented for the x-axis is the middle value of each range.

to consider the power spectrum as the Fourier transform of the autocorrelation function:

E(f) =

+∞∫
−∞

C(τ)exp(−2iπτf)dτ (2)

where f is the frequency and E(f) the Fourier spectral density. Since time series are considered within the framework of110

turbulence forcing, scaling regimes are expected with the following power-law relation (Gao et al., 2021):

E(f)∼ f−β (3)

where “∼” means proportionality and β > 0 is the spectral slope. Let us recall that in homogeneous and isotropic turbulence,

the famous Kolmogorov 1941 (K41) relation corresponds to a scaling law for the velocity field with a value of β = 5/3
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(Kolmogorov, 1941). In such a framework, passive scalars advected by the turbulent velocity are also scaling with a scaling115

slope value of β = 5/3 (Obukhov, 1949; Corrsin, 1951). In the ocean, temperature and salinity are generally considered to be

passive scalars advected by the turbulent velocity field; whereas other scalars can also be studied, such as dissolved oxygen,

concentrations in nutrients, pH and the concentration or partial pressure of CO2. Other values of the spectral slope have been

reported and can be interpreted as the signature of a chemical or biological activity (Seuront et al., 1996; Schmitt et al., 2008;

Zongo and Schmitt, 2011).120

3.1 Mean values of spectral slopes

Raw Fourier spectra can be quite noisy, preventing clear detection of scaling ranges. To prevent this, each spectrum is averaged

by decade; this does not destroy spectral peaks, but suppresses random fluctuations and provides smoother spectra. Over scaling

ranges detected visually, the precise value of the spectral slope is estimated by using a least squares linear fit applied to the

logarithmic values. To illustrate the scaling power spectra, the Fourier spectral plots are displayed for the three time series in125

Fig. 4, chosen as representative of each ecosystem: BOBOA (Bay of Bengal, open ocean), Cheeca Rocks (Gulf of Mexico,

coral reefs) and Gulf of Maine (North Atlantic Ocean, coastal shelf). In most cases, the scaling is found from the smallest scale

(3 hours to a large scale of 1 year). Peaks are found in many cases for the annual cycle, and also for the daily and 12 hour time

scales, the latter potentially corresponding to the tidal influence. The amplitude of the peaks is not the same for each series. In

some cases (i.e. salinity), the scaling at high frequency is not found below the daily time scale.130

As shown in these figures, the values of the spectral slopes are variable in the range of 0.7 to 2.26 depending on the time

series. This is performed for all 38 × 5 series: a spectral slope is extracted in each case, and finally the mean and standard

deviations estimated over series of both ecosystems are given in Table 3. It is found that the SST is the scalar with the lowest

standard deviation in spectral slopes. The averaged SST spectral slope is also close to the value 5/3, the theoretical value

expected in the case of homogeneous and isotropic turbulence. Only in few cases the SST spectral slopes is much smaller than135

5/3: for TAO8S165E and Kaneohe. The mean spectral slopes for the other scalars are less than 5/3. The mean values for SSS,

seawater pCO2 and ∆pCO2 are close to each other. For the atmospheric pCO2, the averaged spectral slope is the lowest. These

differences in spectral slopes could be due to biological or chemical activity.

Table 3. Mean and strandard deviations of spectral slopes for all 5 parameters, estimated for the 38 global time series.

Scalar Mean ± σ

SST 1.65 ± 0.07

SSS 1.45 ± 0.20

pCO2 air 1.22 ± 0.36

pCO2 sw 1.37 ± 0.21

∆pCO2 1.36 ± 0.19
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Figure 4. Fourier spectra represented in log-log for data from BOBOA (Bay of Bengal, Indian Ocean), Cheeca Rocks (Caribbean, North

Atlantic Ocean) and Gulf of Maine (North Atlantic Ocean) buoys (see Fig. 2). The dotted lines represent the power-law fits and the slopes are

given in each figure for (a) SST and SSS, (b) atmospheric and oceanic pCO2 and (c) their difference. The horizontal dashed lines represent

the range used for the estimation of the slope.

The scaling properties of atmospheric CO2 have been reported in previous work. Spectral slopes close to 5/3 have been

found at high frequencies (typically for scales smaller than a few seconds, from 0.2 to 10 or 25 Hz) for measurements in140

the atmospheric boundary layer over a forest (Anderson et al., 1986), over crop surface (Anderson and Verma, 1985), over

vegetated fields (Ohtaki, 1985; Gao et al., 2020), over the ocean (Ohtaki et al., 1989), or over a littoral area (Sahlée et al., 2008).

A more recent study reported measurements of atmospheric CO2 using a tower 5 meters above the ground in a continental
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Figure 5. Scatter-plots of the Fourier spectral slopes, each dot corresponding to a given time series, and its color corresponding to the

ecosystem site: (a) atmospheric versus sea water pCO2; (b) sea water pCO2 versus the difference ∆pCO2 and also (c) SSS versus SST. The

ellipses are calculated for each ecosystem from a 95 % confidence interval of the multivariate t-distribution. The vertical and horizontal red

dotted lines represent the value 5/3. The black dotted line represents the first bisector y = x.

zone. Scaling properties were found for scales of 10 seconds to 15 minutes, with a scaling slope of β =1.2 (Gao et al., 2020).

This value is closer to the mean value found here for this parameter. However, the scales considered in the present study are145

much larger than the ones used in these works and cannot be directly compared.

Figure 5 represents scatter plots of the spectral slope of some parameters. The first subfigure (Fig. 5a) shows that there is

no direct link between the spectral slopes of the atmospheric and oceanic pCO2; the central figure (Fig. 5b) demonstrates that

there is a direct link between the spectral slope of the marine measurements and of the difference ∆pCO2: this comes from the

fact that, as seen above, the atmospheric measurements display much less relative fluctuations, so that the oceanic fluctuations150

dominate in the difference ∆pCO2. This dominance is reflected in the spectral slopes. The last plot (Fig. 5c) shows that the

temperature values are very close to the theoretical value of 5/3 obtained for homogeneous and isotropic turbulence, while

SSS, which is also often assumed to be a turbulent passive scalar (Thorpe, 2005, 2007) displays scaling properties but with

spectral slopes which are not compatible with a turbulent passive scalar.

3.2 Analysis of spectral slopes for each ecosystem155

Here statistical analysis is done over the spectral slopes of time series belonging to different ecosystems (coastal areas, coral

reefs and open ocean). The different spectral slopes for all 3 ecosystems are represented as boxplots in Fig. 6; the mean values

are also given in Table 4. Concerning SSS, the departure from the passive scalar values is smaller for open-ocean sites. In

coastal areas, the departures from a passive scalar slope could be due to coastal forcing induced by river flows associated with

shallow depths (Crossland et al., 2005). Some sites in the Equatorial Pacific (coral reefs ecosystem) have slopes very different160

from 5/3, which could be due to the associated rainfall in these areas (Turk et al., 2010). For pCO2 air the values for coral reefs

and coastal shelf ecosystems seem similar, while for the open ocean steeper slopes are found. As mentioned above for global
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Figure 6. Representation using boxplots of all Fourier spectral slopes according to the site ecosystem (coastal shelf; coral reefs and open

ocean). The horizontal dashed line corresponds to the theoretical value of 5/3 expected for passive scalars in homogeneous and isotropic

turbulence. The dots signify outliers, indicating values that fall below or above the first or third quartile (respectively) by more than 1.5 times

the interquartile range (distance between the first and third quartiles).

values, for each ecosystem, the spectral slopes for the difference ∆pCO2 are very similar to those for pCO2 sw. Regarding the

latter, it is visible that the spectral slopes are less steep for coral reefs sites: such a strong departure from a passive scalar could

be the effect of strong biological activity in coral reefs. The ellipses shown in Fig. 5 are calculated for each ecosystem from a165

95 % confidence interval of the multivariate t-distribution. They do not differentiate the ecosystems in Figs. 5.

Table 4. Means and standard deviations based on extracted Fourier spectral slopes β for each studied scalar and for each ecosystem.

Scalar Coastal shelf Coral reefs Open ocean

SST 1.66 ± 0.02 1.63 ± 0.11 1.66 ± 0.05

SSS 1.41 ± 0.18 1.36 ± 0.23 1.53 ± 0.17

pCO2 air 1.08 ± 0.28 1.02 ± 0.24 1.44 ± 0.35

pCO2 sw 1.47 ± 0.19 1.2 ± 0.17 1.41 ± 0.18

∆pCO2 1.45 ± 0.18 1.2 ± 0.16 1.38 ± 0.16

3.3 Latitudinal variability of pCO2 spectral slopes

The spatial variation of the spectral exponents of pCO2 are considered in this section, for all series, regardless of the ecosystem

to which they belong. Different bins of unequal length are chosen to perform averages, with approximately the same number

of series in each bin. The result is shown in Fig. 7 where the limits of the bins are shown as dotted lines, and the mean values170

for atmospheric and oceanic partial pressures in CO2 are displayed. The pattern is similar for both curves, with a minimal

slope for tropical values (latitude around 20-30 degrees) in the northern hemisphere and an increase of the spectral slope as one
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Figure 7. Average Fourier spectral slope β̄ in function of the latitude. The red dotted line represent the value 5/3. The ranges of values

used for each point are represented by the black dotted lines: [46.8°S ;0°[ (3 stations), [0° ;20°N[ (9 stations), [20°N ;30°N[ (7 stations),

[30°N ;50°N[ (13 stations) and [50°N ;69°N[ (6 stations).

moves away from this position. This latitudinal gradient can also be explained by the fact that there are more series belonging

to the coral reefs ecosystem in the database for latitudes between 20°N and 30°N.

4 Multifractal intermittency175

4.1 Extraction of intermittency exponents for a time series with periodicities

Turbulent time series are intermittent and possess large fluctuations on many different scales. Such fluctuations are classically

studied by considering structure functions of the form ∆Xτ =X(t+ τ)−X(t), corresponding to time increments at scale

τ . The scaling intermittent properties are considered by estimating the moments of order q of the structure functions (Frisch,

1995; Schmitt and Huang, 2016):180

⟨|∆Xτ |q⟩ ∼ τ ζ(q) (4)

where q > 0 is the moment order (which can be non-integer) and ζ(q) is the scaling exponent of the corresponding moment

function. Larger moments correspond to more intense fluctuations and the whole ζ(q) curve characterizes the multi-scale

intermittency of the time series. The Fourier spectrum corresponds to a moment of order 2: the spectral exponent β is related

with ζ(2): β = 1+ ζ(2).185

Unfortunately, the periodicity in the series, even weak, is known to destroy the scaling properties of structure functions

(Huang et al., 2011; Schmitt and Huang, 2016) and in this case other methods are needed to extract the scaling exponent

ζ(q). This is done here in the spectral space, by using the Hilbert spectral analysis (HSA) associated with empirical mode
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decomposition (EMD), using the generalized HSA method. This method uses first the EMD, which is an algorithm devel-

oped to decompose the original time series into N other time series called intrinsic mode functions (IMFs; Huang et al.,190

1998, 1999; Flandrin et al., 2004). This signal analysis has already been used to study multi-scale variability of CO2 time

series (Landschützer et al., 2016; Zhang et al., 2022). The sum of IMFs Ci(t) and a residue rn(t) give the original signal X(t):

X(t) =

N∑
i=1

Ci(t)+ rn(t) (5)

This iterative algorithm is based on a spline interpolation of local minima and maxima. Each IMF is a zero-mean time series195

localized in the frequency space. Their Hilbert transform is denoted C̃i(t):

C̃i(t) =
1

π
PV

+∞∫
−∞

Ci(τ)

t− τ
dτ (6)

where PV indicates the Cauchy principal value. The analytic signal zi = Ci+ jC̃i is a complex number that can be written as

zi =Ai(t)e
jθi(t), where Ai(t) is the local amplitude and θi(t) the local phase of Ci(t). Leaving the residual, the original signal

can be rewritten as the sum of the real part of all the analytic signals zi as X(t) =Re
∑N

i=1Ai(t)e
jθi(t). This transformation200

needs regular time steps as it done using fast Fourier transform (Huang and Schmitt, 2014). The missing data were so replaced

by the value 0. Here, a local instantaneous frequency is extracted from ω = dθ/dt (where the phase θ(t) is given by θi(t) =

tan−1 C̃i(t)/Ci(t)). When we have the instantaneous frequency information, missing data parts are then excluded in the

following steps. A joint probability density function of frequency and amplitude p(ω,A) is extracted from the data and a

Hilbert power spectrum is computed as L2(ω) =
∫ +∞
0

p(ω,A)A2dA. This Hilbert spectrum is similar to the Fourier spectrum205

E(f) (Huang et al., 2008). To consider the intermittency of the signal in the EMD-HSA framework, the Hilbert marginal

spectrum Lq(ω) is calculated for different statistical moments q (Huang et al., 2008, 2011; Schmitt and Huang, 2016) as

Lq(ω) =
∫ +∞
0

p(ω,A)AqdA. For scaling time series, it has been shown that this can be written as:

Lq(ω)∼ ω−ξ(q) (7)

for frequencies belonging to the scaling range, where the scaling exponent in the amplitude-frequency space ξ(q) is related to210

the structure functions scaling exponents (also called scaling moment function) as ζ(q) = ξ(q)− 1. It was previously shown

using simulations that this EMD-HSA approach, with the estimation of multifractal exponents in the frequency space, is not

affected by the periodicity in the original series (Huang et al., 2011).

This method is applied here to the time series to extract intermittency exponents. There are several intermittency models

published in the literature (Schmitt and Huang, 2016). The classical one is the lognormal model originally proposed by Kol-215

mogorov (Kolmogorov, 1962). This model provides a quadratic expression which is chosen here as a fit of the nonlinear curve

of the ζ(q) function. In this framework the scaling exponent can be written as ζ(q) = qH−K(q) where H = ζ(1) is the Hurst

exponent (usually 0≤H ≤ 1) and K(q) captures the intermittency corrections. In the lognormal framework, only one more

parameter is needed here, the intermittency parameters µ=K(2) = 2H − ζ(2). These two parameters are extracted from the

EMD-HSA exponents ξ(q).220
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Figure 8. Scaling moment function ζ(q) = ξ(q)− 1 of the BOBOA, Cheeca Rocks and Gulf of Maine buoys time series for different

statistical moments q from 0 to 4. The dashed line represents the theoretical relation q/3 linked to a monofractal dynamics with H = 1/3 as

in homogeneous and isotropic turbulence with no intermittency.

4.2 Intermittency analysis of the database

The EMD-HSA method has been applied here only to 28 stations among the 38 studied stations: for the remaining 10 stations

(8 coral reefs and 2 open ocean sites) the scaling of moments of order larger than 2 was destroyed due to a too low number

of data points in the series. The results for the 3 specific stations chosen as representative of the three ecosystems are shown

in Fig. 8, for moments from 0 to 4. The shape of scaling exponent ζ(q) is concave as expected. Some scaling exponents are225

almost linear, which means that the intermittency correction is weak. The overall nonlinear and concave shapes are captured

by the two parameters H and µ. The larger µ, the more important the intermittency corrections are. These parameters are

estimated for each series, and their mean and standard deviation are provided in Table 5. The values of H are estimated from

the first-order moment using the EMD-HSA method, whereas the values of the spectral slopes β are estimated using Fourier

analysis: this means that there may be some slight differences due to the method and intermittency corrections, but globally230

the relation β ≃ 1+2H is approximately valid.

Concerning the intermittency parameter, let us note that if the same procedure is applied to the velocity and passive scalar

in fully developed hydrodynamic turbulence (H = ζ(1) and µ= 2ζ(1)− ζ(2)), we obtain values of H = 0.37 and µ= 0.04

for the velocity field (Schmitt, 2006) and H = 0.38 and µ= 0.12 for the passive scalar field (Schmitt et al., 1996). The values

found here for µ are of the same order of magnitude, and sometimes slightly smaller than what is found for the passive scalar in235

hydrodynamic turbulence. The results obtained show also that overall, the intermittency parameter is greater for the salinity and

atmospheric partial pressure of CO2. It also shows for the first time the multifractal intermittency of oceanic and atmospheric

pCO2 fields.
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Table 5. For all 5 parameters, the Hurst index H and the intermittency parameters µ: mean and standard deviations estimated for the 28 time

series. For homogeneous and isotropic turbulence, the expected value for H is 1/3 with an experimental intermittency parameter µ≃ 0.04.

Scalar H µ

SST 0.36 ± 0.03 0.04 ± 0.04

SSS 0.30 ± 0.09 0.09 ± 0.07

pCO2 air 0.21 ± 0.16 0.08 ± 0.07

pCO2 sw 0.26 ± 0.08 0.08 ± 0.11

∆pCO2 0.24 ± 0.08 0.06 ± 0.09

5 Discussion and conclusion

Here a published database of high-frequency fixed point buoys recorded at 3 hours resolution has been considered. The dy-240

namics of sea surface temperature, sea surface salinity, seawater and atmospheric partial pressure of CO2 and the difference

∆pCO2 have been considered for each site. These quantities are scalars forced and transported by turbulence; they display

large turbulent-like fluctuations at many different scales and their multiscale dynamics have been considered by using the

Fourier transform: it was found that these series have scaling properties from the smallest scale (3 hours) to one year. Mean

spectral slopes have been estimated: the SST possessed spectral slopes on average close to the value of 5/3 corresponding to245

3D passive scalars in homogeneous and isotropic turbulence. The other scalars displayed values of the spectral slope β much

smaller, from about 1.22 to 1.45, indicating a behaviour different from a purely passive scalar of turbulence. Such values have

already been found for other scalars (fluorescence, pH) in marine waters for the same range of scales (Seuront et al., 1996;

Schmitt et al., 2008; Zongo and Schmitt, 2011). Mean values were also estimated in average for different ecosystems (coastal

shelf, coral reefs and the open ocean) and some differences could be detected. There were also latitudinal variations in these250

slopes.

The Kolmogorov-Obukhov-Corrsin slope of 5/3 for passive scalars was obtained through dimensional analysis. Let us em-

phasize here that similar theoretical explanations for the slopes close to 6/5, 4/3 or 5/2 for the scalars considered are not

presently available; in future works dimensional analysis could be explored in this framework.

Power spectra correspond to second-order moments and medium fluctuations. To study the intermittent and multifractal255

properties of the series, the EMD-HSA method was used, since the classical structure function approach cannot be used for

series possessing periodicity as is the case here, with daily and tidal forcing. This approach could not be used for all series

since it needs rather large datasets. It was used for 28 series and the multifractal properties were characterized by considering

a lognormal fit, with the estimation of the Hurst exponent H and the intermittency parameter µ. This showed that in general,

the different time series possess multifractal properties with various intensity of the intermittency exponent (the largest being260

found in SSS and pCO2). We may note also that the approach used here is consistent with previous works involving singular

spectra analysis and assumptions of multifractality for oceanic pCO2 data (Hernández-Carrasco et al., 2015, 2018).
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Considering pCO2 series, one of the interesting points in the present time series is the fact that simultaneous measurements

of atmospheric and oceanic pCO2 are estimated. It was found that the variation coefficient of atmospheric pCO2 (ratio of

standard deviation to the mean) is much lower than for the marine waters with a ratio of 6 to 8. Furthermore, the difference265

∆pCO2 was studied here and shown to be scaling and multifractal and to the best of our knowledges, it is the first time that this

quantity is shown to have multifractal properties. In the framework of the log-normal multifractal model, we have provided the

two parameters H = 0.24 and µ= 0.06. These parameters characterize the intermittency of the CO2 flux between air and water

on the range of scales which was considered here, i.e. in average between days and 1 year. This is clearly related to turbulent

forcing. Since the direction of the flux and the fact that a given site is a sink or a source of CO2, is given by the difference270

∆pCO2, such turbulent forcing is an important point for future studies: (i) perform the same analysis at smaller scales using

higher resolution measurements; (ii) see more precisely how the turbulent forcing influences the sign of the difference, and (iii)

how the intermittency properties of these differences is related with the forcing and the climate of a given site. The influence

of the ecosystem found here for some average values of the parameter β is a first step in this direction.
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Appendix A: Summary of the database

Table A1 contains information about the complete used database: location, category, time coverage, size and proportions of

missing data.
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Table A1. Summary table of all the time series in the database studied (Sutton et al., 2019). The time resolution for each of these time series

is 3 hours.

% of missing data

Station Lat Long Category Start date End date Size SST SSS pCO2 sw pCO2 air ∆pCO2

Cape Elizabeth 47.353 -124.731 Coastal shelf 23/06/2006 06:00 30/10/2015 00:00 27,327 33.29 34.54 35.27 34.76 35.42

CCE2 33.479 -120.814 Coastal shelf 17/01/2010 18:00 28/04/2015 00:00 15,411 13.6 13.61 13.91 14.05 14.27

Chá bă 47.963 -125.958 Coastal shelf 17/07/2010 12:00 09/12/2016 09:00 18,696 49.23 51.24 49.47 49.56 49.61

Coastal MS 30 -88.6 Coastal shelf 12/05/2009 21:00 30/03/2015 15:00 17,183 70 70 70.08 70.1 70.13

GAKOA 59.91 -149.35 Coastal shelf 19/05/2011 21:00 20/01/2017 21:00 16,585 25.63 25.63 25.72 25.88 25.9

Gray’s Reef 31.4 -80.87 Coastal shelf 18/07/2006 09:00 15/10/2015 12:00 27,010 30.55 34.03 39.8 34.25 39.82

Gulf of Maine 43.023 -70.542 Coastal shelf 29/08/2007 03:00 03/11/2015 15:00 23,909 28.57 28.58 29.32 33.31 33.41

Kodiak 57.7 -152.31 Coastal shelf 30/03/2013 00:00 18/04/2016 18:00 8,927 7.11 7.11 7.29 7.36 7.38

M2 56.51 -164.04 Coastal shelf 06/05/2013 06:00 29/05/2016 21:00 8,958 58.26 58.26 58.57 58.58 58.77

NH-10 44.904 -124.778 Coastal shelf 03/04/2014 09:00 28/09/2015 18:00 4,348 36.02 36.02 41.86 36.32 42.04

SEAK 56.26 -134.67 Coastal shelf 29/03/2013 03:00 22/07/2014 06:00 3,842 22.93 22.93 23.48 23.35 23.61

Ala Wai 21.28 -157.85 Coral reefs 07/06/2008 00:00 28/07/2014 18:00 17,943 26.1 26.1 26.48 26.39 26.71

Cheeca Rocks 24.91 -80.624 Coral reefs 08/12/2011 21:00 03/05/2016 12:00 12,862 16.25 16.28 16.47 16.54 16.57

Chuuk 7.46 151.9 Coral reefs 18/11/2011 12:00 28/11/2015 00:00 11,765 4.28 4.28 4.75 4.75 4.81

Crescent Reef 32.4 -64.79 Coral reefs 27/11/2010 03:00 07/07/2015 15:00 13,469 21.69 21.69 21.81 21.82 21.83

CRIMP1 21.428 -157.788 Coral reefs 01/12/2005 03:00 30/05/2008 21:00 7,295 26.1 26.18 26.66 26.68 26.81

CRIMP2 21.458 -157.798 Coral reefs 11/06/2008 00:00 11/03/2013 09:00 13,876 18.52 18.52 19.92 18.67 20.06

Hog Reef 32.46 -64.83 Coral reefs 05/12/2010 03:00 07/01/2015 09:00 11,955 40.61 40.61 40.69 40.65 40.7

Kaneohe 21.48 -157.78 Coral reefs 30/09/2011 03:00 10/10/2016 09:00 14,699 47.79 52.96 53.16 53.13 53.18

Kilo Nalu 21.288 -157.865 Coral reefs 07/06/2008 18:00 02/02/2017 18:00 25,297 59.57 59.57 59.62 59.81 59.83

La Parguera 17.954 -67.051 Coral reefs 16/01/2009 21:00 11/01/2017 12:00 23,334 20.73 20.75 21.67 21.71 21.74

BOBOA 15 90 Open ocean 25/11/2013 15:00 09/01/2017 03:00 9,125 22.9 22.9 23.36 23.2 23.36

BTM 31.5 -64.2 Open ocean 22/10/2005 00:00 01/10/2007 12:00 5,677 11.82 11.87 12.7 12.08 12.74

CCE1 33.48 -122.51 Open ocean 11/11/2008 18:00 26/10/2014 03:00 17,396 45.52 45.52 45.96 45.66 45.97

Iceland 68 -12.67 Open ocean 17/08/2013 03:00 02/11/2014 12:00 3,540 30.23 30.23 30.59 32.01 32.01

JKEO 37.93 146.52 Open ocean 20/02/2007 12:00 03/10/2007 18:00 1,803 0.06 34.83 49.08 48.25 49.25

KEO 32.28 144.58 Open ocean 26/09/2007 21:00 12/08/2015 00:00 23,010 18.04 18.35 20.93 18.57 20.99

Papa 50.13 -144.84 Open ocean 09/06/2007 21:00 16/06/2015 15:00 23,431 20.59 22.37 23.31 22.55 23.34

SOFS -46.8 142 Open ocean 25/11/2011 06:00 15/10/2013 00:00 5,519 31.89 31.89 33 32.43 33.34

Stratus -19.7 -85.6 Open ocean 19/10/2006 21:00 03/04/2015 03:00 24,699 15.84 15.86 22.83 22.85 22.88

TAO110W 0 -110 Open ocean 20/09/2009 06:00 03/06/2017 03:00 22,504 57.84 57.75 63.62 60.57 63.62

TAO125W 0 -125 Open ocean 16/03/2005 03:00 06/02/2017 03:00 34,761 45.55 49.45 55.98 52.98 55.98

TAO140W 0 -140 Open ocean 23/05/2004 06:00 22/03/2015 15:00 31,644 40.74 50.37 55.12 41.63 55.12

TAO155W 0 -155 Open ocean 14/01/2010 15:00 17/11/2014 18:00 14,146 48.13 73.19 74.27 73.6 74.27

TAO165E 0 165 Open ocean 24/02/2010 00:00 03/02/2013 00:00 8,601 41.25 63.26 72.48 69.7 72.48

TAO170W 0 -170 Open ocean 05/07/2005 00:00 15/05/2012 21:00 20,056 35.51 35.51 41.79 36.16 41.82

TAO8S165E -8 165 Open ocean 23/06/2009 03:00 15/11/2011 09:00 7,003 4.4 13.85 14.61 14.29 14.62

WHOTS 22.67 -157.98 Open ocean 20/12/2004 15:00 15/07/2015 00:00 30,868 29.29 28.13 30.72 30.13 30.84
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