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Abstract. Advanced numerical data assimilation (DA) methods, such as the four-dimensional variational (4DVAR) method,
are elaborate and computationally expensive. Simpler methods exist that take time-variability into account, providing the
potential of accurate results with a reduced computational cost. Recently, two of these DA methods were proposed for a
nonlinear ocean model, an implementation which s costly in time and expertise, developing the need to first evaluate a simpler
comparison between these two nonlinear methods. The first method is Diffusive Back and Forth Nudging (D-BFN) which
has previously been implemented in several complex models, most specifically, an ocean model. The second is the Concave-
Convex Nonlinearity (CCN) method provided-bytsarios—andPei-that has a straightforward implementation and promising
results with a toy model. D-BFN is less costly than a traditional variational DA system but itrequires-integrating-therequires
an iterative implementation of equations that integrate the nonlinear model forward and backward in timeover-a-number-of
iterations, whereas CCN only requires integration of the foerward-medel-oreenonlinear model forward in time. This paper witt
investigate- i Larios-and-Pei’s-investigates if the CCN algorithm can provide competitive results with the already tested D-BFN
within simple chaotic models. Results show that observation density and/or frequency, as well as the length of the assimilation
experiment window, significantly impact the results for CCN, whereas D-BFN is fairly adaptiverobust to sparser observations,

predominately in time.

Copyright statement. TEXT

1 Introduction

There-are-generally-two-elasses-of-data-Data assimilation (DA) methods = S5
as-sequential-methods;are often categorized into a class or type of method, primarily for purposes such as comparison or
evaluation of methods with similar characteristics. Multiple possibilities exist for defining or separating DA methods into a
specific class, and several methods belong to more than one class. For the intentions of this paper and the following discussion,

we have chosen to classify them as two types: sequential and non-sequential.
Sequential methods compute a DA analysis at a selected time (called the analysis time), given a model background state-(or

forecaststate) and data collected during a period of time (observation window) up to the analysis timefobservation-window).
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Commonly used filters-sequential methods include the three-dimensional variational (3DVAR) (Barker et al., 2004; Daley
and Barker, 2001; Lorenc, 1981; Lorenc et al., 2000), the Kalman Filter (Kalman, 1960), and the ensemble Kalman Filter
(EnKF) (Evensen, 1994), along with its many variants. Filters-Intermittent sequential methods assume that all the data within
the observation window are collected and valid at the analysis time. Although this assumption may be warranted for slowly
evolving processes and short observation windows, it has the undesirable effect of assimilating observations at the wrong time
and suppressing the time variability in the observations (if multiple observations are collected at the same location within

the observation window, only one of them will be assimilated). Some sequential methods are implemented continuousl

allowing observations to be assimilated as they are available. This approach reduces the suppression of time-variability b

more accurately assimilating the observations at the appropriate time.
Smoeethers-Non-sequential methods on the other hand assimilate all observations collected within the observation window

at their respective time and provide a correction to the entire model trajectory over the assimilation window. Note that there
can-be-a-differenee-it is possible for the window length to differ between the assimilation window and the observation window
(Cummings, 2005; Carton et al., 2000). The former refers to the time window over which a correction to the model is com-
puted, while the latter refers to the time window over which observations are collected/considered for assimilation. Smeethers
Non-sequential methods do not have the problem of neglecting observations collected at the same location and different times,
which means they do account for the time variability in the observations. However, they are computationally much more expen-
sive than the filterssequential approach. There are a few known smeethernon-sequential methods such as the four-dimensional
variational (4DVAR) (Fairbairn et al., 2013; Le Dimet and Talagrand, 1986), the Kalman Smoother 4<S)-(Bennett and Budgell,
1989), and the Ensemble Kalman Smoother (EnKS) (Evensen and Van Leeuwen, 2000). Of these three, 4DVAR is the-one
thatis-mestused-in-considered one of the leading state-of-the-art for geosciences problems. It does, however, require the de-
velopment of a tangent linear (FEM)-and-adjoint-and adjoint model of the dynamical model being used—This-development-of
the-TEM-and-the-adjoint-model, which is both cumbersome and tedious and requires regular maintenance as the base model

undergoes continued development.
Auroux and Blum proposed a smoother-non-sequential method called Back and Forth Nudging (BFN) (Auroux and Blum,

2005, 2008; Auroux and Nodet, 2011). It consists of nudging the model to the observations in both the forward and backward
(in time) integrations. In the BFN method the backward integration of the model resembles the adjoint in the 4DVAR method,
but it is less cumbersome to develop. A few studies have shown that BEN compares well with 4DVAR: i) it tends to provide
similar accuracy (Auroux and Blum, 2008), and ii) it is less expensive in two ways: the backward integration of the nonlinear
model costs less than the adjoint integration, and the method seems-to-converge-converges in fewer iterations than the 4DVAR.

There is a legitimate quest for computationally inexpensive DA methods that account for the time variability in the observations.

Continuous sequential DA methods are computationally inexpensive (because no backward model integration is needed as

in the 4DVAR or the BFN methods), and they do account for the time variability in the observations which are continuously

assimilated into the forward model as they become available.

during-the-forward-integration-One example comes from Azouani, Olson, and Titi (2013) (AOT) who proposed a DA method



60

65

70

75

80

85

designed to assimilate observations continuously over time, and instead of assimilating measurements directly into the model
the AOT method introduces a feedback term, like a nudging term, into the model equations to penalize deviations of the model
artos-and-Pei-(20H8)introduced—variations—of-the-CDA-—method-from the observed data. Larios and Pei (2018) introduced

three variations of a continuous sequential DA method derived from linear AOTand-applied-them-, that when applied to the
Kuramoto-Sivashinsky equationtKSE)—They-, showed increasing potential for convergence depending on the form of the

model-data relaxation term. The ease of implementation and the potential for convergence of this method makes it attractive

for other applications. The most promising of these was their Concave-Convex Nonlinearity (CCN) method which is evaluated
within in this paper. The concept for a comparison between this sequential method and the previous non-sequential method

evolved from the ability to implement BEN as a continuous assimilation.
This study compares the BEN and Laries-and-Pei-the CCN methods using the Lorenz models (Lorenz, 1963, 1996, 2005, 2006;

Lorenz and Emanuel, 1998; Baines, 2008). The former has been applied to various models including a complex ocean model
(Ruggiero et al., 2015), but it is costly compared to €BA-continuous sequential DA methods. The latter is less expensive s-but
has not yet been implemented with more complex or chaotic systems to our knowledge. Before attempting an implementation
of the Larios-and-Pei-CCN method with a complex ocean model, we first compare its accuracy against the BFN method on
using three chaotic Lorenz systems. These models provide similar chaos that one would see within an ocean or atmospheric
model and have been shown to be an excellent source for evaluating and testing new DA methods (Ngodock et al., 2007).
We do note that the KSE-Kuramoto-Sivashinsky equation is also a chaotic model, but it is not as widely used as a testbed for
DA methods as the Lorenz models. The results in this paper assess if i) CCN will converge for a shorter time window with

these increasingly complex and chaotic models

functional nudging term in CCN sufficiently corrects the model without the iterations of a backward correction as in BEN.
The outline of the paper is as follows. In Section 2, BFN and the Larios—and—Pei-CCN methods are introduced. Sec-

i1) if the results can still be achieved with sparse observations, and iii) if the

tion 3 presents the three Lorenz models of increasing complexity used for testing the two methods. Section 4 contains the

model initialization and setup for the true model, which
is used for observation sampling and evaluation of experiments, as well as sresults from preliminary testing for the eptimal

nudging-coefficientforeach-methodchoice of the nudging coefficient. In Section 5, the details of the DA experiments for each
model are discussed and results are presented. Lastly, Section 6 contains the conclusion of the experiments.

2 Methods

In this section, we discuss the two simpler methods that are compared in this paper. These methods are only briefly presented
here, and we refer the reader to the cited references for more details. We note that both the BFN and AOT methods are based

on the well-known nudging algorithm (Hoke and Anthes, 1976).
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2.1 Diffusive back and forth nudging (D-BFN) method

We start with a simple description of the Back and Forth Nudging (BFN) method proposed by Aureux-and Blum-2005;2008)-
Auroux-and-Nodet; 200 Auroux and Blum (2005, 2008); Auroux and Nodet (2011). The BFN method, like nudging, cor-
rects the trajectory as the model is integrated forward in time. The addition in BFN, compared to nudging, is using the state
at the end of the assimilation window to initialize the backward model, which has its own nudging term. It forces the model
closer to the observations as it integrates back in time, allowing corrections up to the initial conditions. The adjusted initial
condition is then used to initialize the integration of the forward model again and this process is repeated for either a chosen
ameunt-number of iterations or until a set convergence criterion is reached. Auroux and Blum then introduced the Diffusive
Back and Forth Nudging (D-BFN) (Auroux et al., 2011) method, which has the same underlying methods of BFN but with
added control of the diffusive term, allowing a stable backwards integration. The D-BFN algorithm is described below, using a

dynamical model in continuous form:
KX =M(X)+vAX, 0<t<T, (1)

with the initial condition X (0) = o, where M is the model operator and v is the diffusion coefficient. In referenee-to-their

o 0 Moiepcadfa TP

foreing-constant—In-the-the dynamical system above, the diffusive term has been separated from the model operator. We leave
the reader with the remark that if there is no diffusion, D-BFN reduces to the original BFN method. The D-BFN method is as
follows, for k > 1,

0e X = M(Xy) + vAXG + K(Xops — H(X})), 2
Xk(O):kal(O), 0<t<T,

Xk =M(Xy) —vAXy, — K'(Xops — H(X})), 5
Xi(T)=Xi(T), T<t<O, @
where X (¢) is the state vector with initial condition X (0) =z, K /K’ is the feedback or nudging coefficient, and H is the
observation operator, which allows comparison of the observations, X s, with the corresponding model state at the observation
locations, H(X (¢)). For D-BFN, as opposed to BEN, the opposite sign of the diffusive coefficient is used to stabilize the
backwards model. The nudging coefficients K and K’ can have the same or different magnitudes where the equations determine

the opposite signs for the nudging terms. For the cases that the non-diffusive portion of the model can be reversed, the backward

nudging equation can be rewritten for ¢’ =T — ¢:

Oy X = —M(Xp) + vAXy + K'(Xops — H(X1)),

N 4)
Xt = 0) = X (T),

where the backward model state, X , is evaluated at time t’. There is a case in which it is reasonable for K = K’ and is of
interest for geophysical processes. While this slightly different algorithm was implemented and tested, the original D-BFN

algorithms were used for the purposes of this paper.
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2.1.1 €eoneave-convex-nonlinearity- (CEN)-methed
2.2 Concave-convex nonlinearity (CCN) method

The method being compared —intreduced-byLarios-andPei2018)is-a—medification-is one of three methods proposed b
Larios and Pei (2018). All three methods are based on modifications of the linear AOT method (Azouani et al., 2013)4n-their

paper;-they-suggest-three-newnonlinear-, which uses a linear feedback term within the model equations to correct the deviations
from the observations. These three new continuous DA methods proposed by Larios and Pei (2018) provide different nonlinear
modifications of this linear feedback term. The first approach was-a—nonlinear-adaptation-of-the- tinear AOT-methoduses an

overall nonlinear adaption that modifies the feedback term to be a nonlinear function of the error. While this method had

faster convergence, it retained higher errors for short periods of time. This led them to introduce a hybrid of the two, the

Hybrid Linear/Nonlinear Method that strongly corrects deviations for small errors with-the-nenlinear-pertion-and-maintains

the-linear-using the nonlinear feedback term and keeps the linear feedback term as in the linear AOT algorithm for large
errors. The success of this method inspired Larios and Pei to take it a step further and exploit the nudgingfeedback term,

proposing the third method, the Concave-Convex Nonlinearity methed-thatalse-implements-nenlinearity-onthe(CCN) method

that implements nonlinearity for both small and large errors using the previous nonlinear feedback term for the small errors and
introducing another nonlinear feedback term for the large errors. This method converged faster and had smaller errors when

compared to the previous two methods and AOT. This last method is the one shown below and used for comparison in this

paper. It-will-alse-be-referred-to-as-CEN-or 5 {x)-inthe following-equations—
We start with the same representation of a time continuous model as in Eq. (1), except the diffusive term is no longer required

to be separated,

KX =M(X), 0<t<T.

We then add the feedback or correction term, where linear AOT would use a real scalar constant 7,

9y X = M(X) +n(Xops — H(X)), (5)

where-the- CCN-methoed-is-asfolews-and CCN modifies 7 to be nonlinear functions dependent on the magnitude of the error
(x), for 0 <y <1,

z|z|7, lz[ > 1, n(x)
n(x) =ns3(x) =4 zlz|™7, 0<|z[<1, ° ©)

0, z=0.

This nonlinear DA method seems straightforward to implement with a high convergence rate and only a forward integration
of the model. It is similar to BFN in that it uses a nudging term to correct the model towards the observations during the
integration of the forward model. The results from their paper with the KSE-Kuramoto-Sivashinsky equation model look

promising, but it is important to note that the reference of fast convergence was in comparison to AOT. The CCN algorithm
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took roughly 17 time units for convergence, compared to the 50 time units for AOT. These results also used a very dense set

3 Models

This section presents the three models for which the experiments with the proposed methods will be tested. Each of the well-
known Lorenz models (Lorenz 63, Lorenz 96, and Lorenz 05) have been consistently used to test new DA methods.

The first model is the three-component Lorenz (1963) model:

dx

E:a(y—x)

%:I(P*Z)*y (7
%:xyfﬂz

The three components (i, y, z) represent the amplitudes of velocity, the temperature, and the horizontally averaged temperature,
respectively (Baines, 2008). The equations also contain three constant parameters that are set to commonly used values known
to cause chaos: o = 10, 8 =8/3, and p = 28.

The second model is the Lorenz (1996) model, published in Lorenz (2006) and Lorenz and Emanuel (1998). The Lorenz 96
is a more complex one-dimensional model for the variables or grid points X1,..., Xn. These can be viewed as values of an

unspecified oceanographic quantity such as temperature or salinity. The model equations are

dX;
dtz =(Xip1 —Xi2)Xio1 — X;+ F, €]

fori=1,..., N, with the constraint of N > 4 and the assumption of cyclic boundary conditions. In Equation (8), —X; is the
diffusive term, F' is the forcing constant set to the value of 8 to ensure chaotic behavior, and N = 40 is a frequently used
quantity for the number of variables.
The third model is the Lorenz (2005) model, a one-dimensional model containing grid points, X1, ..., Xy, that can also be
considered geographical site locations of some general oceanographic measurement. For elarifieationsis-tsedin-place-of K-
or-the-model-subseripts-sinee—denotes-the-nudgingcoefficient-inD-BEN-—Fer-N > 4 and a value L(L < N), the model

equations are

d X,
*‘(’n,%: ‘(7‘( - X F’
de” " dt XX = X ®)
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forn=1,...,N, where [X, X]L ,, is the advection term defined by

(X, Y], L2 Z Z Xn—2n-iYn—r—j + Xn-r4j—iYn+L+;5)- (10)
j==Ji=—J

In this model, — X, is the diffusive term, F is the chosen forcing term, and L is a selected smoothing parameter where .J = L /2
if Lisevenor J = (L —1)/2if L is odd. It has the same cyclic boundary conditions as the Lorenz 96 model. The parameters
used in this paper are F' = 10 to cause chaos, N = 240 for the number of grid points, and L = 8, which is a commonly used
value for smoothing. This model can also be rewritten as a summation of weights. For the purposes of this paper, the original

equations were implemented.

4 Naturerun-Model initialization and preliminary resultstesting

In this section, we will first discuss how the nature—runs-experiments are setup for each of the three modelsand-then—show

pertions-of-thenatare-ran-are-. We will then present results from preliminary testing to establish how the values of the nudgin
coefficients were chosen for the experiments following. Before performing any experiments, each model requires initialization
and a period of forward integration to remove any transient behavior (Lorenz, 2005; Lorenz and Emanuel, 1998), also referred

to as the

i model spinup. Each model follows the
implementedmodel spinup.

experiment setup scheme shown in Fig. 1, where the lengths of time for each model spinup is shown in Table 1.
The models are first initialized with a uniform random distribution between 0 and 1 and integrated forward using a fourth-order

Ruﬂge%u%fouﬂh order Runge-Kutta (RK4) time- stepplng algonthm (Lambers et al., 2021)—While-each-nature-model-has

5)7,_where the size of the timestep and-the-Jength-of
is model dependent and shown for each

model in Table 1. Following the outline in Fig. 1, the model state of the spinup after 1 year (9 years for Lorenz 05) is used as
the initial condition for the DA e i

nature run-are-used-model experiments. The model spinup continues for an additional 8 months to provide an initial condition
for the true model, This continued time of spinup is to ensure that the two initial conditions are not equal, which is verified
within the following sections. The true model, also referred to as the truthfor vatidation-and-experiment testing—The borenz,, is
integrated forward without any assimilation for a period of four months and is used for sampling observations and evaluating.
the accuracy of the experiments for each DA method.

The unit of time used within this paper follows from Lorenz (1996, 2005); Lorenz and Emanuel (1998) which states for the
Lorenz 96 and Lorenz 05 meodet ' it i ' implifi




— Model Initialization
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y |
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DA Experiments True Model
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l [y I L
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Figure 1. Model initialization and setup for experiments. Note that the initial conditions for the DA experiments and the true model state are
not equal. The true model state is also referred to as the Truth.

unit of time is approximately 5 days. Lorenz (1963) states that the Lorenz 63 model uses a dimensionless time increment. We

note that there are underlying variables within the Lorenz 63 model that can be used to calculate a specific unit of time but are

based on values of the materials used within an experiment, an example of this calculation is shown in Ngodock et al. (2009)

- For the purposes of this paper and to reduce confusion between units of time within the following results, we have made the
210 assumption that a time unit for all three models corresponds to 5 days.

Table 1. Natare-run-Initialization and experiment parameters for each model.

Experiment Model Setup
Model Timestep Algorithm Timestep Size Approx-Spinup Time (DA IC)  Spinup Time (Truth IC) Nat
Lorenz 63 RK4 At=1/1000-6-At = 1/1000 ~ 6 minutes 1 year 1 year 8 months
Lorenz 96 RK4 At=1/20-6-At = 1/20 =~ 6 hours 1 year 1 year 8 months
Lorenz 05 RK4 At=1/46-3-At = 1/40 =~ 3 hours 9 years +year9 years 8 month

4.1 Lorenz 63 model initialization

The Lorenz 63 model, Eq. (7), is integrated forward with a timestep of approximately 6 minutes (or At = 1/1000 time unit).

‘Fhe modet state-at the-end-of the first year of-As shown in Fig. 1 and Table 1, the model state after a I-year spinup is used as
the initial condition for the DA model experiments and the model state after 1 year and 8 months of the spinup is used as the
215 initial condition for the PA-experiments—The-truth-is-true model.
First, we verify that the true model, shown in Fig. 2(a)an
the—, uses an appropriate length of time and produces the rotation between the two wings of the Lorenz attractors. This




forecast is referred to as the truth and is used for observation sampling and evaluating the experiments. Next, we note
that the two initial conditions WWMM&Wt The initial condition ef
for the DA experiments: (2.2731,2.9968,17.2231) and the initial condition for the BA
expeﬂmeﬁf%@%l%‘&%—ﬁ—?%ﬁ—l:mﬂﬂ% truth: (—12.0355,—15.7630,26.9678). Lastly, we validate that the forecasts

roduced by these two initial conditions do not converge. The two-month forecasts with no assimilation are shown in Fig. 2(b)

shews-theresultsfor each variable x (top), y (middle), and z (bottom)fer-a-twe-menth-ran-with-ne-DA-—compared-to-thefirst
two-menths-oftruth.

220
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Truth vs No DA Run
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(1] 1‘0 2‘0 3‘0 4‘0 5;0 60
(b) Time (Days)
Figure 2. Lorenz 63 model: (a) Lastfour-months-Four-month forecast of the naturerun-true model, referred to as the truthand-ater-used-for
validation-of-experiments. (b) The-vatues-Two-month forecasts with no assimilation for each variable x (top), y (middle), and z (bottom)ever
a-two-month-(12-time-units)-window. Fruth-is-shown-in-The teal line shows the truth, ‘True FC, or the forecast using the initial condition for
the true model, whereas the orange line is-a-test-run-with-shows the no BA-thatstarted-with-assimilation forecast using the same-background

initial condition for the DA experiments, ‘No DA FC’.
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4.2 Lorenz 96 model initialization

The Lorenz 96 model, Eq. (8), uses a constant forcing of ' = 8 and is integrated forward using a 6hour—hour timestep (or

At =1/20 time unit). The state-of-the-naturerun-moedelat-the-end-of the-first-year-of spinup-istater-model setup is parallel to
the previous model, as shown in Fig. 1, where the model state after a 1-year spinup is used as the initial condition for the DA
experiments —Initial-conditionsfor-the-truth-and-the-background-state-are-shown-and the model state after 1 year and 8 months
of the spinup is used as the initial condition for the true model.

These initial conditions are presented in Fig. 3(a) to confirm that they are different. Figure 3(b) shows the four-months-of
truthwhich-confirms-that four-month forecast for the true model, referred to as the truth, and verifies the length of spinup and
the-choice of forcing produced ample-chaos—Finalty, Fig-a chaotic system, The truth is used for sampling observations and
validating results from the experiments. Lastly, we validate that the initial conditions produce separate forecasts. Figure 3(c)
represents the error between truth-and-a-ne-DA-—ran—tt-can-be-seen-that-the-errors-betweentruth-and-the-no- DA+ i
and_the truth and the no assimilation forecast using the initial condition for the DA experiments. The magnitude of the errors
verifies that the two runs-have-diverged-from-each-otherforecasts do not converge.

4.3 Lorenz 2005 model initialization

The Lorenz 05 model, Eq. (9, 10), uses a constant forcing of F' = 10 to ensure chaos, an even number L = 8, and is integrated

forward with a timestep of approximately 3 hours (or At = 1/40 time unit). Fo-producesufficientchaos—the-model-spinup
of time for the model spinup. Table I and Fig. 1 show this model has a 9-year spinup where the final model state is used as
the initial condition for the DA experiments : i i ts-iit
final model state of the spinup after 9 years and 8 months.

These initial conditions are not equal and are shown in Fig. 4(a). The-model-thenrunsforward-another-yearfor-the-nature
rui-where-the Jast-four-months-of the-naturerun-A four-month forecast of the true model is shown in Fig. 4(b), are-used-which
as the truth for-testing-and-vatidation—the-and is used for sampling observations and evaluating the results between the two
methods. Finally, we present the error between the true model forecast and a no assimilation forecast of the initial condition
for trath-is-alse-shown-in-comparisonin-the DA experiments in Fig. 4(a)—Finally; Fig—4(e)displays-the-errors-between-the-truth
and-a-4-menth-no-DA-runc), which verifies that the two initial conditions do not converge.

4.4 Preliminary testing

In order to best compare the two methods, we first eheese-the-eptimal-completed preliminary testing to choose a value for
the nudging eeefficientfor-each-methed-and-coefficients for each model. The two DA methods, D-BFN and CCN, were

implemented for several lengths of time, ranging from 5 days to 2 months. Each BA-—rur-experiment was given a set of full

10
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Figure 3. These-figureseapture-the-Lorenz 96 modelsetup-—: (a) The top-figure-teal line shows the distinetion-between-the-initial condition
for the truth-~Fruth+C-and-true model state, ‘Truth IC’, whereas the orange line shows the initial condition for the DA experimentsBAE>,

‘DA IC. i i b) Four-month forecast of the nature-runtrue model, referred to as the truthand-ater-used
for-validation-of-experiments. : i (c) Difference between the-truath-and-a four-month no BA

runassimilation forecast of the *DA IC” compared with the truth.

observations at all grid points and every timestep. The mean absolute error (MAE, % Z;N:1 ly; — x;|) was computed over time
to reflect how well the nudging terms were correcting the modetmodels. Several values were chosen-tested for each nudging
term: 1 <|K| <75and 0 <y < 1.

11
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Figure 4. These-figureseapture-the-Lorenz 05 modelsetap-—: (a) The top-figure-teal line shows the distinetion-between-the-initial condition
for the truth-~Fruth+C-and-true model state, ‘Truth IC’, whereas the orange line shows the initial condition for the DA experimentsBAE>,
‘DA IC. i i b) Four-month forecast of the nature-runtrue model, referred to as the truthand-ater-used

for-validation-of-experiments. Lastlythe-bottom-figure-contains-thetarge-errors-(c) Difference between the-truth-and-a four-month no BA
runassimilation forecast of the *DA IC” compared with the truth.

this preliminary testing for each model and a range of parameters, we only present the two examples shown in Fig. 5 as not to

cloud the paper with repetitive figures.

Thefirstsetoffigures; Fig-The results shown are of the Lorenz 05 model assimilating observations for 1 month. Figure 5(a)

tmerepresents the error for D-BFN over three iterations of back
and forth nudging, where the value K = 25 maintained the lowest overall error. Figure 5(b) shows the error for CCN where the
value v = 0.9 reduces and maintains this lower error around day ten.

12
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We remind the readers that CCN is a continuous method that corrects through forward integration only, which explains wh

this method will have higher errors at the beginning of the window and might need a longer time to reduce the error. Similar

results were obtained for each model in our preliminary testing, and so we proceed with using the values X = 25 for D-BFN

and v = 0.9 for CCN for the following experiments and their results shown in this paper. In-thisease; CCN-converges-around

Mean Absolute Error - Lorenz05
T

—K=1

K=5

5 —K = 25|
f W 1
3| 4

L-.«,JM‘—;M& N

T L L T
forward 1 -> backward 1 <- forward 2 -> backward 2 <- forward 3 -> backward 3 <- forward 4 ->

Mean Absolute Error - Lorenz05
T T T

o 5 10 15 20 25 30

(b) Days

Figure 5. (a;e)D-BEN-(b;d)-CEN-Preliminary testing to-choose-results of the eptimal-valuefor-the-nudging-coefficientsfor-each-method:
Resultsshown-are-for-the-Lorenz 05 model with-a-5-day-and-a-306-day-(assimilating 1 month of full observations for (a) data-assimitation
window-Observations-are-broughtin-atevery-grid-point D-BFN with the values K = 1,5, 25 and timestep-(timestep-for Lorenz-05-modeHs
Shours-with-240-grid-peintsb) CCN with the values 7 = 0.1,0.5,0.9.

5 Data assimilation experiments: Setup and results

Several-experimentsare-For each model subsection, we start with briefly discussing the individual model parameters used for
the following experiments. We then proceed with details of the DA experiments, such as the length of the DA period and the

frequency in which observations are assimilated, and discuss the results shown in the tables and figures presented for each
model.

Within this section, several experiments are carried out with different lengths of DA windews—Thelength-of the foreeastis
the-same-as-the-time-window-—choesen-for DA-experiment periods. Each forecast is presented for the same length of time as the

corresponding DA experiment window. The observations fer-these-experiments—will-comefrom-the-start-of truth-for the DA
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the-two-monthforeeast-aceuracy-assimilated in these experiments are sampled from the truth for each model. We remind the
reader of the results from the preliminary testing in the previous section, where the values & = 25 for D-BEN and v = 0.9 for
CCN are used for all results shown in this study.

The first set of experiments for each model assimilates observations at all grid points for every timestep and is referred to as
the "ALL OBS’ experiments. The tables presented within this section include shorthand names for other experiments, where the
first number represents how many spaces between grid points and the second number represents the time between timesteps.
For example, the experiment ‘3GP-27S" assimilated observations at every 3 Grid Points for every 2 Time Steps. The results
shown in the tables are the mean absolute error (MAE) averaged over time. The columns separate the errors between the DA
experiment periods and the forecast periods..

The results shown in the figures within this section contain the errors for each DA experiment evaluated against the truth and
are presented in the following manner: i) experiment results for D-BEN are presented in the top row of each figure (panels (a)
and (c)), while experiment results for CCN are presented in the bottom row of each figure (panels (b) and (d)), ii) the error for
the DA experiment period is shown in the left half of the panel, while the error of the forecast (FC) is shown in the right half
of the panel. This distinction is shown by color in the results for Lorenz 63 and is separated by a vertical line for all remaining.
figures.

5.1 Lorenz 63 model

The first set of experiments is carried out with the three-component Lorenz 63 model, Eq. (7). All experiments have the same

parameters of o = 10,8 = %, and p = 28 with a timestep of approximately six minutes {A+=4/100)Preliminary-testing-was

Bz%e*peﬁmaﬁwﬂ%mgmﬂa}ue&e%%[\w
The-experiments—started-with-shorter-time-windows-The first setup starts with shorter DA experiment periods of 5 and

10 daysef-DA-along-with-a—, paired with their 5 and 10 day fereeastforecasts, respectively. For the best results possible,

observations were brought in at all grld points and-every-timestep-for every timestep (‘ALL OBS’). Table 2 shows the mean

- MAE of the DA period and
the forecast period (FC) WMM While D-BEN does well with a short time-experiment window,

CCN does not have an adequate amount of time for corrections to make an impact on the DA error. The-time-

The experiment window was then tengthened-to-a-extended to one and two months DA-run-along-with-a-one-and-two-menth
forecastfor the DA period and FC period. The results are shown in Table 2, as well as Fig. 6. While CCN shows higher MAE
for not having a long enough time window to reduce errors, the forecast MAE is on par with D-BFN for the one month forecast
and slightly better than D-BFN for the two month forecast. Figures 6(c) and 6(d) show that CCN has better accuracy in the

forecast for several days longer than D-BFN when given sufficient time to make corrections.
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Figure 6. (a;b)-D-BEN-K—=25)-and-(e;d)-CENA+=-0-9)FError plots between-experiments-with-the-for Lorenz 63 model-compared-with
‘ALL OBS’ experiments evaluated against the truth for each variable, x (solid line), y (dashed line), z (dotted line). Blue denotes the DA is

shown-in-blae-and-error, while green denotes the forecast(FC yisshown-ingreenerror. The left column shows experiments-with-results for
1 month 6f-DA and 1 month ef-ferecastFC for (a) D-BFN and (b) CCN. The right column shows experiments-with-results for 2 menths-of

month DA and 2 menths-ef-forecast—AH-DA-experiments-assimilated-alh-observations-month FC for (i-e-al-grid-peoints-at-every-timestep/o
minutesc) D-BEN and (d) CCN.

Further experiments were done in the case when all observations are not available. The experiment ‘/GP-2TS1gp2ts”’
shown in Table 2 is-bringing-brings in observations at all grid points but now every other timestep. These were only performed
for the longer time-experiment windows of one and two months. D-BEN still provided high accuracy with less observations in
time but CCN was not able to make a suitable correction within this time window. Several factors play a role in this outcome
starting with internal factors of D-BFN, namely the backwards integration of the model and the iterations. The backwards
integration helps propagate the correction from the nudging term further into the model domain, an ability that is not present
in CCN. It can also been-be seen in Fig. 5 that the rate in which corrections are made imply that D-BFN has a stronger nudging
term compared to CCN. It is possible that if a longer time window were considered, CCN would produce lower errors for the
DA run and the forecast. It was shown in the original paper that it took approximately 17 time units to converge with the KSE

modelKuramoto-Sivashinsky equation, and these experiments are 6 time units (1 month) and 12 time units (2 months).
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Table 2. Table of DA experiments. Observations used: “a#-obs> ‘ALL OBS’ = all observations (every 6 minutes), “Fgp2ts~ ‘IGP-2TS’ = all
grid points, every other timestep (every 12 minutes). “5¢>‘5d’, “#0¢>'10d’, ~#m”‘Im’, and “2n+ ‘2m’ represent 5 days, 10 days, 1 month, and

>

2 months, respectively. “PA> ‘DA’ is the experiment window for data assimilation and “Feast- ‘FC’ is the forecast window. Values shown are
the time-averaged-MAE.

Lorenz 63 Model

Observations DA Method SdDA  5d FeastfC 10d DA  10d FeastFC

D-BFN (K =25) 0.0221 0.0225 0.0224 0.0279
ALL OBS

CCN (y=0.9) 3.1663 3.3081 2.2818 6.8962

ImDA 1ImFeastFC 2mDA  2m FeastFC

D-BEN (K =25) 0.0247 0.0254 0.0254 0.1766
ALL OBS

CCN (y=0.9) 1.2605 0.0256 0.6434 0.0591

D-BFN (K =25) 0.0317 0.0255 0.0508 0.0924
1GP-2TS

CCN (v =0.9) 7.9482 6.4443 8.0473 10.2191

The-results-The results above confirmed that a longer time window is still needed with these models in order for CCN

to converge. Therefore, the next two models will have-use only the longer DA-—runs—Fer-these-experiment window. For the
following experiments, the two lengths of assimilation and-ferecasting-considered are one and two months followed by their

respective forecast.
5.2 Lorenz 96 model

All numerical experiments for Lorenz 96, Eq. (8), will-use the following parameters: N = 40 grid points, F' = 8, and a time step
of approximately 6 hours (At = 1/20). Fhe-preliminary-testingrevealed-the-bestchotce-of K =25-and~=0-9-for D-BEN

The first set of experiments with this model use observations at all grid points and all timesteps —Fhe-averaged—-Mean
Averaged-Error- (MAE-(‘ALL OBS”). The time averaged MAE is shown in Table 3 where CCN produces a slightly better

forecast than D-BFN. Of course, CCN has a higher error for DA since it only corrects in the forward model. Figures 7(a) and

7(c), for the one month experiment, show how long the forecast is accurate, which is around 12-15 days for both methods.
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Figures 7(c) and 7(d) have-contain the results for the two month experiment, showing that the accuracy in the forecast for

D-BFN has drepped-decreased to around 5 days, whereas, CCN is consistent with accuracy for about 12-15 days.

Table 3. Table of DA experiments. Observations used: ‘ALL OBS’ = all observations (every 6 hours), ‘/GP-2TS’ = all grid points, every
other timestep (every 12 hours). ‘/m’ and ‘2m’ represent 1 month and 2 months, respectively. ‘DA’ is the window for data assimilation and
“FC’ is the forecast window. Values shown are the time averaged MAE.,

Lorenz 96 Model
Obseryations DA Method ImDA  1ImFC  2mDA 2mFC
D-BFN (K =25 0.4006 1.8820 0.4036 3.6572
ALL OBS RN e T
CCN (v =09 07620  1.5284 ~ 05581  3.1434
D-BEN (K = 25) 0.4062 1.8197 0.4075 3.4985
1GP-2TS NN e T
CCN (v =09 19662 3.6858 ~ 1.6443  3.8755
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Figure 7. (a:b)BD-BENAF=25)-and-(e;d)-CEN-(=-=0-9)Error plots between-experiments-with-the-for Lorenz 96 medel-compared-with
‘ALL OBS’ experiments evaluated against the Fruthtruth. The left column shows experiments-with-results for 1 month 6f-DA and 1 month
offoreeastFC for (a) D-BFN and (b) CCN. The right column shows experiments-withresults for 2 moenths-ef-month DA and 2 menths-of

orecast—Fhe-vertieal-Hinerepresents—the-chansefromth i W vindow—AH-DA-expertments—attobs asstmitated—at

a A

The next set of experiments brought in observations at all grid points and every other timestep (‘I GP-2TS +gp2ts). Figure
8 shows the error between truth and each method along with their forecast. D-BFN produces similar results as compared to

assimilating all observations. CCN, however, does not make much of a correction during assimilation, which in return does not

355 produce a usable forecast. We would hypothesize that CCN needs a much longer assimilation window to account for not having
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a full observation set. We carried out experiments with smaller and slightly higher values for -, but the resulting assimilation

and forecast errors did not improve. (Results not shown).
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Figure 8. Error plots for Lorenz 96 ‘IGP-2TS” experiments evaluated against the truth, The left column shows results for 1 month DA and
1 month FC for (a;b) D-BEN (Z&—=-25}-and (e;db) CCN{=-0:9). Similar-te-Fig—7-except-the-The right column shows results for 2 month
DA experiments—fgp2ts” assimitated-observations-at-at-grid-points-and every-other-timestep-2 month FC for (every—+2-heursc) D-BEN and
(d) CCN.

A few other experiments were performed to test the capabilities of these methods with sparse observations. All of these were
completed with the two month DA-experiment window. Observations were assimilated less frequently in time, from every
five ‘IGP-5TS tgp5ts™ to every ten ‘IGPG-10TS 1gpt0ts™ to every twenty ‘IGP-20TS 1gp20ts™ timesteps. The results are
displayed in Table 4. The results for CCN are poor as it did not have enough observations to make a correction in the forward
model. D-BFN has the benefit of propagating the observations back in time, correcting the initial conditions, and running the
forward model again. This process allows D-BFN to give a much better correction during the assimilation window. However,
the forecast accuracy decreases with the frequency of observations. The results for every five timesteps (every 30 hours) is-are
comparable to the results from all observations. The days of accuracy for the less frequent observations drastically deerease

decreases as the observations decrease.
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Table 4. A variety of other experiments testing the sparsity of observations. The first number represents how many spaces between grid

points whereas the second represents the time between timesteps. For example, “3gp2ts~ ‘3GP-2TS’ are observations brought in at every

three gridpoints and every two timesteps. Recall that one timestep is equal to 6 hours for this model, so every two timesteps would be every

12 hours. Values shown are the time averaged MAE.

Lorenz 96 Model

Observations DA Method ImDA  1m FeastFC

D-BEN (K = 25) 0.4255 3.2234
1GP-5TS

CCN (v =0.9) 2.6634 4.1855

D-BEN (K = 25) 0.5181 3.5457
1GP-10TS

CCN (y=0.9) 3.0572 4.2346

D-BEN (K =25) 1.8630 4.1870
1GP-20TS

CCN (v =0.9) 3.7072 4.2537

D-BEN (K =25) 0.9046 3.7016
2GP-2TS

CCN (y=0.9) 2.6375 4.1872

D-BEN (K =25) 1.7059 3.9207
3GP-2TS

CCN (v =0.9) 3.0278 4.3588

D-BFN (K =25)  2.1865 3.9240
4GP-3TS

CCN (v =0.9) 3.3608 4.0710

5.3 Lorenz 2005 model

The Lorenz 05 model, Eq. (9) and Eq. (10), wilt-use the same parameters for all numerical experiments: 240 grid points (IV),

an even number L = 8, a forcing constant of 15 to ensure chaos (F'), and a time step of approximately 3 hours (At = 1/40

time unit). Recall that in Eq. (9) and Eq. (10), one unit of time is equivalent to 5 days. {&;b)}D-BENAFK—=506)+e;d)-D-BEN
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—month experiment windows.
For this model, CCN has the lowest forecast accuracy of all results for both the one month and two month. The forecast has

low errors for around 30 days, as seen in Fig. 9.
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Figure 9. Error plots for Lorenz 05 ‘ALL OBS’ experiments evaluated against the truth, The left column shows results for 1 month DA and

1 month FC for (a) D-BEN and (b) CCN. The right column shows results for 2 month DA and 2 month FC for (¢) D-BEN and (d) CCN.

The second set of experiments uses all points in space and assimilates them at every other timestep (‘/GP-27S’). D-BFN
produces very similar results as with the all observations experiment. Looking at the difference in results between the one
month and two month experiments, the CCN method needs a longer window to converge with the sparser set of observations,
as seen in Fig. 10. Table 5 contains further details of the mean-absolute-errors-time averaged MAE for the first two sets of
experiments. The values in Table 5 are separated to show error contained during the DA window-period and error maintained
during the forecast windewperiod.

D-BFN does well compared to CCN for observations that are sparse in time. Table 6 shows the results for a-the two month DA
and fereeastFC experiments for observations brought in every five ‘/GP-5TS 7gp5ts” and every twenty “1gp20ts 1 GP-20TS’
timesteps. The correction in the DA brings the error down to provide a decent forecast. The error in the forecast is relatively
low compared to the errors in CCN and the larger errors are towards the end of the forecast period. The figure is not shown in

this paper but both results have high accuracy for approximately the first 30 days of the forecast.
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Figure 10. Error plots for Lorenz 05 ‘1GP-2TS” experiments evaluated against the truth. The left column shows results for 1 month DA and
1 month FC for (a;b) D-BFN {/=-50)e;d) B-BEN-{K=25);-and (e5fb) CCN{~+=-=0-9}. Similarto-Fig—9-exeept-the-The right column

shows results for 2 month DA experiments—fgp2ts~ asstmilated-observations-at-al-grid-points-and every-other-timestep-2 month FC for (every
6-hourse) D-BEN and (d) CCN.

Table 5. Table of DA experiments. Observations used: “a#-obs> ‘ALL OBS’ = all observations (every 3 hours), “Fgp2ts* "IGP-2TS’ = all grid
points, every other timestep (every 6 hours). “##* ‘Im’ and “2n+* 2m’ represent 1 month and 2 months, respectively. “BA* ‘DA’ is the window

for data assimilation and “Feast~ ‘FC’ is the forecast window. Values shown are the time averaged MAE.

Lorenz 05 Model

Observations DA Method ImDA 1m¥FeastFC 2mDA  2m FeastFC

D-BEN (A= 50)-0.2095-0.3856-0.2959-1.8 1 37D-BEN-( K = 25) 0.1827 0.2480 0.1960 2.1770
ALL OBS

CCN (v=0.9) 0.3984 0.1948 0.2246 2.1161

D-BFN {A—=56)-6:2102-03718-6:224922100D-BEN-( K = 25) 0.1861 0.2417 0.1977 1.9577
1GP-2TS

CCN (v =0.9) 0.8913 2.9029 0.5941 3.3410

400 6 Conclusions

Overall each method has their own advantages and disadvantages. While D-BFN performs better with short windows and
sparse observations, it does require iterations of forward and backward integrations of the model. This is not suitable for all
cases, most importantly when a model cannot be integrated backwards. For some cases where the assimilation window was
long enough, the DA error at the end of the window was lower from the CCN method than D-BFN, resulting in a forecast that
405 maintained accuracy longer in time. Furthermore, CCN only requires the forward model, which is useful for models that do

not allow a backwards integration and also makes this method more computationally efficient.
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Table 6. A variety of other experiments testing the sparsity of observations. The first number represents how many spaces between grid
points whereas the second represents the time between timesteps. For example, “3gp2ts~ ‘3GP-2TS’ are observations brought in at every
three gridpoints and every two timesteps. Recall that one timestep is equal to 6 hours for this model, so every two timesteps would be every

12 hours. Values shown are the time averaged MAE.

Lorenz 05 Model

Observations DA Method ImDA  1m FeastFC

D-BEN (K = 25) 0.2095 1.5355
1GP-5TS

CCN (v =0.9) 2.2238 4.5812

D-BEN (K = 25) 0.3997 1.9565
1GP-20TS

CCN (v=0.9) 3.5654 4.3697

D-BEN (K =25) 0.6533 3.7837
2GP-2TS

CCN (v =0.9) 2.3233 4.3569

D-BEN (K =25) 1.0572 3.9058
3GP-2TS

CCN (y=0.9) 2.5416 4.3568

D-BEN (K =25) 2.0827 42232
4GP-3TS

CCN (v =0.9) 3.6660 47131

We want to remember a goal of this paper was to determine the best method to apply to an ocean model. For this reason,
we do not want to implement a longer time window as it is not practical for ocean DA. In terms of implementing either
method for an ocean model, based on the findings in this paper, Auroux and Blum’s D-BFN method seems more applicable
to the assimilation window constraints and sparse ocean observations available. However, the implementation of CCN may be
suitable for other scenarios with a long assimilation in the ocean such as done in reanalysis or assimilations that start much
further in the past.

The results from this paper led us to the conclusions above, but we leave the reader with this final remark. While D-BFN
is able to retain accuracy for observations that are sparse in time, due to the advantage of spreading these corrections through
the back and forth iterations, we observed that the results from CCN decayed as the density and/or frequency of observations
were reduced. These results may be partial to the models not having strong dynamics capable of propagating the corrections
to other unobserved points in space or time. However, for models with strong advection, the corrected term may be able to
disperse these corrections to places where observations are not observed, which would allow CCN to have a higher impact

when adjusting the trajectory from sparse observations.
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