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Abstract10

The inherent variability in atmospheric fields, which extends over a wide range of tem-
poral and spatial scales, also gets transferred to energy fields extracted off them. In the
specific case of wind power generation, this can be seen in the theoretical power avail-
able for extraction as well as the empirical power produced by turbines. For modelling
and analyzing them, it is important to quantify their variability, intermittency and correla-15

tions with other interacting fields across scales. To understand the uncertainties involved
in power production, power outputs from four 2MW turbines are analyzed (from an opera-
tional wind farm at Pay d’Othe, 110 km southeast of Paris, France) using the scale invariant
framework of Universal Multifractals (UM). Their scaling properties were compared with
power available at the same location from simultaneously measured wind velocity.20

While statistically analysing the turbine output, the rated power acts like an upper
threshold resulting in biased estimators. This is identified and quantified here using the
theoretical framework of UM and validated using numerical simulations. Understanding
the effect of instrumental thresholds in statistical analysis is important in retrieving actual
fields and modelling them, more so, in wind power production where the uncertainties due25

to turbulence are already a leading challenge. This is expanded in Part 2 where the influence
of rainfall in power production is studied across scales using UM and joint multifractals.
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1. Introduction30

In the increasing global transition towards renewable and carbon-neutral energy, wind
power is extremely attractive as it has some of the lowest carbon emission in life cycle
assessment (Li et al., 2020; Guezuraga et al., 2012; Wiser et al., 2011). The levelized cost
of energy (LCOE, cost including building and operation) has also decreased drastically in
past decades for both offshore and onshore wind power (80% since early 1980, and fur-35

ther 30% in past 5 years) giving it better economic value (Beiter et al., 2021). However,
wind is a fluctuating field and owes its generation mainly to uneven heating of the earth’s
surface by solar radiation and the pressure gradients generated from it. Further, atmo-
spheric turbulence makes the characterization of the field a difficult task (with governing
Navier-Stokes equations still remaining unsolvable). The small-scale fluctuations and in-40

termittency in wind are transferred to power produced; this is further complicated by the
fact that wind turbine hubs are located in the atmospheric boundary layer. In addition, an
improved understanding of turbulence is identified as one of the leading challenges in the
field of wind power by experts (van Kuik et al., 2016). When it comes to the working of
modern turbines, one way to account for wind variations is through variable speed turbines45

and adaptive torque control enabling maximum power capture. However, the commonly
used parameter for control, ’turbulence intensity’ (standard deviation of wind speed divided
by mean wind speed over 10min) cannot fully capture the behaviour (see non-Gaussian be-
haviour of wind velocity in Fig. 1), and is too coarse to represent the variability (active
torque controls should responsive down to a few seconds). Further, this doesn’t consider50

any effect of rain that could get transferred to loads on turbine (Johnson, 2004).
To understand the complex effect of turbulence on power production, along with access

to high-resolution data, an appropriate theoretical framework is required to characterize
intermittency at all scales of measurement. The scale invariant multifractal framework of
Universal Multifractals (UM), which is widely used to study the variability in geophysical55

fields, can be used to characterize this complexity (Schertzer and Lovejoy, 1987, 1997).
Using the framework of UM, Fitton et al. (2011, 2014) studied scaling behaviour and mul-
tifractal properties of wind velocity and torque fluctuations in wind farm test sites (in Ger-
many and Corsica), and made a case for multifractal modelling of atmospheric turbulence.
Multifractality of wind speed and aggregate wind farm power was illustrated in Calif and60

Schmitt (2014) where the coupling between both fields were examined.
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Figure 1: Log-log plot of exceedance probability, Pr(∆v > s), of only positive horizontal velocity increments,
∆v(τ) = v(t + τ)− v(t), during (Dec 2020 to July 2021, at 1Hz from location 1 of RW-Turb meteorological
mast) along with a Gaussian distribution to illustrate latter’s inadequacy. s is a threshold of intensity and τ

here is 15 s.

In light of the scientific perspectives mentioned so far, here we try to characterize the
small-scale fluctuations in wind power production using data from an operational wind
farm at Pays d’Othe, 110 km southeast of Paris, France. However, while analysing the
variability of field using statistical methods, presence of instrumental limits in data can in-65

troduce biases. For example, the effect of instrumental lower threshold is discussed in (Jose
et al., 2021) within the framework of UM analysis using atmospheric extinction coefficient
(σe) as the field. Similarly, there is also the bias from presence of zeroes in data (Gires
et al., 2014). Both of these biases are present in statistical analysis of empirical power from
wind turbine since the turbine is designed to work at a rated power (here, 2MW) and can70

provide zero or negative power (more consumption than production). The major aim of this
paper is to highlight these biases encountered during multifractal analysis and its influence
on direct statistical analysis of turbine power. For the theoretical aspect only the effect of
upper threshold, which is not yet addressed in there literature, is considered here to avoid
complexity. More analysis is intended for a follow-up paper where the influence of rain in75

wind power production is examined along with the coupling of power as a field with other
atmospheric parameters. The details of data collection and quality are presented in the up-
coming section on data and methods; the second part of this section briefly recapitulates the
framework of UM. The biases encountered in the analysis of turbine power are presented
in the section that follows, along with numerical simulations where it is identified and re-80

produced in the framework of UM. Acknowledging these biases, some efforts were made
to characterize the effect of rainfall and wind velocity on turbine power. The final section
concludes the study and summarizes the results.
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2. Data and methods

2.1. Data and instrumentation85

The Rainfall Wind Turbine or Turbulence project (RW-Turb, https://hmco.enpc.
fr/portfolio-archive/rw-turb/), supported by Agence Nationale de la Recherche
(ANR, French National research agency in English), is designed towards understanding
the long and short-term effects of rainfall on wind power production, with simultaneous
high-resolution measurements in an operational wind farm. Interested readers are directed90

to Gires et al. (2022) for an overview of the campaign. To briefly summarize, RW-Turb
measurement campaign (at Pay d’Othe, 110km southeast of Paris, France) consists of a
meteorological mast (can be seen in Fig. 2b, at the right side) in a wind farm (jointly
operated by Boralex: https://www.boralex.com/our-projects-and-sites/ and JP
Énergie Environnement: https://pays-othe-89.parc-eolien-jpee.fr/). Fig. 2a95

shows the location of the project; the nine wind turbines of the Pays d’Othe wind farm
(aligned South-East of it and within a 4km radius) are marked as black vertical crosses
and the meteorological mast as a star (in the middle). Data from four Vestas V-90 (marked
1, 2, 8 and 9 in Fig.2a) are available, two are closer to the meteorological mast and two
are farther from it (≈ 3.5 km from mast). The five turbines of the Molinons wind farm100

in the North are also visible within the 5 km radius (grey vertical crosses). It should also
be noted that a small grove is located just South of the mast at roughly 160m; a larger
one is on the East at roughly 100m. Nearby the mast (i.e. within the 1km radius), there
is a small slope in the North-South direction. The meteorological mast consists of two
sets of optical disdrometers (OTT Parsivel2, 30s; not used in current study), 3D sonic105

anemometers (ThiesCLIMA, 100Hz), and mini meteorological station (1Hz) at heights
roughly 45m and 80m (managed by Hydrology Meteorology and Complexity laboratory
of École des Ponts ParisTech - HM&Co, ENPC).
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Figure 2: a) Map of the Pays d’Othe wind farm (inset: location in France), the meteorological mast is at the
centre and turbines available are numbered - 1, 2, 8 and 9; b) Turbine 1 and the mast; c) Turbine 1 and 2 as
seen from the bottom of the mast. Figures adapted from Gires et al. (2022).

Technical and working information of the turbine can be found in Vestas Wind Sys-
tems A/S (2023). The turbines have a rated power of 2.0MW which is pitch regulated with110

variable speed. The hub height of the turbines is 80m, this is closer to the vertical height of
upper set of devices on the mast (≈ 78m). The turbines have a cut-in wind speed of 4ms−1

and a rated wind speed of 12ms−1. This can be see on power curves in Fig. 3 (last row)
where the turbine register power at cut-in speed and maintain the rated power of 2000kW
after rated wind speed. The cut out speed of Turbine is at 25ms−1 (the extreme x axis point115

of power curves); this is the speed at which turbine stops registering power. Generally the
turbines register positive values of wind power, however, when the power retrieved from
wind is less than that is required for working of turbine it registers negative power. These
can be seen in the power curves as clusters around 0. Along with the wind power, turbine
also provides information of local velocity (at a sampling measurement rate of 15s) which120

is used for internal regulation; this is used for plotting power curves in Fig. 3. The wind
power data used for studies comes from four turbines by Boralex - 1 and 2 located closest
to the mast (can be seen in Fig. 2b, and 8 and 9 located at the farthest end (at a sampling
frequency of 15s).
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Figure 3: Time series of empirical turbine power (first row), and power vs velocity plot with theoretical state
curve of turbine (second row) for the Wind Turbines (1, 2, 8, and 9) at Pays d’Othe.

The temporal evolution and power curves (power vs. velocity, expected curve provided125

by the manufacturer in red) for the turbines are shown in Fig. 3 for 3 months (from 01 Jan
2021 to 01 Mar 2021). There are instances where the turbine failed to produce any power
and had to consume energy for its basic operation. This results in negative values in data,
and for realistic analysis, they were considered as zero. This is why there are clustering of
points at zero in the power curve (Fig. 3e - h).130

In addition to the empirical power provided by turbine, the theoretical power available
for extraction can be obtained by

Pa =
1
2

ρAv3Cp (1)

where ρ is the air density at wind turbine height (hhub), A the swept area of turbine rotor,
v the wind velocity (ms−1) approximated at turbine height and Cp the power coefficient or
Betz coefficient (for Vestas-90 examined here, hhub = 80m; A =6,362m2, and rated power135

is 2MW; Cp was taken as 0.593). Here, Pa is estimated at the same sampling rate as that of
Pt (15s) despite the 3D sonic anemometer and mini meteorological station registering data
at finer sampling rates.

The value of air density is often approximated as 1.255kgm−3 (standard value at sea
level, 15◦C). However, it is known to show fluctuations and reported to have an effect on140

power generation in varying levels (Jung and Schindler, 2019; Ulazia et al., 2018). For
the purpose of this analysis, air density was considered as a varying quantity and estimated
using the current official formula of the International Committee for Weights and Measures
(CIPM), referred to as CIPM-2007 equation which accounts for humidity (Picard et al.,
2008):145
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ρ(T,P,Hr) =
PMa

Z(T,P,Hr)RT (K)

{
1− xv(T,P,Hr)

[
1− Mv

Ma

]}
(2)

where T (◦C), P (Pa) and Hr (0 ≤ Hr ≤ 1) are temperature, pressure and humidity from
Meteorological station at hhub. Other derived parameters are
T (K), air temperature (in K; from T )
Z, compressibility factor (a function of T and P)
R, molar gas constant (Jmol−1 K−1)150

xv, mole fraction of water vapour
Ma, molar mass of dry air (gmol−1)
Mv, molar mass of water (gmol−1)

2.2. Scaling analysis and UM framework
Spectral analysis is widely used for characterizing scaling properties; here, the second-155

order statistics of rain in the frequency domain were examined for power-law scaling as
follows (Mandelbrot, 1982; Schertzer and Lovejoy, 1985).

E(k)≈ k−β (3)

where k corresponds to the wave number and β is the spectral exponent.
However, to fully characterize the complexity of the process, across its intensities and

spatio-temporal variation, information on higher and lower-order statistics is required. For160

this, we use Universal Multifractals (UM), which relies on the assumption of the field be-
ing generated by an underlying cascade process with conserved statistical properties at each
scale, while inheriting the scale invariant properties of Navier-Stokes equations (Schertzer
and Lovejoy, 1987, 1989; Schertzer and Tchiguirinskaia, 2020). In this framework, the
probability of a field exceeding a particular threshold across all scales is captured using the165

scale-invariant notion of singularity (γ) and for a multifractal field this probability scales
according to the resolution (λ : the ratio of L, the outer scale, to l, the observational scale)
with corresponding fractal codimension as the scaling exponent, c(γ) (Schertzer and Love-
joy, 1987, 1988):

p
(
ελ ≥ λ

γ
)
≈ λ

−c(γ) (4)

This relation implies that statistical moments q of the field also scale with resolution170

with moment scaling function K(q) as (Schertzer and Lovejoy, 1987, 1988):

⟨ελ
q⟩ ≈ λ

K(q) (5)

Both function are related by Lengendre transform. For a conservative field in UM
framework Kc(q) can be fully determined with only two parameters, multi-fractality index
α and mean intermittency codimension C1 (Parisi et al., 1985).
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Kc(q) =


C1

α −1
(
qα −q

)
α ̸= 1

C1q lnq α = 1
(6)

C1 measures clustering of average intensity across scales (C1 ∈ [0,1] for 1 dimensional175

fields); when C1 = 0 the field is homogeneous with little variability. α measures how
this clustering changes with respect to intensity levels (α ∈ [0,2]); higher the value of α ,
higher the variability, with α = 0 being a monofractal field where intermittency of extreme
is same as that of mean. If the UM parameters are known, co-dimension function of the
conservative multifractal field, cc(γ) can also be obtained as using Lengendre transform180

(Schertzer and Lovejoy, 1987, 1988; Parisi et al., 1985):

cc(γ) =


C1

(
γ

C1α ′ +
1
α

)α ′

α ̸= 1

C1 exp
(

γ

C1
−1

)
α = 1

(7)

where 1
α
+ 1

α ′ = 1.
For a non conservative field φλ , i.e. a field whose average (⟨φλ ⟩) changes with scales,

a non-conservative parameter H (not to be confused with the Hurst exponent; though for
values > 0 both quantify long range correlations, the latter does not have a simple general185

expression for multifractal process, see appendix for more details) is used in the expression
of scaling (Schertzer and Lovejoy, 1987, 1988; Lovejoy and Schertzer, 2013):

φλ =d
ελ λ

−H (8)

where =d denotes equality in distribution: (X =d Y ⇔∀x : Pr(X > x) = Pr(Y > x)) and ε is
a conservative field characterized with C1 and α . For a conservative field H = 0. For a non-
conservative field with positive H, fractional differentiation is required to retrieve a coarser190

field. Similarly, from a non-conservative field with a negative value of H, the conservative
field is retrieved through fractional integration. H is related to the spectral slope β (Eq. 3)
via the relationship (Tessier et al., 1993):

β = 1+2H −Kc(2) (9)

The scaling behaviour of conservative multifractal fields can be examined using trace
moment (TM) where log-log plot of upscaled fields against resolution λ is taken for each195

moment q (Eq. 5). The quality of scaling is given by the estimate r2 of the linear regression;
the value for q = 1.5 is used as reference. Double trace moment (DTM) is a more robust
version of TM tailored for UM fields where the moment scaling function K(q,η) of the
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field ελ
(η) (the initial field raised to power η at maximum resolution and renormalized) is

expressed as a function of multifractality index α (Lavallée et al., 1993).200

⟨
(
ελ

(η)
)q⟩ ≈ λ

K(q,η) = λ
ηα K(q) (10)

From the above equation, value of α can be obtained as the slope of the linear part when
K(q,η) is represented for a given q as a function of η in log-log plot. Both TM and DTM
techniques give reliable estimates as long as the H < 0.5 for the studied field.

Since multifractal processes are generated by cascade processes, the average values can
get too concentrated over a certain area leading to spurious estimates of moments above a205

particular value of q (at qD, q above which K(q) ≈ +∞). This effect is called divergence
of moments. The convex nature of the functions K(q) and c(γ) are also limited by the
sample size of data, or rather the maximum value of scale-invariant threshold or singularity
(γs) and corresponding moment (qs). Details on its computation can be found in (Schertzer
and Lovejoy, 1992, 1989; Lovejoy and Schertzer, 2007). For reliable statistical estimates210

of the moment scaling function and hence the UM parameters, the moment orders used
should not exceed qs (moment corresponding to maximum singularity) or qD (moment
where divergence happens).

An in depth discussion of the methodological choices we have made, along with an
overview of othermultifractal formalisms along with their strengths and weaknesses is pro-215

vided in Appendix A.

3. Turbine power, biases and associated issues in data analysis

3.1. Turbine power and biases
For Vestas V-90, the rated power is 2MW; this means that the maximum power the

turbine can produce is 2000kW. However, if we calculate the available power as per Eq.220

1, there are many instances where it can go beyond the rated value (see Fig 4c). While
analysing the variability of field using statistical methods, presence of instrumental limits
in data (here an upper limit) can introduce biases. As briefly mentioned in introduction, an
instrumental lower threshold in data can increase α and decrease C1 (Jose et al., 2021). In
addition to this, there is also the bias from presence of zeroes in data (Gires et al., 2014)225

(under estimation of α , deterioration of scaling) which replaced negative values of turbine
power. Fig. 4 shows the real and theoretical turbine power state curve along with the bias
it poses in statistical analysis. Along with the power produced, turbine data also provides
wind velocity at the hub (from a basic sensor installed on the hub), which is used for its
internal monitoring. For research purposes, wind velocity from the 3D anemometer at the230

mast is more desirable as it offers a more reliable measurement (on almost same horizontal
plane as turbine hub). Fig. 4a shows the empirical state curve of turbine with this velocity,
and Fig. 4b shows the same curve with velocity from anemometer. There is considerably
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more scatter with latter. It should be stated that turbines are not in the exact location of
mast (Turbine 8 and 9 are ≈ 3.5km away) and hence approximation of wind velocity from235

mast (for computing theoretical power in Eq. 1) comes with some biases.

Figure 4: Illustration upper threshold (by virtue of rated power of 2000kW) in power produced by turbine:
a) Empirical and theoretical power state curve of turbine 1 with wind velocity from the turbine and b) Wind
velocity from location 1 on the mast, c) Power produced by the turbine (Pt ) and actual wind power available
Pa, and d) Effect of rated power as threshold in time series and effect of negative values in Pt for 1 week long
data - 20 May 2021 to 26 May 2021.

From Fig. 4c and Fig. 4d, it can be clearly seen that the rated power imposes an upper
threshold on turbine power (Pt) while power available (Pa) is the actual underlying field. For
this week long series of Pt , 21.7% of data was at upper threshold and 2.9% were either zero
or negative (taken as zeroes in analysis); this percentage was found to change according to240

data selected. Effect of these limits in UM analysis is shown in Fig. 5.a where the data
in Fig. 4 is treated as an ensemble of 32 minutes. UM analysis was performed on direct
fields as values of H were within the acceptable limits (H < 0.3). A unique scaling regime
from 15 s to 32 min was considered. Presence of rated power clips the values of field, and
results in a reduced value of α for Pt (Fig. 5a: α = 1.36, C1 = 0.00715) from that of Pa (Fig.245

5b: α = 1.93, C1 = 0.01753). Imposition of a similar threshold (Pa <= 2000 = 2000) on
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Pa was found to artificially reduce the estimates (α from 1.93 to 1.39, C1 from 0.10753 to
0.0076) in Fig. 5c, bringing them closer to that of biased turbine power, Pt (Fig. 5a). Even
closer values of α were obtained when a lower threshold was also imposed (replacing Pa
values with zeroes at positions where Pt was negative), giving α value of 1.35 and C1 of250

0.0077 (Fig. 5d). The results are compiled in Tab. 1. Scaling quality remained similar for
all the cases mentioned here, with r2 value (of TM curve at q = 1.5) remaining around 0.99
(second column of Fig. 5).

Figure 5: Spectral analysis (Eq. 3), TM analysis (Eq. 5), DTM curve (Eq. 10) and K(q) for a) power
produced by turbine (Pt ) which has intrinsic thresholds (upper: due to rated power, lower: due to negative
values which are treated as zeroes), b) power available (Pa) which is the unbiased actual field, c) Pa where an
upper threshold is imposed at rated power of the turbine i.e. all values of Pa above the rated power of turbine
are artificially replaced by 2MW (values > rated power = rated power), d) Pa where an upper threshold and
lower threshold (values set to zero where Pt < 0) are imposed based on the turbine values. Data used: time
series from 20 May 2021 to 26 May 2021 with lowest time step of 15s, with a sample size of 32 min.
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UM parameters

Field threshold αDT M C1,DT M β H

Pt upper + lower 1.36 0.00715 1.6 0.31
Pa upper 1.93 0.00753 1.39 0.21
Pa lower 1.35 0.0077 1.44 0.23
Pa upper + lower 1.35 0.0076 1.44 0.23

Table 1: Values of UM parameters for a) power produced by turbine (Pt) which has intrinsic
thresholds (21.7% at upper threshold, 2.9% at lower threshold), b) power available (Pa)
without any thresholds, c) Pa with imposed upper threshold, d) Pa with imposed upper
threshold and lower threshold. Graphs can be seen in Fig. 4.

It should be noted that the effect of threshold could be different according to size of
the sample and scaling regimes studied.In the same spirit as σe in Jose et al. (2021), the255

effect of rated power as upper threshold in Pt is explored here in the theoretical framework
of UM. The effect on different scaling regimes as well as the additional complexity from
the known effect of zeroes (Gires et al., 2012), though identified here, are not considered
to avoid complexity.

3.2. Understanding the effect of upper threshold in UM framework260

Let’s take the upper threshold (rated power in this case) at the largest possible scale
ratio as:

T = Λ
γT (11)

where γT is the singularity corresponding to threshold T , and Λ the maximum reso-
lution (length of time series). For multifractal fields, the probabilities of exceeding scale
independent thresholds, λ γ , scale with resolution, λ (see Eq. 4). At the upper threshold T ,265

this yields:

Pr(ελ ≥ T )≈ λ
−c(γT ) (12)

If we set the upper threshold i.e. setting all the values of the field greater than T equal
to T (represented here by this expression: {ελ ≥ T}= T ), the probability of having values
greater than T , Pr(ελ > T ), becomes 0 reducing the above relation into Pr(ελ = T ) ≈
λ−c(γT ). This leaves the value of c(γ) equal to +∞ for singularities above γT (for γ > γT ,270

c(γ) = +∞). Here c(γT ) is the limiting non-zero value above which c(γ) becomes +∞.
This effect of upper threshold (c(γ)→+∞ for γ > γT ) is similar to the effect of sampling

dimension (Ds) in UM framework. The maximum observable singularity can be defined by
taking probability at corresponding threshold as in Eq. 12:
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Pr(ελ ≥ λ
γS)≈ 1

Nsλ D (13)

where Ns is the number of samples and λ D is the number of values per sample. Ns = λ Ds275

(Ds being the sampling dimension, which quantifies the number of independent samples
with resolution λ ; for one sample Ds = 0). Using the notions of Ds and D, γ correspond-
ing to sampling resolution, γs can be estimated from c(γs), c(γs) = D+Ds (Hubert and
Carbonnel, 1989; Lovejoy and Schertzer, 2007).

The moment scaling function, K(q) and codimension function, c(γ) were discussed280

earlier in terms of UM parameters in Eq. 6 and Eq. 7. Both are equivalent functions and
for multifractals, they are related by a simple Legendre transform (Parisi and Frisch, 1985;
Schertzer and Lovejoy, 1993):

K(q) = max
γ

[qγ − c(γ)]

c(γ) = max
q

[qγ −K(q)]
(14)

Hence, for every singularity γ , there is a corresponding order of moment q associated
with it and vice versa: q = c′(γq) & γ = K′(qγ).285

When γ > γs, c(γ) = +∞; by Legendre transform K(q) becomes linear from q > qs =
c′(γs)

γs = α
′C1

(
D+Ds

C1

) 1
α ′
− C1

α −1

qs =

(
D+Ds

C1

) 1
α

(15)

In the case of sampling dimension, c(γ) varies as follows

c(γ) =


+∞ f or γ > γs

D+Ds f or γ = γs
c(γ) f or γ < γs

 (16)

Similarly, at the presence of upper threshold here ({ελ ≥ T}= T ), c(γ) reaches +∞ at
an earlier limiting value value c(γT ) where γT < γs (Fig. 6a)290

cT (γ) =


+∞ f or γ > γT

c(γT ) f or γ = γT
c(γ) f or γ < γT

 (17)

Here γT is defined from the threshold as initially stated in Eq. 11, and cT (γ) is estimated
as above. From this, the corresponding limit moment T can be obtained as in Eq.15.
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qT =

(
c(γT )

C1

) 1
α

(18)

To summarize, in standard data analysis with sampling limitation, c(γ) is bounded by
a maximum value c(γs) above which it becomes infinite. K(q) which is connected to c(γ)
through Legendre transform (Eq. 14) becomes linear beyond this q (q ≥ qs) value (K(q) =295

(q− qs)γs +K(qs)). Similarly, in this specific case, when an upper threshold is imposed
({ελ ≥ T} = T ), K(q) becomes linear at an earlier value of q (at qT < qs) defined by γT
(Fig. 6b).

KT (q) =


γT (q−qT )+K(qT ) f or q > qT

K(qT ) = qT γT − c(γT ) f or q = qT
K(q) f or q < qT

 (19)

In Double Trace Moment (DTM) technique, for a given q: K(q,η) = K(qη)−qK(η),
which for UM fields = ηαK(q). When no thresholds are applied K(q,η) varies as300

K(q,η) =

{
(q−1)(D+Ds) f or η ≥ η+(q)

ηαK(q) f or η < η−(q)

}
(20)

where η+(q) corresponds to the maximum values of η above which K(q,η) becomes a
plateau due to sampling limitation (Eq. 15). To elaborate, K(q,η) consists of two parts
K(qη) and K(η), and η+(q) corresponds to the value of η above which both are linear
(which is qs). The transition to the plateau starts at a lower value η−(q) (which is qs/q)
above which only K(qη) is linear. In the presence of an upper threshold ({ελ ≥ T} = T ),305

DTM curve will be (Fig. 6c) :

KT (q,η) =

{
(q−1)c(γT ) f or η ≥ η+(q)

ηαK(q) f or η < η−(q)

}
(21)

where η+(q) = qT and η−(q) = qT/q
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Figure 6: Influence of threshold on a) c(γ) vs γ curve: c(γ) reaching +∞ at γT than γs, b) on DTM curve: K(q)
becoming linear at qT than qs), and c) on K(q) vs q curve: K(q,η) reaching upper plateau early. Arbitrary
values were used for γs and γT ; UM parameter values of fields were taken as α = 1.8 and C1 = 0.2.

It is important to note here that the value of K(q,η) doesn’t reach the upper plateau
abruptly at qT or qs, rather, it flattens gradually starting from a value of η = qs/q or qT/q
(as per value of qη in K(q,η)). Presence of upper threshold shifts this starting point and310

decreases the range of possible values for estimation of α (slope of DTM curve), hence,
presence of plateau will result in biased (reduced) estimates.

3.3. Numerical simulations
Underestimation in values of α due to application of upper threshold was already ob-

served in Fig. 5c using real data. To understand this further, conservative multifractal fields315

(H = 0) were simulated using discrete cascades with values of UM parameters close to those
observed for empirical power (Pt). Discrete cascades simulation here involves division of a
parent structure into ’daughter’ structures (retaining value of parent structure multiplied by
a random factor, Chambers et al., 1976) iteratively following a non-infinitesimal scale ratio
while maintaining the validity of Eq. 5 and Eq. 6.320

For ease of contrast with simulations examining lower threshold in (Jose et al., 2021),
values of α = 1.8 and C1 = 0.2 were used. UM analysis was implemented on ensembles (of
sample size 128 and number of samples 100) by progressively applying the upper threshold
till the percentages observed in Pt (∼ 30%). K(q) becomes linear at earlier and earlier
values of q (after respective qT ) with increasing percentage of values at threshold can be325

seen in the third column (like in Fig. 6b). The DTM curve in second column shows that
both α and C1 are decreasing with progressive application of thresholds (from 0 to 30%, α

decreased from 1.8 to 1.56 while C1 decreased from 0.17 to 0.05).
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Figure 7: Effect of upper threshold illustrated using numerical simulations - discrete cascades of size 128
with 100 samples with α = 1.8 and C1 = 0.2 as input. Thresholds were applied progressively to the simulated
field: a) no threshold, b) 5%, c) 15%, and d) 30%. Decrease in α and increase in C1 with threshold can be
seen from DTM curves (second column) of sub figures a to d.
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UM parameters

% at threshold αDT M C1,DT M β H

0% 1.81 0.17 0.95 0.108
5% 1.72 0.13 1.15 0.186
15% 1.64 0.10 1.18 0.178
30% 1.56 0.07 1.2 0.163

Table 2: Values of UM parameters for simulated fields with artificial imposition of upper
thresholds.

While discussing this bias in the framework before, it was mentioned that the upper
threshold was introduced at the maximum resolution (Eq. 11, ΛγT ). Since in practice, the330

lower scales in UM are obtained from averaging the outer scale (at maximum resolution),
the threshold values (and hence γT ) at each stage doesn’t exactly correspond to the orig-
inally defined one. This is the reason for an increased ’transition part’ (part of the curve
from straight line to upper plateau) of the DTM curves (second column) in simulations here
(more than that in Fig. 6c). When the estimation of α was forced at η = 1 (so that TM335

and DTM estimates are same) the bias in the values of α increased as the slope estimation
moved to ’transition part’. For example, the already biased value of α at 30% threshold,
1.58 (slope at log η between -0.1 and -0.5), got further reduced to 0.95 (slope around log
η = 0). In this estimation, the C1 remained moreover similar to previous estimates at all
thresholds.340

It is interesting to note that the trend here (only for α) is not exactly the opposite of what
was observed during numerical simulations with lower threshold in section (Jose et al.,
2021). While the imposition of a lower threshold increased α and decreased C1, the upper
threshold here reduces both UM parameters. In the specific case of turbine power, Pt (Fig.
5a), has a combination of upper threshold from rated power and lower threshold (zeroes)345

from negative power (the latter is not considered here). This, in practise, further reduces
the range of available η for estimation of α by imposing a lower plateau as well (see Fig.
5, third column). Also, the effect of this bias could be different when fluctuations of the
fields are selected for retrieving conservative fields since the simulations were performed
directly on conservative multifractal fields here. Since two consecutive power values can350

be the same, thanks to the rated power, taking fluctuations will yield zeroes in the field
adding to the zero bias. The effect of both biases could be different when aggregate power
of the wind farm is considered as well, this is also not explored here.

3.4. Data analysis reducing the biases
So far, the effect of thresholds in UM analysis has been illustrated in the framework of355

UM. To have a better idea of its effect on scaling, UM analysis was performed on a longer
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series of power. For this, a 3-month long continuous series was taken (from 01 Jan 2021
to 01 April 2021) and UM analysis was performed on Pa and Pt as ensembles of sample
size 128 (32min). Fig. 8a and Fig. 8b shows the curves for Pa (α: 1.93; C1: 0.01) and Pt
(α: 1.11 ; C1: 0.0042) respectively. Considering Pa as the underlying field, the effects of360

thresholds (upper and due to zeroes) in Pt can be seen in the DTM curve (Fig. 8b, second
row). The lower plateau corresponds to presence of negative power in data (which were
replaced by zeroes) and the low value of α is due to η being in the transition range (as
already seen in Fig. 6c). Fig. 8c and Fig. 8d shows the UM analysis for the same data
but by removing the columns having thresholds. In Pt ensemble data, the columns with365

thresholds, zeroes and repetition of data were removed by using a limit of 0.01%. For
example, columns with more than 0.01% values ≥ 1600 were removed to be on the safe
side of analyzing data without the influence of threshold. For a more accurate comparison,
the same columns were removed from Pa as well; the results are shown in Fig. 8c (α:
1.76; C1: 0.0095) and Fig. 8d. It can be seen that the lower plateau has disappeared for370

Pt and that the value of UM parameters (α: 1.5749 from 1.11; C1: 0.00554 from 0.0042)
has improved; this also increased the value of β (1.8 from 1.6), and consequently that of H
(0.41 from 0.3). It should be noted that the values of UM parameters get closer to that of Pa
but are not the exact values. This suggests that there are slight differences in the properties
of both fields, even though they appear comparable when biases are removed.375
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Figure 8: UM analysis of data from 01 Jan 2021 to 01 April 2021 as ensembles of sample size 128 (32min):
a) Pa (as the data is), b) Pt (as the data is), c) Pa (columns with threshold removed on the basis of Pt data
below), and d) Pt with columns of upper threshold and zero data removed.

4. Conclusion

Wind turbines are designed to work at a rated power for optimal production of power
as well as their safe functioning. This inadvertently creates an upper threshold in output
data of power production and such a effect induces biases in statistical analysis, especially
when the small scale non linear variability and intermittency are to be studied. Backdrop380

of this study followed the campaign in Gires et al. (2022) where the main objective of was
to analyze turbine power, Pt , as a temporal field and to gain insights into its correlation
with rainfall, which is poorly understood, and also with other meteorological fields, across
scales, using the data averaged to these reliable frequencies. However, the direct analysis
of empirical turbine power (using the framework of UM) was found to be difficult since the385

output from wind turbines are limited by a maximum or rated power. In time series analysis
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this acts as an upper threshold resulting in reduced estimates of UM parameters than those
of theoretically available wind power (Pa) for extraction. The reason for this decrease was
identified within the framework of UM, and is illustrated using theoretical formulations.
The same has been confirmed through simulations of conservative multifractal fields, as390

well. Basically, the presence of an upper threshold introduces an upper plateau in DTM
curve, similar to the one due to the sampling dimension, but it begins at a lower value
of η . This reduces the range of available η for estimation of the slope and hence results
in a biased value of α (reduced α and C1). Also, when it comes to the empirical power
produced by turbines, the biases are twofold since a lower threshold (albeit to very less395

extend) is also involved since the turbine does not necessarily always produce power and
has moments that involve only operational consumption (leaving power production values
negative). Since, UM in its usual form is not designed to handle negative values, based on
how these values are managed (taken as zero here), the values of α will be further biased
due to the effect of lower threshold.400

Though these biases are identified, as of now, no solutions are available to account for
them; and more methodological developments are required for this solution. Same is re-
quired for understanding the combined effect of both biases. It is also worth mentioning
that such an upper threshold is very likely to affect other statistical analysis relying on scale
invariance as well. However, this is beyond the scope of current paper and and would re-405

quire separate investigations. Due to the presence of above said biases in Pt , the actual wind
power available at the turbine hub for extraction (Pa = f (v,ρ), Eq. 1) was used as a proxy
to understand the small scale variability in follow up UM analysis. Since, the presence of
thresholds in data - imposed by limitations of operations as well as measurement - exists
in many geophysical situations, understanding them is important in retrieving the actual410

characteristic parameters as well as modelling them. In the case explored here, since the
characterization of power production is already suffering from various influences that are
poorly understood and accounted for, understanding the biases in data treatment will help
avoid more uncertainties.
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Appendix A: Diversity of multifractal formalisms and theoretical choices

In response to questions from referees, and therefore potential questions from readers,
we felt it necessary to discuss in greater depth the methodological choices we have made.
The purpose of this appendix is therefore to provide, in a fairly autonomous way to ease the425

reading, a better overview of the formalisms, highlighting their strengths and weaknesses,
their common features and their diversity. This appendix is also valid for part 2 of this
paper.

A.1. Deterministic/stochastic multifractals and dimension/codimension formalisms
In this paper and its companion paper (Jose et al., 2024a,b) we use a stochastic mul-430

tifractal framework (Schertzer and Lovejoy, 1984b,a, 1989, 1992), for the fundamental
reason it is much more general than a deterministic multifractal framework (Parisi et al.,
1985; Halsey et al., 1986). This strong difference is fundamentally due to the number of
samples required to get reliable information. While a unique sample is sufficient for a pure
deterministic process, the determination of extremes of a stochastic process may require a435

very large number of samples. This difference is also illustrated by the fact that a stochastic
event has a finite occurence frequency, while it may occur on an infinite number of samples.
This results from the fact that a probability frequency can be understood as the (finite) limit
of the ratio of two diverging numerations: ‘favorable cases’ vs. ‘all cases’. If both numer-
ations are scaling with a dimension exponent, then the frequency scales with the difference440

of these dimensions, usually called co-dimension. This can be written down as follows for
a process ελ at resolution λ = L/ℓ (outer scale L, observation scale ℓ ) when assessing its
probability to diverge faster than λ γ , i.e. has a singularity γ:

Pr(ελ ≥ λ
γ)≈ Nλ (ελ ≥ λ γ)

Nλ

≈ λ D(γ)

λ D = λ
D(γ)−D = λ

−c(γ), (A.1)

where the codimension c(γ) and the dimension D(γ) satisfy:

D = c(γ)+D(γ) (A.2)

where D is the embedding dimension of the process and thus generalise the definition of445

the codimension C(A) of a D(A)-dimensional subspace A in a D-dimensional vector space:

D = D(A)+C(A) (A.3)

Equation A.1 provides a first insight on the fundamental fact that scaling exponents of
probabilities are codimensions, while those of numerations are dimensions.

It seems paradoxical that the dimension/deterministic multifractal formalism was intro-
duced to explain the observed nonlinearity of statistical scaling exponents, precisely that of450
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the velocity structure functions (Anselmet et al., 1984), which are the statistical moments
of the velocity increments. This was done with the help of strong assumptions: the sin-
gularities of the velocity increments, defined as local Holder exponents, were assumed to
be geometrically and rather deterministically distributed over embedded fractals. In many
respects, the f (α) formalism (Halsey et al., 1986), which deals with multifractal strange455

attractors, further emphasised this implicit nonrandom and geometric framework. A di-
mension formalism such as f (α) formalism is formally related to codimensions (γ,c(γ))
according to:

αD = D− γ; fD(αD) = D− c(γ) (A.4)

The subindex D is introduced to α and f for two reasons:

• both α and f depend on the embedding dimension D, e.g. by taking cuts of dimen-460

sions smaller than D, while (γ,c(γ)) do not depend on it

• another ‘historical’ α that has a quite different meaning, as shortly recalled below.

The same dependence on D occurs for the scaling exponent τ(q) of the partition func-
tion (Hentschel and Procaccia, 1983; Jiang et al., 2019), which is strongly related to that of
the statistical moment scaling exponent K(q):465

< ελ >≈ λ
K(q) (A.5)

as follows:

τD(q) = (q−1)D−K(q) (A.6)

A.2. Partial equivalence between dimension and codimension formalisms
In fact we implicitly used the partial equivalence between both formalisms for the in-

troduction of the codimension (Eq.A.1). Before insisting on its partiality, let us stress it
is merely defined by Eqs.A.4, a very broad but rather straightforward generalisation of470

Eq.A.3. The equations A.4 thus define the framework transformation to go from a formal-
ism to the other one.

Unfortunately, this equivalence is only partial because the dimension framework is
much more limited than the codimension one. A major difference is that the numeration
dimension D(γ) is both bounded below and above (0 ≤ D(γ)≤ D), while the codimension475

c(γ)) being statistically defined as the opposite of the scaling exponent of the probabil-
ity exponent has in general no upper bound (0 ≤ c(γ). For instance, c(γ)) = ∞ merely
corresponds to a singularity γ that almost never happens, including at finite resolution.
According to Eq.A.4, as soon as c(γ)> D would correspond to a negative dimension D(γ).
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A.3. Universality and stochasticity480

One important feature of the stochastic framework is that it provides universal be-
haviour, i.e. processes that are both attractive and stable, as well as determined by only a
limited number of parameters. We briefly recall that this is the case of the ‘Universal Mul-
tifractals’ (UM; Schertzer and Lovejoy (1987, 1997)) that satisfy a broad generalisation of
the central limit theorem: their generators are attractive and stable through renormalised485

summations. We recall that their statistics are defined by the three parameters that follow
and which are physically meaningful:

• the scaling exponent H 1 of the mean field. When H = 0, the mean field is strictly
scale invariant and the field is said conservative. H ̸= 0 often results from a fractional
integration of this order of a conservative field;490

• the codimension C1 ≥ 0 of the mean field. It measures the mean intermittency, i.e.
how the mean fluctuations are increasingly concentrated scale by scale. When C1 = 0
there is no intermittency and the field is statistically homogeneous;

• the multifractal index 0 ≤ α ≤ 2. It measures the variability of the intermittency
when departing from the mean field. When α = 0 the field is uni/mono- fractal,495

α = 2 corresponds to a maximal intermittency and to the so-called lognormal model.
α is also the Levy stability index (Lévy, 1937) of the cascade generator.

The corresponding UM scaling moment function is therefore:

Kq) =−qH +Kc(q); Kc(q) =C1
qα −q
α −1

(A.7)

where Kc(q) denotes the scaling moment function of a conservative UM field. We consider
that the case studies of the text body confirm that Eq.A.7 allows a much richer data analysis500

than the deterministic indicators frequently used, such as ∆αD = αD,max −αD,min.

A.4. Hurst exponent and its multifractal generalisations
Scaling time series analysis have been strongly focused on the estimation of the histor-

ical Hurst exponent H (Hurst, 1951) in particular with respect to its critical value H = 0.5
supposed to discriminate long range dependency and persistence (H > 1/2) from short one505

and anti-persistence (H < 1/2). The multifractal ideology has ruined the dogma of its
uniqueness and justified that divergent estimates where not accidental, but resulted from
a given physics, that of intermittency. Among many ways to define a Generalised Hurst

1As discussed below it is related to the historical Hurst exponent, although being rarely identical to it, see
Eq.A.9 and associated comments.
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Exponent (GHE, Gómez-Águila and Sánchez-Granero (2021)) it is straightforward to con-
sider the scaling exponent H(q) of the q−th root of the (absolute) q−th order statistical510

moment of the field 2:

H(q) =−K(q)/q (A.8)

This definition is very generic and is an effective measure of the evolution of the q−th order
statistical moment, if any, with respect to its order q. In particular, the uniqueness of H
(H(q) ≡ H) is recovered for fractional integrations of homogeneous processes. On the
contrary, fractional integrations of multi-fractal processes yield a non-constant part, e.g.515

for a fractional integration of a conservative field with the scaling moment function Kc(q):

H(q) = H −Kc(q)/q (A.9)

In the generic case of universal multifractals, Kc(q) depends only on the universal parame-
ters C1 and α (Eq.A.7). Because H(2) is often considered as the historical Hurst exponent
(Kantelhardt, 2002), it is equal to H only for homogeneous processes according to Eq.A.9.

The main drawback of the generalised Hurst exponent H(q) is that it gives access to the520

statistics of the cascade generator less directly than with the scaling moment function K(q).
This may explain why many GHE studies have limited outputs due to a lack of theoretical
guidance, e.g. by only providing raw statistics of H(q) such as its minimum and maximum
over a given range of q.

A.5. Detrending frameworks525

Multifractal Detrended Fluctuation Analysis (MFDFA), (Kantelhardt, 2002) is a pop-
ular scaling analysis technique that explicitly uses the concept of Generalised Hurst Ex-
ponent. However, this is not directly done on the field of interest, but on the standard
deviations of the residues of polynomial regressions on the running sum of the fluctuations
of the original time series. It thus corresponds to a multifractal extension of the (fractal)530

Detrended Fluctuation Analysis (DFA, Peng et al. (1994)), as it is generally presented.
Let us provide some details about this. Let Y (i) be the cumulative fluctuation of the

original time series x(k) of mean value < x > :

Y (i) =
i

∑
k=1

[x(k)−< x >] (A.10)

The series is split into Ns non-overlapping sub-series of finite size s and a detrending poly-
nomial yν(i), with constant order m, is fitted in each sub-series by least squares. This yields535

2The minus sign that appears in this relation is only due to the lhs is a scaling exponent with respect to
scales, whereas the rhs is in respect to resolution.

24



the following root mean square variation over the ν th sub-series:

F(ν ,s) =

[
1
s

s

∑
i=1

{Y [(ν −1)s+ i]− yν(i)}2

]1/2

(A.11)

and averaging over the Ns sub-series of size s yields the total variation for the DFA analysis:

F(s) =

[
1
Ns

Ns

∑
ν=1

F2(ν ,s)

]1/2

(A.12)

The generalisation to MFDA is straightforwardly obtained by introducing the statistical
order q instead of 2:

Fq(s) =

[
1
Ns

Ns

∑
n=1

[F2(ν ,s)]q/2

]1/q

(A.13)

and the estimate of H(q) is obtained by the logarithmic slope of Fq(s):540

Fq(s)≈ sH(q) ⇔ H(q)≈
lnFq(s)

lns
(A.14)

It is similar, but not identical to the scaling of the trace-moment of the original field.

A.6. Defering to future work
A priori, H(q) is not unique, since it may depend like Fq(s) on the order m of the de-

trending polynomials yν(i) and there is no obvious theoretical guidance of how to choose
this order. In addition, the cumulative fluctuation obviously increases the order of integra-545

tion H by a unit (Eq.A.10). Conversely, the obtained estimates (Eq.A.14) must be reduced
by the same amount to indirectly estimate a H(q) for the original series. The most serious
theoretical drawback is the linear decomposition into local polynomial trends and stochas-
tic fluctuations. Moreover, as the former is maximised by least squares, the importance of
the fluctuations is minimised even though they are initially at the the centre of the analy-550

sis. Because of these many issues we defer the MFDA analysis and variants of our data to
future work.
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