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Abstract. Recently, concerns have been growing about the intensification and increase of extreme weather events including 10 

torrential rainfall and typhoons. For mitigating the damage caused by weather-induced disasters, recent studies have started 

developing weather control technologies to lead the weather to a desirable direction with feasible manipulations. This study 

proposes introducing the model predictive control (MPC), an advanced control method explored in control engineering, into 

the framework of the control simulation experiment (CSE). In contrast to previous CSE studies, the proposed method explicitly 

considers physical constraints such as the maximum allowable manipulations within the cost function of the MPC. As the first 15 

step toward applying the MPC to real weather control, this study performed a series of MPC experiments with the Lorenz-63 

model. Our results showed that the Lorenz-63 system can be led to the positive regime with control inputs determined by the 

MPC. Furthermore, the MPC significantly reduced necessary forecast length compared to earlier CSE studies. It was beneficial 

to select a member showing a larger regime shift for the initial state when dealing with uncertainty in initial states. 

1 Introduction 20 

In recent years, concerns have been raised regarding the intensification and increase of extreme weather events such as 

torrential rainfall and typhoons. To mitigate the damage caused by weather-induced disasters, efforts have been made to 

improve the forecasting accuracy of stationary heavy rainfall and develop disaster-prevention infrastructures including dams 

and embankments. Recently, Japan’s Moonshot Program started exploring alternative countermeasures for mitigating weather-

induced disasters. Specifically, the program aims at developing weather control technologies to lead the weather to a desirable 25 

regime with feasible manipulations. Under the program, researchers are exploring various engineering techniques such as 

cloud-seeding and atmospheric heating. However, the possible magnitude of human’s manipulations for atmosphere is limited. 

Therefore, simulation studies using numerical weather prediction (NWP) models are needed in addition to the engineering 

studies to develop effective control approaches with feasible manipulations. 
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 To date, a few simulation studies with NWP models have been conducted for mitigating extreme events. For example, 30 

Henderson et al. (2005) conducted numerical experiments using a modified version of the Penn State/NCAR fifth-generation 

mesoscale model (MM5) 4D-Var to identify the temperature increments required to minimize wind-related damage from 

Hurricane Andrew in 1992. However, the results may not have sufficient realism due to various experimental limitations 

(Henderson et al., 2005). The Typhoon Science and Technology Research Center of Yokohama National University proposed 

using sailing ships and artificial upwelling to reduce the intensity of tropical cyclones. Their simulations demonstrated that the 35 

increased drag enhancement by the sailing ships and decreased sea surface temperature by the artificial upwelling successfully 

weakened tropical cyclones (Fudeyasu et al., 2023; personal communications). The previous studies, however, examined 

impacts of the manipulations on specific extreme events through control experiments that simply compared simulations with 

and without manipulations. Here, a research framework is necessary to develop effective control approaches with feasible 

manipulations. 40 

Miyoshi & Sun (2022, hereafter MS22) proposed a control simulation experiment (CSE): an experimental framework 

for systematically evaluating and exploring control approaches under unknown true values by expanding the observing systems 

simulation experiment (OSSE). They conducted CSEs with the three-variable Lorenz-63 model (Lorenz, 1963) and succeeded 

in leading the system to the positive regime with small control inputs. Sun et al. (2023, hereafter SMR23) also applied to CSEs 

for the 40-variable Lorenz-96 model (Lorenz, 1996), showing that their CSEs succeeded in reducing the number of extreme 45 

events of the Lorenz-96 model. Furthermore, Ouyang et al. (2023, hereafter OTK23) successfully reduced the total magnitude 

of control inputs with the Lorenz-63 model by approximately 20 % compared to MS22’s approach, by regulating the amplitude 

of control inputs based on the maximum growth rate of the singular vector. The previous CSE studies (MS22, SMR23, and 

OTK23) generated control inputs as differences between ensemble members that maintain in and deviate from the desired 

regime. However, physical constraints, generally needed for real-world applications, cannot be considered explicitly in the 50 

previous CSE studies. Therefore, it is worthwhile to explore other methodologies to determine control inputs. 

In this study, we propose introducing the model predictive control (MPC) within the framework of CSE. The MPC is an 

advanced control method that repeats prediction and optimization with explicit consideration of constraints. While the MPC 

has been widely used in practical fields such as process industry and power electronics (Schwenzer et al., 2021), there has been 

no study yet that used the MPC for mitigating weather-induced disasters, to our best knowledge. As the first step toward 55 

applying the MPC to the real weather control, this study performs a series of MPC experiments with the Lorenz-63 model. 

Here we explore the way to implement MPC within CSE, and aim to reveal important issues to extend the MPC to high-

dimensional NWP models.  

The remaining sections of this paper are arranged as follows. Sect. 2 introduces theory of MPC and describes 

experimental setting. In Sect. 3, we employ a series of MPC experiments with the Lorenz-63 model, and discusses properties 60 

of MPC applied to the chaotic dynamical systems. Finally, Sect. 4 provides a summary. 
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2 Method and Experiments  

2.1 Model predictive control 

2.1.1 Definition and procedure 

This study explores using MPC for controlling chaotic dynamical system. Here, the MPC is a feedback control method that 65 

identifies control inputs to minimize the cost function under constraints at each time. In other words, MPC is a control method 

that solves an optimal control problem (OCP) for a finite horizon at each time. Strictly speaking, the MPC treated in this study 

is nonlinear model predictive control (Chen and Shaw, 1982; Keerthi and Gilbert, 1988; Mayne and Michalska, 1990; Mayne 

et al., 2000). 

First, we define the terminology and symbols. As shown in Fig. 1, the two key processes of MPC are model-based 70 

prediction and optimization of control inputs in OCP. For these processes, prediction horizon �� and control horizon �� are 

defined independently where subscripts �  and �  denote prediction and control. Here, ��  (0 < �� ) is the length of state 

prediction, and �� (0 < �� ≤ ��) is the length of the control inputs to be optimized, respectively. A new axis � is the time axis 

for variables under the optimization, and set to be differently from the time axis . Therefore, � = 0 denotes the initial times 

of the horizons. Furthermore, variables in both horizons are marked with a superscript “∗”; for example, a state � at � = �� on 75 

the horizon at  = � is denoted by �∗(��; �).  

Next, we describe the procedure of the MPC. First, the MPC requires the suitable design of a numerical model �(�∗, �∗), 

a cost function �(�∗, �∗), a set of constraints �(�∗, �∗), and a first guess of control inputs �∗(�; �) from � = 0 to � = �� for the 

desirable control. Now, we consider the process of obtaining control inputs � at  = � based on the MPC.  

1. The present state �(�) is used as the initial state �∗(0; �) for an OCP (i.e., �∗(0; �) = �(�)). 80 

2. Predicted states �∗(�; �) from � = 0 to � = �� are obtained by the numerical model �(�∗, �∗). 

3. Based on �∗(�; �), the solutions �∗(�; �) are updated from � = 0 to � = �� through optimization (cf. Sect. 2.1.2).  

4. Prediction (step 2) and optimization (step 3) are iterated with updated �∗(�; �)  and �∗(0; �)  until �∗(�; �)  are 

sufficiently converged (cf. Sect. 2.1.2). 

5. The control inputs �(), taken from finally updated �∗(�; �) from � = 0 to � = � ⋅ � (0 < � ⋅ � < ��), are used for 85 

the manipulation from  = � to  = � + � ⋅ � .  

6. The process returns to step 1 and repeats these processes at  = � + � ⋅ �. 
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Figure 1: Conceptual image of the model predictive control (MPC; the gray block). A numerical model �(�∗, �∗), a cost function �(�∗, �∗), 90 

a set of constraints �(�∗, �∗), and a first guess of control inputs �∗(�; �) are given to the optimal control problem (OCP; the yellow block). 

The initial state �(�) is also given by the model time integration with manipulations. The OCP is solved by iterating prediction and 

optimization until the solutions �(�) are sufficiently converged. Finally, the manipulation is performed by applying the �(�) to �(�). The 

same process is repeated at the next time ( = � + � ⋅ �). 

2.1.2 Optimal control problem 95 

As previously noted, the MPC identifies control inputs that allow the system to achieve a desirable state for a finite horizon by 

solving the OCP at each time. Here, we explain that the OCP can be regarded as a variational problem with constraints. We 

consider a basic OCP with control and prediction horizons being � = �� = �� for ease of comprehension. The general equation 

of state for a nonlinear model and the initial state are given by: �� ∗(�; ) = ���∗(�; ), �∗(�; )�,  (1) 100 �∗(0; ) = �(),  (2) 

where their dimensions are �∗(�; ) ∈ ℝ#, and  �∗(�; ) ∈ ℝ$, respectively. The scalars % and & represent the numbers of model 

variables and manipulation variables, respectively. The general cost function of the OCP is given by: 

�(�∗, �∗) = '��∗(�; )� + ( )��∗(�; ), �∗(�; )���*+ ,  (3) 

where '��∗(�; )� is the terminal cost, and )��∗(�; ), �∗(�; )� is the stage cost. Both are scalar functions, and various control 105 

objectives can be considered by suitable design of these functions. The general constraints of the problem are given by: 

���∗(�; ), �∗(�; )� = -�.��∗(�; ), �∗(�; )�⋮�0��∗(�; ), �∗(�; )�1 = 2,  (4) 

where ���∗(�; ), �∗(�; )� ∈ ℝ0  is a vector whose elements are equality constraints restricted to zero. The scalar 4 is the 

number of constraints. When inequality constraints are imposed, the constrained problem can be addressed by methods such 
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as the penalty method or the slack variable technique. This study uses the penalty method, which adds large penalties to the 110 

cost function when the constraints are not satisfied (cf. Eq. 26). On the other hand, the slack variable technique converts 

inequality constraints to equality constraints by introducing dummy variables. Addition of the dummy variables, however, 

makes the OCP more complicated. Therefore, we did not use the slack variable technique in this study. In summary, the OCP 

is regarded as the following variational problem that optimizes the cost function, subject to the equation of state and constraints: 

Minimize: �(�∗, �∗) = '��∗(�; )� + ( )��∗(�; ), �∗(�; )���*+ ,  (5) 115 

Subject to: E���∗(�; ), �∗(�; )� − �� ∗(�; )  = 2�∗(0; ) = �()���∗(�; ), �∗(�; )� = 2 .  (6) 

We note that the equation of state (Eq. 1) is also regarded as an equality constraint (the first equation of Eq. 6) by transposing �� ∗(�; ) of Eq. (1) to the right-hand side. 

The following necessary conditions for optimal control inputs are obtained by converting the constrained problem to an 

unconstrained problem using the method of Lagrange multipliers (cf. Appendix A):  120 �� ∗(�; ) = ���∗(�; ), �∗(�; )�, (7) �∗(0; ) = �(), (8) 

J� ∗(�; ) = − KL(�∗,�∗,J∗,M∗)K� , (9) 

J∗(�; ) = KO��∗(*;P)�K� , (10) 

KL(�∗,�∗,J∗,M∗)K� = 2, (11) 125 

���∗(�; ), �∗(�; )� = 2,  (12) 

where J∗(�, ) ∈ ℝ#  is the Lagrange multiplier for the equation of state, M∗(�; ) ∈ ℝ0  is the Lagrange multiplier for the 

constraints, and Q(�∗, �∗, J∗, M∗) is the Hamiltonian defined as follows: Q(�∗, �∗, J∗, M∗) ≔ )(�∗, �∗) + (J∗)*�(�∗, �∗) + (M∗)*�(�∗, �∗).  (13) 

Derivation of the necessary conditions of the optimal control inputs is detailed in Appendix A. For nonlinear models, it is 130 

generally impossible to solve these equations analytically. Therefore, this study solves them using a numerical approach. Given 

the first guess of control inputs �∗(�; ), temporal forward computations (Eqs. 7 and 8) are performed to obtain �∗(�; ) from � = 0 to � = �. In this study, zero vectors are selected as the first guess of control inputs �∗(�; ) because the minimization of 

control inputs is also included in the cost function �(�∗, �∗) as seen later (Eq. 26). Furthermore, J∗(�; ) is obtained by 

temporal backward computations from � = � to � = 0 (Eq. 9 and Eq. 10). Consequently, �∗(�; ) and M∗(�; ) from � = 0 to 135 � = � can be obtained by applying an optimization algorithm to the nonlinear equations (Eqs. 11 and 12). Therefore, the OCP 

can be solved by iterating the prediction (Eq. 7) and optimization (Eqs. 11  and 12) until the solutions are sufficiently 

converged. In this study, the equations (Eqs. 7-12) are discretized with the fourth-order Runge–Kutta scheme. In addition, we 

used the Levenberg–Marquardt algorithm, which is the optimization algorithm for solving the nonlinear equations (Eqs. 11 
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and 12). In our preliminary experiments, the Levenberg-Marquardt algorithm solved the nonlinear equations stably compared 140 

to other optimization methods in SciPy libraries. 

When the control horizon is shorter than the prediction horizon (�� < ��), the necessary conditions for optimal control 

inputs (Eqs. 7-12) are replaced by: 

�� ∗(�; ) = S����∗(�; ), �∗(�; )� (0 ≤ � < ��)����∗(�; )� ��� ≤ � < ��� , (14) 

�∗(0; ) = �(), (15) 145 

J� ∗(�; ) = E− KLT(�∗,�∗,J∗,M∗)K� (0 ≤ � < ��)
− KLU(�∗,J∗,M∗)K� ��� ≤ � < ��� , (16) 

J∗���; � = KOV�∗�*U;P�WK� , (17) 

KLT(�∗,�∗,J∗,M∗)K� = 2 (0 ≤ � < ��), (18) 

S����∗(�; ), �∗(�; )� = 2 (0 ≤ � < ��)����∗(�; )� = 2 ��� ≤ � < ��� , (19) 

where the subscript � denotes a function up to �� with control inputs �∗(�; ), and the subscript � denotes the function from �� 150 

to �� without control inputs. 

2.2 Model predictive control for the Lorenz-63 model 

2.2.1 The Lorenz-63 model 

This study uses the Lorenz-63 model for MPC experiments. The Lorenz-63 model is a three-variable nonlinear differential 

equation expressed as follows: 155 X� = −σX + σZ,  (20) Z� = −X[ + \X − Z,  (21) [� = XZ − ][.  (22) 

The model is known to behave in a chaotic manner under certain parameter values. In this study, ^ = 10, \ = 28, and ] =8/3 are selected to form a butterfly pattern with two positive and negative regimes, following previous studies (MS22; OTK23). 160 

Moreover, the model is discretized and integrated using the fourth-order Runge–Kutta scheme. One time step of integration is 

defined as � = 0.01 unit of time throughout this study. With the Lorenz-63 model, the state vector becomes  � = `X, Z, [a* 

and the number of model variable is % = 3. 
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2.2.3 The optimal control problem with the Lorenz-63 model 

This study considers a control problem: to keep the Lorenz-63 system in the positive regime (X ≥ 0) following the previous 165 

studies (MS22, and OTK23). Note that our approach includes minimization of the control inputs owing to Eq. (26). The 

equations of state (Eq. 14) are given by: 

��(�∗, �∗) = - −^X∗ + ^Z∗ + cd∗−X∗[∗ + \X∗ − Z∗ + ce∗X∗Z∗ − ][∗ + cf∗ 1, (23) 

��(�∗) = g −^X∗ + ^Z∗−X∗[∗ + \X∗ − Z∗X∗Z∗ − ][∗ h, (24) 

where �∗ = `X∗, Z∗, [∗a*, �∗ = icd∗ , ce∗ , cf∗j*
. As previously noted, one of the control objectives in this problem is leading the 170 

Lorenz-63 system to the positive regime. Therefore, the inequality constraint X∗(�; ) ≥ 0 is imposed from � = 0 to � = ��. 

In this study, the penalty method is introduced to treat the inequality constraint, and the penalty function for X∗(�; ) ≥ 0 is 

defined as follows: 

kd∗l+(X∗) ≔ .m nmax(−X∗, 0)qm.  (25) 

The inequality constraint can be considered in the cost function as follows. Including the minimization of the control inputs, 175 

the cost function is given by: 

� = ( r.m (�∗)*�∗ + sd∗l+ ∙ kd∗l+(X∗)u �� + ( sd∗l+ ∙ kd∗l+(X∗)��*U*T + sd∗l+ ∙ kd∗l+ VX∗���; �W*T+ ,  (26) 

where sd∗l+ > 0 is the tunable penalty parameter that balances weights of magnitude of control inputs (
.m (�∗)*�∗) and the 

inequality constraint (X∗(�; ) ≥ 0) in the cost function. The third term of Eq. (26) corresponds to the terminal cost (cf. Eq. 3), and is necessary for considering explicitly the terminal state of �∗(�; ) within the prediction horizon. This study employs 180 sd∗l+ = 10w from our preliminary investigations. Consequently, the necessary conditions for optimal control inputs (Eqs. 14-19) are formulated to following equations for the control problem of the Lorenz-63 model: 

�� ∗(�; ) =
⎩⎪⎪
⎨
⎪⎪⎧��(�∗, �∗) = - −^X∗ + ^Z∗ + cd∗−X∗[∗ + \X∗ − Z∗ + ce∗X∗Z∗ − ][∗ + cf∗ 1 (0 ≤ � < ��)

��(�∗) = g −^X∗ + ^Z∗−X∗[∗ + \X∗ − Z∗X∗Z∗ − ][∗ h ��� ≤ � < ���
, (27) 

�∗(0; ) = �(), (28) 

J� ∗(�; ) = − -−|d∗ ^ + |e∗ (−[∗ + \) + |f∗ Z∗ − sd∗l+ ∙ max(−X∗, 0)|d∗ ^ − |e∗ + |f∗ X∗−|e∗ X∗ − |f∗ ] 1 �0 ≤ � < ���, (29) 185 
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J∗���; � = -−sd∗l+ ∙ max�−X∗���; �, 0�00 1, (30) 

KLT(�∗,�∗,J∗,M∗)K� = -cd∗ + |d∗ce∗ + |e∗cf∗ + |f∗ 1 = 2 (0 ≤ � < ��), (31) 

Where J∗ = i|d∗ , |e∗ , |f∗ j*
. As discussed later, this control problem can be extended to other experimental settings such as 

manipulating only one-variable control input (cf. Sect. 3.3) and adding a constraint for a )m norm of control inputs (cf. Sec. 

3.4).  190 

2.3 Control simulation experiment with model predictive control 

The CSE is an experimental framework that controls nature run (NR), extended from OSSE. The key concept of CSE is that 

the true state of the NR is unknown but manipulations can be added to the NR, assuming a realistic atmosphere.  

Based on previous studies (Kalnay et al., 2007; Yang et al., 2012; MS22; OTK23), the experimental setting of our CSE 

is determined as follows. We first employed a free run with the Lorenz-63 model for 2,009,000 steps without any manipulations. 195 

The initial values of the free run are generated by random numbers }(0.0, 2.0) for X, Z, and [ independently. Observations 

are generated at every �~ = 8 steps by adding uncorrelated Gaussian noise �~}(0.0, 2.0) into the free run where the subscript � denotes the observation. The DA cycles are performed by assimilating the generated observations for the last 2,008,000 steps 

by an Ensemble Kalman Filter (EnKF) (Evensen, 1994). This study employs the perturbed observation method (Burgers et al., 

1998) as the EnKF  to obtain a stable analysis ensemble under the nonlinear system (Lawson and Hansen, 2004). We discarded 200 

the first 8,000 steps from of the 2,008,000-step DA cycles for CSE. The root-mean-square errors (RMSEs) and multiplicative 

inflation parameters of two-million-step DA cycles are shown in Table 1. In this study, 1,000 independent CSEs for 2,000 

steps are performed from different starting points to evaluates the CSEs statistically. OTK23 noted that starting points around 

the large X are generally difficult for leading the system to the positive regime for the Lorenz-63 model. Therefore, the 1,000 

different starting point are sampled sequentially from the points satisfying 0 ≤ X < 15  in the two-million-step DA cycles.  205 

We employ three indicators to evaluate CSEs. The first index is the success rate (SR) which denotes the percentage of 

cases that satisfy X ≥ 0 for entire experimental period (i.e., 2,000 steps) among the 1,000 CSEs. The mean total failure (MTF) 

and mean total control inputs (MTC) are defined as the mean of ∑ Xd�+ ∙ � and ∑‖�‖ ∙ � of the 1,000 CSEs, respectively. 

The procedure of the CSE with MPC is designed as follows: 

1. At a certain time  = �, the observation �~(�) is simulated from the NR. 210 

2. DA is employed to obtain an analysis ensemble ��(�).  

3. The ensemble forecast ��() from  = � to  = � + �� is computed from the analysis ensemble ��(�) .  
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4. If at least one member indicates a regime shift (RS) during the ensemble forecast, the process continues to step 5. 

Otherwise, the NR is evolved until  = � + �~ and returns to step 1.  

5. The OCP is solved to obtain control inputs �()  from  = �  to  = � + �~  from control inputs after iterations 215 �∗(�; �) from � = 0 to � = �~.  

6. The NR is evolved from  = � to  = � + �~ by applying the obtained control inputs �(). In addition, the ��() 

from  = � to  = � + �~ is computed by applied the same control inputs to the analysis ensemble ��(�) for DA at 

the next time. Notably, the control inputs are applied to ��() through the numerical model �(�, �) (cf. Eq. 1), rather 

than direct addition to �(). 220 

7. The process returns to step 1 and repeats these processes at  = � + �~.  

Here, � ∈ ℝ#×� is an ensemble of state and � is the ensemble size. Superscripts � and ] denote analysis and background, 

respectively. 

This procedure is illustrated in Fig. 2. For simplicity, the flow diagrams of the CSE are divided into two cases: without 

a RS in Fig. 2 (a) and with a RS in Fig. 2 (b). The procedure of the CSE for forecasts without a RS in Fig. 2 (a) is identical to 225 

the OSSE. In contrast, the procedure of the CSE for forecasts with a RS in Fig. 2 (b) has additional processes for identifying 

and applying control inputs. The upper panel of Fig. 2 (c) shows a conceptual image of identifying control inputs, and the 

lower panel shows an application of control inputs to the NR through the Lorenz-63 model. Importantly, the NR cannot be 

used as the initial state of the OCP because it is always unknown. Therefore, an analysis ensemble is used as the initial state. 

As discussed later (Sect. 3.5), the initial state for the OCP substantially affects the control results, and the member with the 230 

smallest state X (i.e., the largest RS) in the ensemble forecast (step 3) is selected as the initial state in this study unless otherwise 

specified. In addition, �� = 8 steps are selected throughout this study from our preliminary investigations. 

 

Table 1: The RMSEs and the multiplicative inflation parameters used in this study for each ensemble size �. The multiplicative inflation is 

applied to background ensemble perturbations. The inflation parameters were manually tuned so that analysis RMSEs are minimized over 235 

the two-million-step OSSEs.  

Ensemble size: � 10 20 30 40 50 100 

RMSE 0.393 0.300 0.282 0.277 0.273 0.271 

Inflation 1.50 1.18 1.08 1.06 1.04 1.02 
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Figure 2: Flow diagram and conceptual image of the CSE with MPC. (a) Flow diagram of CSE for forecasts without a RS, which is identical 

to OSSE. (b) Flow diagram of the CSE with MPC for forecasts with a RS, which has additional processes for identifying and applying 240 

control inputs. (c) Conceptual image of the CSE with MPC. The upper panel shows an image of identifying control inputs, and the lower 

panel shows an application of control inputs to the NR. 

 

3 Results and Discussion 

3.1 Impacts on the nature run 245 

First, CSE is conducted with the Lorenz-63 model to verify the impacts of the MPC on the NR. The control objective is leading 

the system to the positive regime under minimization of the three-variable control inputs. Here, �� = 20 steps and � = 50 

are selected as discussed later in Sect. 3.2. 
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The NR and the )m norm of control inputs ‖�‖ are shown in Fig. 3 and Fig. 4. The butterfly pattern appears in Fig. 3 (a) 

because no control input is applied. In contrast, the NR successfully keeps the positive regime with consideration of the 250 

inequality constraint X∗ ≥ 0 by the MPC in Fig. 3 (b) and Fig 4 (a). This result indicates that the NR can be controlled by the 

short forecast (i.e., �� = 20 steps). Importantly, the values of ‖�‖ identified by the MPC are applied to the time derivative of 

states (i.e., �� ). Therefore, the magnitude of the control inputs added to � during � = 0.01 are ‖�‖ ∙ �. As demonstrated in 

Fig. 4 (b), the maximum value of magnitude of the control inputs added to � during � is approximately 40 ⋅ 0.01 = 0.4, which 

is smaller than the maximum value of states. 255 

 

 

Figure 3: The NR and controlled NR of the Lorenz-63 model for 2,000 steps. Each starting point is selected from the 24th step of two-

million-step DA cycles. (a) shows the uncontrolled NR without MPC. (b) shows the controlled NR by the MPC with �� = 20 steps, �� = 8 

steps, and � = 50. 260 
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Figure 4: The controlled NR and the )m norm of control inputs with �� = 20 steps, �� = 8 steps, and � = 50. The starting point is the 24th 

step of two-million-step DA cycles. (a) shows the time series of state X. (b) shows the )m norm of control inputs ‖�‖. 

Figure 5 shows the prediction of the state and optimization of the control inputs in each horizon at an arbitrary selected 

step (the 232nd step of the CSE of Fig. 4). Since the forecast (blue dotted line) from the initial state shows a RS, the control is 265 

activated to solve the OCP. As demonstrated in Fig. 5 (a), the trajectory of the controlled prediction gradually shifts to satisfy X∗ ≥ 0 by iterative computations; finally, X∗ ≥ 0 is satisfied (red solid line). The uncontrolled NR shows a RS (gray dotted 

line); in contrast, the controlled NR can avoid the RS (black solid line) through the addition of control inputs (Fig. 5 (b), (c), 

and (d)) after iterations. Note that the final prediction in the OCP and the controlled NR are not identical because the prediction 

in the OCP used an initial state from the member with the largest RS, rather than the NR. 270 
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Figure 5: The prediction of the state and optimization of the control inputs in the horizon at an arbitrary selected step (the 232nd step of the 

CSE of Fig. 4). Iterative computations were performed 356 times for solving the OCP in this case. (a) The predictions, NRs, forecast, analysis, 

and observation in ��. Panels (b), (c) and (d) show the control inputs cd∗ , ce∗  and cf∗ during optimization in ��. 275 

3.2 Sensitivity to the prediction horizon and the ensemble size 

Here, we investigate the sensitivity to �� and � for MPC performance. For that purpose, we conducted 1,000 independent 

CSEs and summarized their SR, MTF, and MTC in Fig. 6. The darker color in Fig. 6 indicates better controllability. Higher 

values of � generally yield better results, increasing the SR and reducing MTF and MTC. However, improvements owing to 

the increased ensemble size � converge for � ≥ 50 in many cases. The reasons for the improved results with larger ensemble 280 

size � will be discussed in Sect. 3.5. In addition, the results with shorter ��, such as �� = 10 steps, tend to be worse; especially 

the MTC would increase because the control would be difficult by delaying the timing of control activation. On the other hand, 

longer ��  would not necessarily improve the results. In particular, it considerably worsens at �� = 50 steps, presumably 

because of discrete approximation errors involving state evolution in ��. 

It should be noted that a higher SR does not necessarily indicate less MTF. For example, focusing on � = 30, the SR 285 

of �� = 10 steps (SR = 0.487) is much lower than the SR of �� = 40 steps (SR = 0.921). However, the MTF of �� = 10 

steps (MTF = −7.9 × 10��) is less than the MTF of �� = 40 steps (MTF = −2.7 × 10�m). Therefore, control would fail more 

frequently, but not significantly, with �� = 10 steps than with �� = 40 steps.  

Hereafter, the experiment with �� = 20 steps and � = 50 are considered to be a standard experimental setting in this 

study because the parameters yielded one of the best performances.  The SR, MTF, and MTC in several experimental settings 290 

with �� = 20 steps and � = 50, including the experiments discussed later (cf. Sect. 3.3 and Sect. 3.4), are summarized in 

Table 2. 

 

 

Figure 6: Sensitivity to the prediction horizon �� and the ensemble size � with three evaluation indicators: (a) success rate 295 

(SR), (b) mean total failure (MTF), and (c) mean total control inputs (MTC). Darker colors in (a), (b) and (c) indicate better 

controllability. 
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Table 2: Summary of the success rate (SR), mean total failure (MTF) and mean total control inputs (MTC) for results in each 

experimental setting with �� = 20 steps and � = 50 in 1,000 CSEs. (a) shows the results of the standard MPC experiment. 

(b) shows the results of MPC experiments with only one-variable control input, and (c) shows the results of MPC experiments 300 

with an additional constraint for the )m norm of control inputs. 

 
Manipulation 

variable 
Constraints 

Success rate 

(SR) 

Mean total failure 

(MTF) 

Mean total control inputs 

(MTC) 
Section 

(a) cd∗ , ce∗ , cf∗ X∗ ≥ 0 0.990 −1.34 × 10�w 94.7 Sect. 3.2 

(b) 

cd∗  X∗ ≥ 0 0.789 −4.85 × 10�� 358.2 

Sect. 3.3 ce∗  X∗ ≥ 0 0.956 −1.17 × 10�w 132.3 

cf∗ X∗ ≥ 0 0.020 −3.40 1402.4 

(c) cd∗ , ce∗ , cf∗ 

X∗ ≥ 0, ‖�∗‖ ≤ 20 0.932 −9.19 × 10�w 111.2 

Sect. 3.4 X∗ ≥ 0, ‖�∗‖ ≤ 30 0.959 −5.15 × 10�w 126.6 

X∗ ≥ 0, ‖�∗‖ ≤ 40 0.980 −2.22 × 10�w 131.9 

 

3.3 MPC experiments with one-variable control input 

For realistic control scenarios, it is important to consider control problems in which limited control inputs relative to model 

dimensions are available. Here, this section investigates the CSE with one-variable control input.  305 

Figure 7 (a), (b), and (c) show the NRs controlled by only cd, ce, or cf, respectively. While the NR controlled by cd 

(Fig. 7 a) shows a pattern fluctuating around X = 0, the NR controlled by ce (Fig. 7 b) exhibits a pattern similar to the case of 

three-variable control inputs (Fig. 3 b). Intriguingly, the NR controlled by cf demonstrates an unstable pattern that does not 

significantly deviate from X ≥ 0. In addition, the SR, MTF, and MTC for the 1,000 CSEs are listed in Table 2 (b). Compared 

with the case of three-variable control inputs presented in Table 2 (a), the case with only ce is slightly inferior yet comparable; 310 

the controllability of case with cd is more difficult, and the difficulty escalates further when employing cf. In particular, the 

MTC is larger for the case with only ce, cd, and cf, in that order. Therefore, the NR controlled by cd fluctuates slightly in the X direction and the NR controlled by cf fluctuates significantly in the [ direction. 
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 315 

Figure 7: The NRs controlled by one-variable control input: (a) controlled by cd, (b) controlled by ce, and (c) controlled by cf. Each starting point is the identical to Fig. 3 (i.e., the 24th step of two-million-step DA cycles). 

3.4 MPC experiments constrained by magnitudes of control inputs 

Here, we show that the MPC can consider constraints for control inputs in addition to the constraint for state (i.e., X∗ ≥ 0). 

Therefore, we consider MPC experiments with additional inequality constraints: )m norms of the control inputs ‖�∗‖ ≤ � 320 (� = 20, 30, 40). Namely, this section discusses MPC experiments constrained by magnitudes of control inputs. For that 

purpose, this study also treats ‖�∗‖ ≤ � by the penalty method whose function is given by: 

k ‖�∗‖��(‖�∗‖) ≔ .m nmax(‖�∗‖ − �, 0)qm.  (32) 

 In this study, s‖�∗‖�� = 10� is selected as the penalty parameter for ‖�∗‖ ≤ � from our preliminary experiments. 

Figure 8 shows the NRs and the )m norm of the control inputs with additional ‖�∗‖ ≤ �. In all cases of �, the NRs (Figs. 325 

8 a, c and e) indicate patterns similar to the case without ‖�∗‖ ≤ � (Fig. 3 b). The )m norm of the control inputs ‖�∗‖ satisfies 

the constraint for each � (Figs. 8 b, d, and f), especially for larger �. However, with a smaller � (i.e., � = 20), the )m norm 

of control inputs occasionally exceeds the prescribed upper limit significantly. This is because the penalty method adds a 

penalty weighted by s‖�∗‖��  to the cost function, and does not guarantee to satisfy the constraint every time. Therefore, 

different results can be obtained by adjusting s‖�∗‖. For example, by increasing s‖�∗‖, ‖�∗‖ ≤ � can be more strictly satisfied 330 

instead of decreasing the weight for X∗ ≥ 0. Their SR, MTF, and MTC for the 1,000 CSEs are presented in Table 2 (c). 

Compared with the result in the absence of ‖�∗‖ ≤ � listed in Table 2 (a), the result with ‖�∗‖ ≤ � is worse overall because 

the constraint imposes more difficulty on the control problem. In addition, the MTC decreases for smaller �, but the SR and 

MTF do worsen accordingly. 

 335 
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Figure 8: The MPC experiments with inequality constraints for control inputs ‖�∗‖ ≤ �: (a, b) � = 20, (c, d) � = 30, and 

(e, f) � = 40. (a, c, e) show the NRs, and (b, d, f) show the )m norm of control inputs. The dashed lines in (b, d, f) show the 

prescribed upper limits of the control inputs (i.e., � = 20, 30 and 40). Each starting point is identical to Fig. 3 (i.e., the 24th 

step of two-million-step DA cycles). 340 

3.5 Sensitivity to the initial state 

For controlling NRs, it would be preferable to use the NR as the initial state for identifying control inputs. However, the state 

estimated by DA must be used because the true value is always unknown. Therefore, there is uncertainty in MPC-derived 

control inputs based on the estimated states by DA. This uncertainty may not cause serious problems for some systems without 

strong nonlinearity. Chaotic dynamical systems, however, require careful explorations on options for stable control because 345 

small uncertainties can cause large differences. Here, we discuss the initial state that would be valid for leading a chaotic 

dynamical system to a prescribed regime. 

We performed 1,000 independent CSEs and computed the SR, MTF, and MTC for five kinds of initial states: “Random 

(all mem.)”, “Mean (all mem.)”, “Random (RS mem.)”, “Mean (RS mem.)”, and “Largest (RS mem.)", respectively. The “(all 
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mem.)” label denotes selection from among all members in the analysis ensemble, and the “(RS mem.)” label denotes selection 350 

from among the members of the analysis ensemble showing RSs. The “Random" label denotes a randomly sampled member, 

the “Mean” label denotes the mean of the members, and the “Largest” label denotes the member showing the largest RS. For 

example, “Mean (all mem.)” indicates mean analysis ensemble. The results are shown in Fig. 9. The experiment of “Largest 

(RS mem.)” yielded the best results, showing the highest SR, and the smallest MTF and MTC. Furthermore, Fig. 9 shows that 

it was better to use a member selected from the “(RS mem.)”, rather than “(all mem.)”, as the initial state. We presume that it 355 

is safer to select a member showing a larger RS for the initial state when uncertainty exists in initial state. Therefore, the 

improvement with a larger ensemble size � in Sect. 3.2 is attributed to the fact that larger ensemble size � can provides a 

member with a larger RS. Consequently, obtaining a member with a larger RS would be important for successfully leading 

chaotic dynamical systems to the prescribed regime by MPC.  

 360 

 

Figure 9: Sensitivity to the initial state with �� = 20 steps and � = 50. Three evaluation indicators are shown for (a) success 

rate (SR), (b) mean total failure (MTF), and (c) mean total control inputs (MTC), respectively. The “(all mem.)” label denotes 

selection from among all members in the analysis ensemble, and the “(RS mem.)” label denotes selection from among the 

members of the analysis ensemble showing RSs. The “Random" label denotes a randomly sampled member, the “Mean” label 365 

denotes the mean of the members, and the “Largest” label denotes the member showing the largest RS. 

4 Conclusions 

In this study, we propose introducing the MPC within the framework of CSE. The advantage of using MPC is that control 

objectives and constraints can be explicitly considered. Therefore, we expect that this approach will be useful for realistic 

weather control by designing a cost function and constraints suitably. 370 

We conducted MPC experiments with the Lorenz-63 model and successfully led the system to the positive regime. The 

previous CSE studies (MS22 and OTK23) required longer forecasts (about 300 steps) for successful controls with the Lorenz-

63 model, whereas our approach required much shorter forecasts such as 20 steps. We also confirmed that controllability would 



18 

 

be difficult with limited variables of control inputs or with additional constraints. In our discussion, we suggested that it is 

safer to select a member showing a larger RS for the initial state when dealing with uncertainty in initial states. 375 

This study is an investigation of the first phase of the MPC for weather control. In the future, this approach will be 

investigated with more realistic NWP models. In addition, several improvements remain for the MPC to be applied to weather 

control. Our present approach requires many iterations to solve the OCP, and temporal forward and backward computations 

are required for each iteration. This means that it is computationally difficult to apply the present approach to large-dimensional 

NWP models as it is. Therefore, further studies are needed to explore faster approaches to solve OCPs for high-dimensional 380 

models. For this challenge, we expect the C/GMRES method (Ohtsuka, 2004) and the quantum annealing (Inoue and Yoshida, 

2020), as fast solvers that have been studied for MPC. Furthermore we need to consider a variety of uncertainties such as 

model errors and weather shifts during identifying control inputs. Therefore, uncertainty quantification is also an important 

research topic prior to real-world field experiments. 

Finally, we emphasize caution in weather control research. The achievement of control for extreme events would be an 385 

innovative way to mitigate weather-induced disasters. However, the side effects of weather control must be carefully examined 

from an ethical, legal, and social issues (ELSI) perspective. In particular, we need to discuss not only the destructive side 

effects caused by control failures, but also the impact on biodiversity and many industries (e.g., electricity production). Our 

research program also addresses such social issues with legal and ethical researchers. Further ELSI research will be also 

conducted to satisfy responsible and innovative research for weather control studies. 390 

Appendix A: Derivation of the necessary conditions for optimal control inputs 

Here, we derive the necessary conditions for optimal control inputs. For simplicity, we consider the following problem: 

Minimize: �(�∗, �∗) = '��∗(�; )� + ( )��∗(�; ), �∗(�; )���*+ ,  (A1) 

Subject to: E���∗(�; ), �∗(�; )� − �� ∗(�; )  = 2�∗(0; ) = �()���∗(�; ), �∗(�; )� = 2 .  (A2) 

A Lagrangian is introduced to convert the constrained problem to an unconstrained problem. The Lagrangian is defined as: 395 

��(�∗, �� ∗, �∗, J∗, M∗) ≔ �(�∗, �∗) + ( n(J∗)*n�(�∗, �∗) − �� ∗q + (M∗)*�(�∗, �∗)q��.*+   (A3) 

In addition, a Hamiltonian is defined as follows: Q(�∗, �∗, J∗, M∗) ≔ )(�∗, �∗) + (J∗)*�(�∗, �∗) + (M∗)*�(�∗, �∗).  (A4) 

Then, �� is represented using Q; it is divided into �� ∗ terms and other terms in the integral as follows: 

��(�∗, �� ∗, �∗, J∗, M∗) = '��∗(�; )� + ( nQ(�∗, �∗, J∗, M∗) − (J∗)*�� ∗q��.*+   (A5) 400 

The stationary condition of ��, which does not have constraints explicitly, is equal to the stationary condition of the original 

constrained problem. Namely, the original constrained problem was converted to an unconstrained problem. We note that this 
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is not valid for special cases in which the linear independence constraint qualification is not satisfied. The stationary condition 

of �� is that its variation ��� (i.e., infinitesimal change) is zero. Applying Taylor expansion and disregarding higher than second-

order terms of ��∗ and ��∗, ��� is given by: 405 ��� = ��(�∗ + ��∗, �� ∗ + ��� ∗, �∗ + ��∗, J∗, M∗) − ��(�∗, �� ∗, �∗, J∗, M∗)  

= VKO��∗(*;P)�K� W* ��∗(�; ) + ( �VKL(�∗,�∗,J∗,M∗)K� W* ��∗ + VKL(�∗,�∗,J∗,M∗)K� W* ��∗ − (J∗)*��� ∗� ��*+   

= �VKO��∗(*;P)�K� W* − �J∗(�; )�*� ��∗(�; ) + �J∗(0; )�*��∗(0; )  

+ ( ��VKL(�∗,�∗,J∗,M∗)K� W* + �J� ∗�*� ��∗ + VKL(�∗,�∗,J∗,M∗)K� W* ��∗� ��.*+   (A6) 

Importantly, ��∗(0; ) = 0 because  �∗(0; ) is fixed by �(). In addition, �J∗ and �M∗ are disregarded because consideration 410 

of these variations only yields conditions already obtained (i.e., ���∗(�; ), �∗(�; )� − �� ∗(�; ) = 2  and 
���∗(�; ), �∗(�; )� = 2). According to Eq. (A6), the condition for ��� to be zero is that the coefficients of ��∗ and ��∗ are 

zero. By summarizing the conditions from Eq. (A6), the equation of state, and the other constraints, the necessary conditions 

for optimal control inputs can be derived as follows: �� ∗(�; ) = ���∗(�; ), �∗(�; )�,  (A7) 415 �∗(0; ) = �(),  (A8) 

J� ∗(�; ) = − KL(�∗,�∗,J∗,M∗)K� ,  (A9) 

J∗(�; ) = KO��∗(*;P)�K� ,  (A10) 

KL(�∗,�∗,J∗,M∗)K� = 2,  (A11) 

���∗(�; ), �∗(�; )� = 2.  (A12) 420 

Appendix B: MPC experiments with starting points around the large � 

The Lorenz-63 system is known to increase the amplitude of X before RSs (e.g., Figure 2 of MS22 and OTK23). Therefore, it 

is more difficult to prevent RSs for CSEs starting from larger X. OTK23 investigated the influence of starting points in the 

previous CSE approach. Their result showed that the number of successes for preventing the initial RS is almost zero when 

the CSEs start from X ≥ 15. Here, we investigate CSEs starting from X ≥ 15 with our approach. The experiment setting in 425 

this appendix is the same as in Sect. 3.2 except for the starting points. 

Table B1 compares the SR, MTF, and MTC of 1,000 independent CSEs for two starting points settings (i.e., 0 ≤ X <15 and X ≥ 15). This result shows that the controllability of the case for X ≥ 15 (Table B1 b) is almost equivalent to the case 

for 0 ≤ X < 15 (Table B1 a). This is because, the proposed method requires short forecasts such as 20 steps for leading the 
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system to the positive regime, in contrast to the previous CSE approach (MS22, OTK23) that requires longer forecasts such as 430 

about 300 steps. This is a promising result, showing improved controllability compared to the previous CSE approach. 

 

Table B1: Comparison of the success rate (SR), mean total failure (MTF) and mean total control inputs (MTC) for two starting 

points settings with �� = 20 steps and � = 50 in 1,000 CSEs. (a) shows the results of the MPC experiment whose starting 

points are 0 ≤ X < 15. (b) shows the results of the MPC experiment whose starting points are X ≥ 15. 435 

 Starting points 
Success rate 

(SR) 

Mean total failure 

(MTF) 

Mean total control inputs 

(MTC) 
Section 

(a) 0 ≤ X < 15 0.990 −1.34 × 10�w 94.7 Sect. 3.2 

(b) X ≥ 15 0.994 −1.37 × 10�� 99.5 Appendix B 

 

 

Code availability. The code that supports the findings of this study is available from the corresponding author upon reasonable 

request. Archiving the source codes is underway, and will be opened on GitHub (https://github.com/) prior to the final 

publication. In addition, all of the data and codes used in this study are stored for five years at Chiba University. 440 
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