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Abstract. Advanced numerical data assimilation (DA) methods, such as the four-dimensional variational (4DVAR) method,

are elaborate and computationally expensive. Simpler methods exist that take time-variability into account, providing the

potential of accurate results with a reduced computational cost. Recently, two of these DA methods were proposed for a

nonlinear ocean model
:
,
::
an

:::::::::::::
implementation

:::::
which

::
is
:::::
costly

::
in
::::
time

::::
and

::::::::
expertise,

:::::::::
developing

:::
the

::::
need

::
to

::::
first

:::::::
evaluate

:
a
:::::::
simpler

:::::::::
comparison

::::::::
between

:::::
these

:::
two

::::::::
nonlinear

::::::::
methods. The first method is Diffusive Back and Forth Nudging (D-BFN) which5

has previously been implemented in several complex models, most specifically, an ocean model. The second is the Concave-

Convex Nonlinearity (CCN) method provided by Larios and Pei that has a straightforward implementation and promising

results
:::
with

::
a
:::
toy

:::::
model. D-BFN is less costly than a traditional variational DA system but it requires integrating the

:::::::
requires

::
an

:::::::
iterative

:::::::::::::
implementation

:::
of

::::::::
equations

::::
that

:::::::
integrate

:::
the

:::::::::
nonlinear model forward and backward in timeover a number of

iterations, whereas CCN only requires integration of the forward model once
:::::::
nonlinear

::::::
model

::::::
forward

:::
in

::::
time. This paper will10

investigate if Larios and Pei’s
:::::::::
investigates

::
if

:::
the CCN algorithm can provide competitive results with the already tested D-BFN

within simple chaotic models. Results show that observation density and/or frequency, as well as the length of the assimilation

:::::::::
experiment window, significantly impact the results for CCN, whereas D-BFN is fairly adaptive

:::::
robust to sparser observations,

predominately in time.

Copyright statement. TEXT15

1 Introduction

There are generally two classes of data
:::
Data

:
assimilation (DA) methods : filters and smoothers. The filters, also referred to

as sequential methods,
:::
are

::::
often

::::::::::
categorized

::::
into

::
a
::::
class

:::
or

::::
type

::
of

::::::::
method,

::::::::
primarily

:::
for

::::::::
purposes

::::
such

::
as

::::::::::
comparison

:::
or

::::::::
evaluation

:::
of

:::::::
methods

::::
with

::::::
similar

:::::::::::::
characteristics.

::::::::
Multiple

::::::::::
possibilities

::::
exist

:::
for

:::::::
defining

:::
or

:::::::::
separating

:::
DA

:::::::
methods

::::
into

::
a

::::::
specific

:::::
class,

:::
and

::::::
several

::::::::
methods

:::::
belong

::
to
:::::
more

::::
than

:::
one

:::::
class.

:::
For

:::
the

:::::::::
intentions

::
of

:::
this

:::::
paper

:::
and

:::
the

::::::::
following

::::::::::
discussion,20

::
we

:::::
have

::::::
chosen

::
to

::::::
classify

:::::
them

::
as

:::
two

::::::
types:

::::::::
sequential

::::
and

::::::::::::
non-sequential.

:

::::::::
Sequential

::::::::
methods compute a DA analysis at a selected time (called the analysis time), given a model background state (or

forecaststate) and data collected during a period of time
::::::::::
(observation

::::::::
window) up to the analysis time(observation window).
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Commonly used filters
:::::::::
sequential

:::::::
methods

:
include the three-dimensional variational (3DVAR) (Barker et al., 2004; Daley

and Barker, 2001; Lorenc, 1981; Lorenc et al., 2000), the Kalman Filter (Kalman, 1960), and the ensemble Kalman Filter25

(EnKF) (Evensen, 1994), along with its many variants. Filters
::::::::::
Intermittent

::::::::
sequential

::::::::
methods assume that all the data within

the observation window are collected and valid at the analysis time. Although this assumption may be warranted for slowly

evolving processes and short observation windows, it has the undesirable effect of assimilating observations at the wrong time

and suppressing the time variability in the observations (if multiple observations are collected at the same location within

the observation window, only one of them will be assimilated).
::::
Some

:::::::::
sequential

::::::::
methods

:::
are

:::::::::::
implemented

::::::::::::
continuously,30

:::::::
allowing

:::::::::::
observations

::
to

:::
be

:::::::::
assimilated

:::
as

::::
they

:::
are

::::::::
available.

::::
This

::::::::
approach

:::::::
reduces

:::
the

:::::::::::
suppression

::
of

:::::::::::::
time-variability

:::
by

::::
more

:::::::::
accurately

::::::::::
assimilating

:::
the

::::::::::
observations

::
at
:::
the

::::::::::
appropriate

:::::
time.

Smoothers
::::::::::::
Non-sequential

::::::::
methods on the other hand assimilate all observations collected within the observation window

at their respective time and provide a correction to the entire model trajectory over the assimilation window. Note that there

can be a difference
:
it

::
is

:::::::
possible

::
for

:::
the

:::::::
window

::::::
length

::
to

:::::
differ between the assimilation window and the observation window35

:::::::::::::::::::::::::::::::
(Cummings, 2005; Carton et al., 2000). The former refers to the time window over which a correction to the model is com-

puted, while the latter refers to the time window over which observations are collected/considered for assimilation. Smoothers

::::::::::::
Non-sequential

:::::::
methods

:
do not have the problem of neglecting observations collected at the same location and different times,

which means they do account for the time variability in the observations. However, they are computationally much more expen-

sive than the filters
::::::::
sequential

::::::::
approach. There are a few known smoother

::::::::::::
non-sequential

:
methods such as the four-dimensional40

variational (4DVAR) (Fairbairn et al., 2013; Le Dimet and Talagrand, 1986), the Kalman Smoother (KS) (Bennett and Budgell,

1989), and the Ensemble Kalman Smoother (EnKS) (Evensen and Van Leeuwen, 2000). Of these three, 4DVAR is the one

that is most used in
:::::::::
considered

:::
one

:::
of

:::
the

::::::
leading

:::::::::::::
state-of-the-art

::
for

:
geosciences problems. It does, however, require the de-

velopment of a tangent linear (TLM) and adjoint
:::
and

::::::
adjoint

:::::
model

:
of the dynamical model being used. This development of

the TLM and the adjoint model ,
::::::
which is both cumbersome and tedious

:::
and

:::::::
requires

::::::
regular

:::::::::::
maintenance

::
as

:::
the

::::
base

::::::
model45

::::::::
undergoes

:::::::::
continued

::::::::::
development.

Auroux and Blum proposed a smoother
::::::::::::
non-sequential

:
method called Back and Forth Nudging (BFN) (Auroux and Blum,

2005, 2008; Auroux and Nodet, 2011). It consists of nudging the model to the observations in both the forward and backward

(in time) integrations. In the BFN method the backward integration of the model resembles the adjoint in the 4DVAR method,

but it is less cumbersome to develop. A few studies have shown that BFN compares well with 4DVAR: i) it tends to provide50

similar accuracy (Auroux and Blum, 2008), and ii) it is less expensive in two ways: the backward integration of the nonlinear

model costs less than the adjoint integration, and the method seems to converge
::::::::
converges in fewer iterations than the 4DVAR.

There is a legitimate quest for computationally inexpensive DA methods that account for the time variability in the observations.

Continuous data assimilation (CDA) methods fall into this category. Although not being smoothers by nature, CDA methods

:::::::::
Continuous

:::::::::
sequential

:::
DA

::::::::
methods are computationally inexpensive (because no backward model integration is needed as55

in the 4DVAR or the BFN methods), and they do account for the time variability in the observations which are continuously

assimilated into the forward model as they become available. BFN can however be considered a continuous DA method

during the forward integration
:::
One

:::::::
example

::::::
comes

::::
from

::::::::
Azouani,

::::::
Olson,

::::
and

:::
Titi

:::::
(2013

:
)
::::::
(AOT)

::::
who

:::::::
proposed

::
a
:::
DA

:::::::
method

2



:::::::
designed

::
to

:::::::::
assimilate

::::::::::
observations

:::::::::::
continuously

::::
over

:::::
time,

:::
and

::::::
instead

::
of

:::::::::::
assimilating

::::::::::::
measurements

::::::
directly

::::
into

:::
the

::::::
model,

::
the

:::::
AOT

::::::
method

:::::::::
introduces

:
a
::::::::
feedback

:::::
term,

:::
like

::
a

:::::::
nudging

::::
term,

::::
into

:::
the

:::::
model

::::::::
equations

::
to
::::::::
penalize

::::::::
deviations

:
of the model60

. Larios and Pei (2018) introduced variations of the CDA method
::::
from

:::
the

::::::::
observed

:::::
data.

::::::::::::::::::
Larios and Pei (2018)

:::::::::
introduced

::::
three

::::::::
variations

:::
of

:
a
::::::::::
continuous

::::::::
sequential

::::
DA

::::::
method

:::::::
derived

:
from linear AOTand applied them ,

::::
that

:::::
when

::::::
applied

:
to the

Kuramoto-Sivashinsky equation(KSE). They
:
,
:
showed increasing potential for convergence depending on the form of the

model-data relaxation term. The ease of implementation and the potential for convergence of this method makes it attractive

for other applications.
:::
The

::::
most

:::::::::
promising

::
of

:::::
these

:::
was

::::
their

:::::::::::::::
Concave-Convex

::::::::::
Nonlinearity

::::::
(CCN)

:::::::
method

:::::
which

::
is

::::::::
evaluated65

:::::
within

::
in

::::
this

:::::
paper.

::::
The

:::::::
concept

:::
for

:
a
::::::::::

comparison
::::::::

between
:::
this

:::::::::
sequential

:::::::
method

:::
and

:::
the

::::::::
previous

::::::::::::
non-sequential

:::::::
method

::::::
evolved

:::::
from

:::
the

:::::
ability

::
to

:::::::::
implement

:::::
BFN

::
as

:
a
:::::::::
continuous

:::::::::::
assimilation.

:

This study compares the BFN and Larios and Pei
::
the

:::::
CCN methods using the Lorenz models (Lorenz, 1963, 1996, 2005, 2006;

Lorenz and Emanuel, 1998; Baines, 2008). The former has been applied to various models including a complex ocean model

(Ruggiero et al., 2015), but it is costly compared to CDA
:::::::::
continuous

:::::::::
sequential

:::
DA methods. The latter is less expensive , but70

has not yet been implemented with more complex or chaotic systems to our knowledge. Before attempting an implementation

of the Larios and Pei
::::
CCN

:
method with a complex ocean model, we first compare its accuracy against the BFN method on

::::
using

:
three chaotic Lorenz systems. These models provide similar chaos that one would see within an ocean or atmospheric

model and have been shown to be an excellent source for evaluating and testing new DA methods (Ngodock et al., 2007).

We do note that the KSE
::::::::::::::::::
Kuramoto-Sivashinsky

:::::::
equation

:
is also a chaotic model, but it is not as widely used as a testbed for75

DA methods as the Lorenz models.
::::
The

:::::
results

:::
in

:::
this

:::::
paper

::::::
assess

::
if

:
i)
:::::

CCN
::::
will

::::::::
converge

:::
for

:
a
::::::
shorter

:::::
time

:::::::
window

::::
with

::::
these

::::::::::
increasingly

::::::::
complex

:::
and

:::::::
chaotic

:::::::
models,

::
ii)

::
if

:::
the

::::::
results

:::
can

::::
still

::
be

::::::::
achieved

::::
with

:::::
sparse

::::::::::::
observations,

:::
and

:::
iii)

::
if

:::
the

::::::::
functional

:::::::
nudging

::::
term

::
in
:::::
CCN

:::::::::
sufficiently

:::::::
corrects

:::
the

::::::
model

::::::
without

:::
the

::::::::
iterations

::
of

::
a
::::::::
backward

:::::::::
correction

::
as

::
in

:::::
BFN.

The outline of the paper is as follows. In Section 2, BFN and the Larios and Pei
::::
CCN methods are introduced. Sec-

tion 3 presents the three Lorenz models of increasing complexity used for testing the two methods. Section 4 contains the80

configuration of the nature run models and the truth for validation
:::::
model

::::::::::
initialization

::::
and

:::::
setup

:::
for

:::
the

::::
true

::::::
model,

::::::
which

:
is
:::::
used

:::
for

:::::::::
observation

::::::::
sampling

::::
and

:::::::::
evaluation

::
of

::::::::::
experiments, as well as ,

::::::
results

::::
from

:
preliminary testing for the optimal

nudging coefficientfor each method
:::::
choice

::
of

:::
the

:::::::
nudging

:::::::::
coefficient. In Section 5, the details of the DA experiments for each

model are discussed and results are presented. Lastly, Section 6 contains the conclusion of the experiments.

2 Methods85

In this section, we discuss the two simpler methods that are compared in this paper. These methods are only briefly presented

here, and we refer the reader to the cited references for more details. We note that both the BFN and AOT methods are based

on the well-known nudging algorithm (Hoke and Anthes, 1976).
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2.1 Diffusive back and forth nudging (D-BFN) method

We start with a simple description of the Back and Forth Nudging (BFN) method proposed by Auroux and Blum (2005, 2008)90

(Auroux and Nodet, 2011)
:::::::::::::::::::::::::::::::::::::::::::::::
Auroux and Blum (2005, 2008); Auroux and Nodet (2011). The BFN method, like nudging, cor-

rects the trajectory as the model is integrated forward in time. The addition in BFN, compared to nudging, is using the state

at the end of the assimilation window to initialize the backward model, which has its own nudging term. It forces the model

closer to the observations as it integrates back in time, allowing corrections up to the initial conditions. The adjusted initial

condition is then used to initialize the integration of the forward model again and this process is repeated for either a chosen95

amount
::::::
number of iterations or until a set convergence criterion is reached. Auroux and Blum then introduced the Diffusive

Back and Forth Nudging (D-BFN) (Auroux et al., 2011)
::::::
method,

:
which has the same underlying methods of BFN but with

added control of the diffusive term, allowing a stable backwards integration. The D-BFN algorithm is described below, using a

dynamical model in continuous form:

∂tX =M(X)+ v∆X, 0< t < T, (1)100

with the initial condition X(0) = x0, where M is the model operator and v is the diffusion coefficient. In reference to their

paper, (Auroux et al., 2011), M is used for clarity to represent the model operator instead of F since F is later referenced as the

forcing constant. In the
:::
the dynamical system above, the diffusive term has been separated from the model operator. We leave

the reader with the remark that if there is no diffusion, D-BFN reduces to the original BFN method. The D-BFN method is as

follows, for k ≥ 1,105  ∂tXk =M(Xk)+ v∆Xk +K(Xobs −H(Xk)),

Xk(0) = X̃k−1(0), 0< t < T,
(2)

 ∂tX̃k =M(X̃k)− v∆X̃k −K ′(Xobs −H(X̃k)),

X̃k(T ) =Xk(T ), T < t < 0,
(3)

where X(t) is the state vector with initial condition X(0) = x0, K/K ′ is the feedback or nudging coefficient, and H is the

observation operator, which allows comparison of the observations, Xobs, with the corresponding model state
:
at

:::
the

::::::::::
observation110

:::::::
locations, H(X(t)). For D-BFN, as opposed to BFN, the opposite sign of the diffusive coefficient is used to stabilize the

backwards model. The nudging coefficients K and K ′ can have the same or different magnitudes where the equations determine

the opposite signs for the nudging terms. For the cases that the non-diffusive portion of the model can be reversed, the backward

nudging equation can be rewritten for t′ = T − t: ∂t′X̃k =−M(X̃k)+ v∆X̃k +K ′(Xobs −H(X̃k)),

X̃k(t
′ = 0) =Xk(T ),

(4)115

where the backward model state, X̃ , is evaluated at time t′. There is a case in which it is reasonable for K =K ′ and is of

interest for geophysical processes. While this slightly different algorithm was implemented and tested, the original D-BFN

algorithms were used for the purposes of this paper.
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2.1.1 Concave-convex nonlinearity (CCN) method

2.2
:::::::::::::

Concave-convex
:::::::::::
nonlinearity

::::::
(CCN)

:::::::
method120

The method being compared , introduced by Larios and Pei (2018), is a modification
::
is

:::
one

:::
of

::::
three

::::::::
methods

::::::::
proposed

:::
by

:::::::::::::::::
Larios and Pei (2018)

:
.
:::
All

::::
three

::::::::
methods

:::
are

:::::
based

::
on

::::::::::::
modifications of the linear AOT method (Azouani et al., 2013). In their

paper, they suggest three new nonlinear ,
:::::
which

::::
uses

::
a

:::::
linear

:::::::
feedback

::::
term

::::::
within

:::
the

:::::
model

::::::::
equations

::
to

::::::
correct

:::
the

:::::::::
deviations

::::
from

:::
the

:::::::::::
observations.

:::::
These

::::
three

::::
new

:
continuous DA methods

::::::::
proposed

::
by

::::::::::::::::::
Larios and Pei (2018)

::::::
provide

::::::::
different

::::::::
nonlinear

:::::::::::
modifications

::
of

::::
this

:::::
linear

::::::::
feedback

::::
term. The first approach was a nonlinear adaptation of the linear AOT method

:::
uses

:::
an125

:::::
overall

:::::::::
nonlinear

:::::::
adaption

::::
that

::::::::
modifies

:::
the

::::::::
feedback

::::
term

:::
to

::
be

::
a
::::::::
nonlinear

:::::::
function

:::
of

:::
the

:::::
error. While this method had

faster convergence, it retained higher errors for short periods of time. This led them to introduce a hybrid of the two, the

Hybrid Linear/Nonlinear Method that strongly corrects deviations for small errors with the nonlinear portion and maintains

the linear
:::::
using

:::
the

::::::::
nonlinear

::::::::
feedback

:::::
term

:::
and

::::::
keeps

:::
the

:::::
linear

::::::::
feedback

:::::
term

::
as

::
in

:::
the

::::::
linear AOT algorithm for large

errors. The success of this method inspired Larios and Pei to take it a step further and exploit the nudging
:::::::
feedback

:
term,130

proposing the third method, the Concave-Convex Nonlinearity method that also implements nonlinearity on the
:::::
(CCN)

:::::::
method

:::
that

::::::::::
implements

::::::::::
nonlinearity

:::
for

::::
both

::::
small

::::
and

::::
large

:::::
errors

:::::
using

:::
the

:::::::
previous

::::::::
nonlinear

::::::::
feedback

::::
term

:::
for

:::
the

::::
small

:::::
errors

::::
and

:::::::::
introducing

:::::::
another

::::::::
nonlinear

::::::::
feedback

::::
term

:::
for

:::
the

:
large errors. This method converged faster and had smaller errors when

compared to the previous two methods and AOT. This last method is the one shown below and used for comparison in this

paper. It will also be referred to as CCN or η3(x) in the following equations.135

We start with the same representation of a time continuous model as in Eq. (1), except the diffusive term is no longer required

to be separated,

∂tX =M(X), 0< t < T.

We then add the feedback
::
or correction term,

::::
where

:::::
linear

:::::
AOT

:::::
would

::::
use

:
a
:::
real

::::::
scalar

:::::::
constant

::
η,

∂tX =M(X)+ η(Xobs −H(X)), (5)140

where the CCN method is as follows
:::
and

:::::
CCN

:::::::
modifies

::
η
::
to

:::
be

::::::::
nonlinear

::::::::
functions

::::::::
dependent

:::
on

:::
the

:::::::::
magnitude

::
of

:::
the

:::::
error

:::
(x), for 0< γ < 1,

η(x) = η3(x) :=


x|x|γ , |x| ≥ 1,

x|x|−γ , 0< |x|< 1,

0, x= 0.

𝜼(𝒙)

(6)

This nonlinear DA method seems straightforward to implement with a high convergence rate and only a forward integration

of the model. It is similar to BFN in that it uses a nudging term to correct the model towards the observations during the145

integration of the forward model. The results from their paper with the KSE
::::::::::::::::::
Kuramoto-Sivashinsky

::::::::
equation model look

promising, but it is important to note that the reference of fast convergence was in comparison to AOT. The CCN algorithm

5



took roughly 17 time units for convergence, compared to the 50 time units for AOT. These results also used a very dense set

of observations, and although the frequency in which observations were brought in is not explicitly stated in their paper, their

equations imply that observations are brought in at every timestep. This paper investigates i) if CCN will converge for a shorter150

time window with a different, more complex model and if the results can still be achieved with sparse observations and ii) if

the functional nudging term in CCN is enough to correct the model without the iterations of a backward correction as in BFN.

:
.

3 Models

This section presents the three models for which the experiments with the proposed methods will be tested. Each of the well-155

known Lorenz models (Lorenz 63, Lorenz 96, and Lorenz 05) have been consistently used to test new DA methods.

The first model is the three-component Lorenz (1963) model:
:

dx

dt
= σ(y−x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy−βz

(7)

The three components (x,y,z) represent the amplitudes of velocity, the temperature, and the horizontally averaged temperature,

respectively (Baines, 2008). The equations also contain three constant parameters that are set to commonly used values known160

to cause chaos: σ = 10, β = 8/3, and ρ= 28.

The second model is the Lorenz (1996) model, published in Lorenz (2006) and Lorenz and Emanuel (1998). The Lorenz 96

is a more complex one-dimensional model for the variables or grid points X1, . . . ,XN . These can be viewed as values of an

unspecified oceanographic quantity such as temperature or salinity. The model equations are

dXi

dt
= (Xi+1 −Xi−2)Xi−1 −Xi +F , (8)165

for i= 1, . . . ,N ,
:
with the constraint of N ≥ 4 and the assumption of cyclic boundary conditions. In Equation (8), −Xi is the

diffusive term, F is the forcing constant set to the value of 8 to ensure chaotic behavior, and N = 40 is a frequently used

quantity for the number of variables.

The third model is the Lorenz (2005) model, a one-dimensional model containing grid points, X1, . . . ,XN , that can also be

considered geographical site locations of some general oceanographic measurement. For clarification, L is used in place of K170

for the model subscripts since K denotes the nudging coefficient in D-BFN. For N ≥ 4 and a value L(L≪N), the model

equations are

d

dt
Xn

dXn

dt
::::

= [X,X]L,n −Xn +F, (9)

6



for n= 1, . . . ,N , where [X,X]L,n is the advection term defined by

[X,Y ]L,n =
1

L2

J∑
j=−J

J∑
i=−J

(−Xn−2L−iYn−L−j +Xn−L+j−iYn+L+j). (10)175

In this model, −Xn is the diffusive term, F is the chosen forcing term, and L is a selected smoothing parameter where J = L/2

if L is even or J = (L− 1)/2 if L is odd. It has the same cyclic boundary conditions as the Lorenz 96 model. The parameters

used in this paper are F = 10 to cause chaos, N = 240 for the number of grid points, and L= 8, which is a commonly used

value for smoothing. This model can also be rewritten as a summation of weights. For the purposes of this paper, the original

equations were implemented.180

4 Nature run
::::::
Model

:::::::::::
initialization and preliminary results

::::::
testing

In this section, we will first discuss how the nature runs
::::::::::
experiments are setup for

:::
each

:::
of the three modelsand then show

preliminary testing of the models for the optimal nudging coefficient. A nature run is the result from a model being integrated

forward without assimilating any data. These model runs without DA are often used to represent the true model nature where

portions of the nature run are .
:::
We

::::
will

::::
then

::::::
present

::::::
results

::::
from

::::::::::
preliminary

::::::
testing

::
to

:::::::
establish

::::
how

:::
the

::::::
values

::
of

:::
the

:::::::
nudging185

:::::::::
coefficients

:::::
were

::::::
chosen

::
for

:::
the

::::::::::
experiments

:::::::::
following.

::::::
Before

::::::::::
performing

:::
any

:::::::::::
experiments,

::::
each

:::::
model

:::::::
requires

:::::::::::
initialization

:::
and

:
a
::::::
period

::
of

:::::::
forward

:::::::::
integration

::
to

::::::
remove

::::
any

:::::::
transient

::::::::
behavior

:::::::::::::::::::::::::::::::::::
(Lorenz, 2005; Lorenz and Emanuel, 1998),

::::
also referred

to as the truth. The truth is used to create observations that are assimilated into the model and to evaluate the DA method

implemented
:::::
model

:::::::
spinup. Each model starts with a similar setup scheme for the nature run. The nature runs

::::::
follows

:::
the

:::::::::
experiment

:::::
setup

::::::
scheme

::::::
shown

::
in

::::
Fig.

::
1,

:::::
where

:::
the

::::::
lengths

::
of

::::
time

:::
for

::::
each

::::::
model

::::::
spinup

::
is

:::::
shown

::
in

:::::
Table

::
1.

:
190

:::
The

::::::
models

:
are first initialized with a uniform random distribution between 0 and 1 and integrated forward using a fourth-order

Runge Kutta
:::::
fourth

:::::
order

:::::::::::
Runge-Kutta (RK4) time-stepping algorithm (Lambers et al., 2021). While each nature model has

a spinup period (i.e., integrates forward in time to create sufficient chaos), ,
::::::
where the size of the timestep and the length of

the spinup are dependent on the models. After an ample amount of time, the current
:
is

::::::
model

::::::::
dependent

::::
and

::::::
shown

::
for

:::::
each

:::::
model

::
in

:::::
Table

::
1.

:::::::::
Following

:::
the

::::::
outline

::
in

::::
Fig.

::
1,

:::
the

:::::
model

:
state of the spinup

::::
after

:
1
::::
year

::
(9

:::::
years

:::
for

::::::
Lorenz

:::
05)

:
is used as195

the initial condition for the DA experiments. Specific details for each model are shown in Table 1. The model then continues

for another year (72 time units) to produced what is referenced as the nature run. The last four months (24 time units) of the

nature run are used
:::::
model

:::::::::::
experiments.

:::
The

::::::
model

::::::
spinup

::::::::
continues

:::
for

::
an

::::::::
additional

::
8
::::::
months

::
to
:::::::
provide

::
an

::::::
initial

::::::::
condition

::
for

:::
the

::::
true

::::::
model.

::::
This

:::::::::
continued

::::
time

::
of

::::::
spinup

::
is
::
to
::::::

ensure
::::
that

:::
the

::::
two

:::::
initial

:::::::::
conditions

:::
are

:::
not

::::::
equal,

:::::
which

::
is

:::::::
verified

:::::
within

:::
the

::::::::
following

::::::::
sections.

:::
The

::::
true

::::::
model,

:::
also

:::::::
referred

::
to

:
as the truthfor validation and experiment testing. The Lorenz

:
,
::
is200

::::::::
integrated

:::::::
forward

::::::
without

::::
any

::::::::::
assimilation

:::
for

:
a
::::::
period

::
of

::::
four

:::::::
months

:::
and

::
is

::::
used

:::
for

::::::::
sampling

:::::::::::
observations

:::
and

:::::::::
evaluating

::
the

::::::::
accuracy

::
of

:::
the

::::::::::
experiments

:::
for

::::
each

::::
DA

:::::::
method.

:::
The

::::
unit

::
of

::::
time

::::
used

::::::
within

:::
this

:::::
paper

:::::::
follows

::::
from

:::::::::::::::::::::::::::::::::::::::::
Lorenz (1996, 2005); Lorenz and Emanuel (1998)

:::::
which

:::::
states

:::
for

:::
the

::::::
Lorenz

::
96

:::
and

:::::::
Lorenz 05 model is referenced that 1 time unit is approximately 5 days. Since the Lorenz 05 model simplifies to

the Lorenz 96 model , it will use the same time units , whereas the Lorenz 63 model is said to be unitless in time
::::::
models

:::
that

::
1205
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Figure 1.
:::::
Model

::::::::::
initialization

:::
and

::::
setup

::
for

::::::::::
experiments.

::::
Note

:::
that

:::
the

::::
initial

::::::::
conditions

:::
for

::
the

:::
DA

::::::::::
experiments

:::
and

::
the

:::
true

:::::
model

::::
state

:::
are

::
not

:::::
equal.

:::
The

::::
true

:::::
model

:::
state

::
is

:::
also

::::::
referred

::
to
::
as

:::
the

:::::
Truth.

:::
unit

::
of

::::
time

::
is
::::::::::::
approximately

::
5
:::::
days.

::::::::::::
Lorenz (1963)

:::::
states

:::
that

:::
the

::::::
Lorenz

:::
63

:::::
model

::::
uses

::
a

:::::::::::
dimensionless

:::::
time

:::::::::
increment.

:::
We

:::
note

::::
that

::::
there

:::
are

::::::::::
underlying

:::::::
variables

::::::
within

:::
the

::::::
Lorenz

::
63

::::::
model

:::
that

::::
can

::
be

::::
used

::
to

::::::::
calculate

:
a
:::::::
specific

::::
unit

::
of

::::
time

:::
but

:::
are

:::::
based

::
on

::::::
values

::
of

:::
the

::::::::
materials

::::
used

::::::
within

::
an

::::::::::
experiment,

:::
an

:::::::
example

::
of

::::
this

:::::::::
calculation

::
is

::::::
shown

::
in

::::::::::::::::::
Ngodock et al. (2009)

:
.
:::
For

:::
the

:::::::
purposes

:::
of

:::
this

:::::
paper

:::
and

::
to
::::::

reduce
:::::::::
confusion

:::::::
between

::::
units

:::
of

::::
time

:::::
within

:::
the

:::::::::
following

::::::
results,

:::
we

::::
have

:::::
made

:::
the

:::::::::
assumption

::::
that

:
a
::::
time

::::
unit

::
for

:::
all

::::
three

:::::::
models

::::::::::
corresponds

::
to

:
5
:::::
days.210

Table 1. Nature run
:::::::::
Initialization

:::
and experiment parameters for each model.

Experiment Model Setup

Model Timestep Algorithm Timestep Size Approx.
:::::
Spinup

:
Time

:::
(DA

:::
IC) Spinup Time

:::::
(Truth

:::
IC) Nature Run

Lorenz 63 RK4 ∆t= 1/1000 6
::::::::::::::
∆t= 1/1000≈ 6 minutes 1 year 1 year

:
8
::::::
months

Lorenz 96 RK4 ∆t= 1/20 6
::::::::::::
∆t= 1/20≈ 6 hours 1 year 1 year

:
8
::::::
months

Lorenz 05 RK4 ∆t= 1/40 3
::::::::::::
∆t= 1/40≈ 3 hours 9 years 1 year

:
9
::::
years

::
8
::::::
months

4.1 Lorenz 63 model
:::::::::::
initialization

The Lorenz 63 model, Eq. (7), is integrated forward with a timestep of approximately 6 minutes (or ∆t= 1/1000 time unit).

The model state at the end of the first year of
::
As

::::::
shown

::
in

::::
Fig.

:
1
::::
and

::::
Table

:::
1,

:::
the

:::::
model

::::
state

::::
after

::
a
::::::
1-year

:::::
spinup

::
is
:::::
used

::
as

::
the

::::::
initial

::::::::
condition

:::
for

:::
the

:::
DA

::::::
model

::::::::::
experiments

:::
and

:::
the

::::::
model

::::
state

::::
after

::
1
::::
year

:::
and

::
8
::::::
months

:::
of

:::
the spinup is used as the

initial condition for the DA experiments. The truth is
:::
true

::::::
model.215

::::
First,

:::
we

::::::
verify

:::
that

:::
the

::::
true

::::::
model,

:
shown in Fig. 2(a)and verifies the length of the nature run is acceptable to produce

the
:
,
::::
uses

:::
an

::::::::::
appropriate

:::::
length

:::
of

::::
time

::::
and

::::::::
produces

:::
the

:
rotation between the two wings of the Lorenz attractors.

::::
This

8



::::::
forecast

:::
is

:::::::
referred

::
to

:::
as

:::
the

:::::
truth

:::
and

:::
is

::::
used

:::
for

::::::::::
observation

:::::::::
sampling

:::
and

::::::::::
evaluating

:::
the

:::::::::::
experiments.

:
Next, we note

that the two initial conditions (x,y,z) are significantly different
:::::::
(x,y,z)

:::
are

::
in

::::
fact,

::::
not

::::::::
equivalent. The initial condition of

truth: (−12.0355,−15.7630,26.9678)
:::
for

:::
the

:::
DA

:::::::::::
experiments:

:::::::::::::::::::::
(2.2731,2.9968,17.2231) and the initial condition for the DA220

experiments: (2.2731,2.9968,17.2231). Finally,
:::::
truth:

:::::::::::::::::::::::::::
(−12.0355,−15.7630,26.9678).

::::::
Lastly,

:::
we

::::::
validate

::::
that

:::
the

::::::::
forecasts

:::::::
produced

:::
by

:::::
these

:::
two

:::::
initial

:::::::::
conditions

::
do

:::
not

:::::::::
converge.

:::
The

:::::::::
two-month

::::::::
forecasts

::::
with

:::
no

::::::::::
assimilation

:::
are

:::::
shown

::
in

:
Fig. 2(b)

shows the results for each variable x (top), y (middle), and z (bottom)for a two month run with no DA compared to the first

two months of truth.

(a)

(b)

Figure 2.
:::::
Lorenz

:::
63

:::::
model:

:
(a) Last four months

::::::::
Four-month

:::::::
forecast of the nature run

:::
true

::::::
model, referred to as the truthand later used for

validation of experiments. (b) The values
::::::::
Two-month

:::::::
forecasts

::::
with

::
no

:::::::::
assimilation for each variable x (top), y (middle), and z (bottom)over

a two month (12 time units) window. Truth is shown in
:::
The teal

:::
line

:::::
shows

::
the

:::::
truth, ‘

:::
True

:::
FC’

:
,
::
or

::
the

::::::
forecast

:::::
using

::
the

:::::
initial

:::::::
condition

:::
for

::
the

:::
true

::::::
model, whereas the orange line is a test run with

::::
shows

:::
the

:
no DA that started with

:::::::::
assimilation

::::::
forecast

::::
using the same background

initial condition
::
for

:::
the

:::
DA

:::::::::
experiments,

:
‘
::
No

:::
DA

:::
FC’.
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4.2 Lorenz 96 model
:::::::::::
initialization225

The Lorenz 96 model, Eq. (8), uses a constant forcing of F = 8 and is integrated forward using a 6hour
::::
-hour

:
timestep (or

∆t= 1/20 time unit). The state of the nature run modelat the end of the first year of spinup is later
:::::
model

:::::
setup

::
is

:::::::
parallel

::
to

::
the

::::::::
previous

::::::
model,

::
as

::::::
shown

::
in

::::
Fig.

::
1,

:::::
where

:::
the

::::::
model

::::
state

::::
after

:
a
::::::
1-year

::::::
spinup

::
is used as the initial condition for the DA

experiments . Initial conditions for the truth and the background state are shown
:::
and

:::
the

::::::
model

::::
state

::::
after

::
1

:::
year

::::
and

:
8
:::::::
months

::
of

:::
the

:::::
spinup

::
is
::::
used

:::
as

:::
the

:::::
initial

::::::::
condition

:::
for

:::
the

:::
true

::::::
model.

:
230

:::::
These

:::::
initial

:::::::::
conditions

:::
are

::::::::
presented

:
in Fig. 3(a)

:
to

:::::::
confirm

::::
that

::::
they

:::
are

:::::::
different. Figure 3(b) shows the four months of

truthwhich confirms that
:::::::::
four-month

:::::::
forecast

:::
for

:::
the

::::
true

::::::
model,

:::::::
referred

::
to

::
as

:::
the

:::::
truth,

:::
and

:::::::
verifies the length of spinup and

the choice of forcing produced ample chaos. Finally, Fig.
:
a
:::::::
chaotic

::::::
system.

::::
The

::::
truth

::
is
:::::
used

:::
for

::::::::
sampling

::::::::::
observations

::::
and

::::::::
validating

::::::
results

::::
from

:::
the

:::::::::::
experiments.

::::::
Lastly,

:::
we

:::::::
validate

:::
that

::::
the

:::::
initial

:::::::::
conditions

:::::::
produce

:::::::
separate

::::::::
forecasts.

::::::
Figure

:
3(c)

represents the error between truth and a no DA run. It can be seen that the errors between truth and the no DA run are high235

and
:::
the

::::
truth

::::
and

:::
the

::
no

::::::::::
assimilation

:::::::
forecast

:::::
using

:::
the

:::::
initial

:::::::::
condition

::
for

:::
the

::::
DA

:::::::::::
experiments.

:::
The

:::::::::
magnitude

:::
of

:::
the

:::::
errors

::::::
verifies that the two runs have diverged from each other

::::::::
forecasts

::
do

:::
not

::::::::
converge.

4.3 Lorenz 2005 model
:::::::::::
initialization

The Lorenz 05 model, Eq. (9, 10), uses a constant forcing of F = 10 to ensure chaos, an even number L= 8, and is integrated

forward with a timestep of approximately 3 hours (or ∆t= 1/40 time unit). To produce sufficient chaos, the model spinup240

integrates forward for 9 years. The
::::
This

:::::
model

:::::
setup

::
is

::::::
similar

::
to
::::

the
:::::::
previous

::::
two

::::::
models

::::
with

:::
the

:::::::::
exception

::
of

:::
the

::::::
length

::
of

::::
time

:::
for

:::
the

:::::
model

:::::::
spinup.

:::::
Table

:
1
::::

and
::::
Fig.

:
1
:::::
show

::::
this

:::::
model

::::
has

:
a
::::::
9-year

::::::
spinup

:::::
where

:::
the

::::
final

::::::
model

::::
state

::
is
::::
used

:::
as

::
the

:
initial condition for the DA experimentscomes from the model state at the end of the ninth year of the spinup . This initial

condition is
:
.
:::
The

::::::
spinup

::::::::
continues

:::
for

:::
an

::::::::
additional

::
8

::::::
months

::
to

:::::::
provide

:::
the

:::::
initial

::::::::
condition

:::
for

:::
the

::::
true

:::::
model

::::::
which

::
is

:::
the

::::
final

:::::
model

::::
state

::
of

:::
the

::::::
spinup

::::
after

::
9
:::::
years

:::
and

:
8
:::::::
months.

:
245

:::::
These

:::::
initial

:::::::::
conditions

:::
are

:::
not

:::::
equal

:::
and

:::
are

:
shown in Fig. 4(a). The model then runs forward another year for the nature

run, where the last four months of the nature run,
::
A

:::::::::
four-month

:::::::
forecast

::
of

:::
the

::::
true

:::::
model

::
is shown in Fig. 4(b), are used

:::::
which

:::::::
validates

:::
the

::::::
choice

::
of

:::::::
forcing

::::
term

::::
and

:::
that

:::
the

::::::
length

::
of

::::::
spinup

::::::::
removed

:::
any

::::::::
transient

::::::
effects.

:::::
This

:::::::
forecast

::
is

:::::::
referred

::
to

as the truth for testing and validation. The
:::
and

::
is

::::
used

:::
for

::::::::
sampling

:::::::::::
observations

:::
and

:::::::::
evaluating

:::
the

::::::
results

:::::::
between

:::
the

::::
two

:::::::
methods.

:::::::
Finally,

:::
we

::::::
present

:::
the

:::::
error

:::::::
between

:::
the

::::
true

:::::
model

:::::::
forecast

::::
and

:
a
:::
no

::::::::::
assimilation

:::::::
forecast

::
of

:::
the

:
initial condition250

for truth is also shown in comparison in
:::
the

:::
DA

::::::::::
experiments

::
in

:
Fig. 4(a). Finally, Fig. 4(c)displays the errors between the truth

and a 4-month no DA run
::
c),

:::::
which

::::::
verifies

::::
that

:::
the

:::
two

:::::
initial

:::::::::
conditions

:::
do

:::
not

:::::::
converge.

4.4 Preliminary testing

In order to best compare the two methods, we first choose the optimal
:::::::::
completed

::::::::::
preliminary

::::::
testing

::
to

::::::
choose

::
a value for

the nudging coefficient for each method and
:::::::::
coefficients

:::
for

:::::
each model. The two DA methods, D-BFN and CCN, were255

implemented for several lengths of time, ranging from 5 days to 2 months. Each DA run
:::::::::
experiment

:
was given a set of full
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(a)

(b)

(c)

Figure 3. These figures capture the Lorenz 96 modelsetup.
:
:
::
(a)

:
The top figure

::
teal

::::
line shows the distinction between the initial condition

for the truth ’Truth IC’ and
:::
true

:::::
model

::::
state, ‘

::::
Truth

::
IC’,

::::::
whereas

:
the

:::::
orange

::::
line

::::
shows

:::
the initial condition for the DA experiments’DA IC’

:
,

‘
::
DA

::
IC’. The middle figure is the last four months

:::
(b)

:::::::::
Four-month

::::::
forecast of the nature run

:::
true

:::::
model, referred to as the truthand later used

for validation of experiments. Lastly, the bottom figure contains the large errors
::
(c)

::::::::
Difference between the truth and a

::::::::
four-month

:
no DA

run
:::::::::
assimilation

::::::
forecast

::
of

:::
the ‘

::
DA

::
IC’

:::::::
compared

:::
with

:::
the

::::
truth.

observations at all grid points and every timestep. The mean absolute error (MAE, 1
N

∑N
i=1 |yi−xi|) was computed over time

to reflect how well the nudging terms were correcting the model
::::::
models. Several values were chosen

::::
tested

:
for each nudging

term: 1≤ |K| ≤ 75 and 0< γ < 1.

Here, we provide a few remarks. The first is that the "best choice" for the value chosen can be different depending on the260

model being used. There are other cases discussed in the results section below where the optimal value had to be changed to

adapt to the parametersgiven. Secondly, notice the time length used in the figures, especially for CCN, as it was shown in the

original paper (Larios and Pei, 2018) that it takes time to converge. It will also have a higher starting MAE since CCN only

corrects the model in the forward integration. Lastly, only a few examples of the preliminary testing are
:::::
While

:::
we

::::::::
evaluated

11



(a)

(b)

(c)

Figure 4. These figures capture the Lorenz 05 modelsetup.
:
:
::
(a)

:
The top figure

::
teal

::::
line shows the distinction between the initial condition

for the truth ’Truth IC’ and
:::
true

:::::
model

::::
state, ‘

::::
Truth

::
IC’,

::::::
whereas

:
the

:::::
orange

::::
line

::::
shows

:::
the initial condition for the DA experiments’DA IC’

:
,

‘
::
DA

::
IC’. The middle figure is the last four months

:::
(b)

:::::::::
Four-month

::::::
forecast of the nature run

:::
true

:::::
model, referred to as the truthand later used

for validation of experiments. Lastly, the bottom figure contains the large errors
::
(c)

::::::::
Difference between the truth and a

::::::::
four-month

:
no DA

run
:::::::::
assimilation

::::::
forecast

::
of

:::
the ‘

::
DA

::
IC’

:::::::
compared

:::
with

:::
the

::::
truth.

:::
this

::::::::::
preliminary

::::::
testing

::
for

:::::
each

:::::
model

:::
and

::
a
:::::
range

::
of

::::::::::
parameters,

:::
we

::::
only

::::::
present

:::
the

:::
two

::::::::
examples

:
shown in Fig. 5 as not to265

cloud the paper with repetitive figures.

The first set of figures, Fig.
:::
The

::::::
results

:::::
shown

:::
are

::
of

:::
the

::::::
Lorenz

:::
05

:::::
model

:::::::::::
assimilating

::::::::::
observations

:::
for

:
1
::::::
month.

::::::
Figure

:
5(a)

and Fig. 5(b), show the preliminary results for testing within a 5 day window for several values of the nudgingcoefficients. The

second set of figures, Fig. 5(c) and Fig. 5(d), display preliminary results for testing within a 30 day window and are added to

show that CCN converges when given a sufficient amount of time
::::::::
represents

:::
the

::::
error

:::
for

:::::::
D-BFN

::::
over

::::
three

::::::::
iterations

::
of

:::::
back270

:::
and

::::
forth

::::::::
nudging,

:::::
where

:::
the

:::::
value

::::::
K = 25

::::::::::
maintained

:::
the

:::::
lowest

::::::
overall

:::::
error.

::::::
Figure

:::
5(b)

::::::
shows

:::
the

::::
error

:::
for

::::
CCN

::::::
where

:::
the

::::
value

:::::::
γ = 0.9

:::::::
reduces

:::
and

::::::::
maintains

::::
this

:::::
lower

::::
error

::::::
around

:::
day

::::
ten.
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:::
We

::::::
remind

:::
the

::::::
readers

:::
that

:::::
CCN

::
is

:
a
:::::::::
continuous

:::::::
method

:::
that

:::::::
corrects

:::::::
through

:::::::
forward

:::::::::
integration

::::
only,

::::::
which

:::::::
explains

::::
why

:::
this

::::::
method

::::
will

::::
have

::::::
higher

:::::
errors

::
at
:::
the

:::::::::
beginning

::
of

:::
the

:::::::
window

::::
and

:::::
might

::::
need

::
a

:::::
longer

::::
time

:::
to

:::::
reduce

:::
the

:::::
error.

:::::::
Similar

:::::
results

:::::
were

:::::::
obtained

:::
for

::::
each

::::::
model

::
in

:::
our

::::::::::
preliminary

::::::
testing,

::::
and

::
so

:::
we

:::::::
proceed

::::
with

:::::
using

:::
the

:::::
values

:::::::
K = 25

:::
for

:::::::
D-BFN275

:::
and

:::::::
γ = 0.9

::
for

:::::
CCN

:::
for

:::
the

::::::::
following

::::::::::
experiments

::::
and

::::
their

::::::
results

:::::
shown

:::
in

:::
this

:::::
paper. In this case, CCN converges around

10 days for the largest nudging coefficient.

(a)

(b)

Figure 5. (a,c) D-BFN (b,d) CCN. Preliminary testing to choose
::::
results

::
of

:
the optimal value for the nudging coefficients for each method.

Results shown are for the Lorenz 05 model with a 5 day and a 30 day (
::::::::
assimilating

:
1 month

:
of

:::
full

::::::::::
observations

::
for

::
(a) data assimilation

window. Observations are brought in at every grid point
:::::
D-BFN

::::
with

::
the

:::::
values

::::::::::
K = 1,5,25 and timestep (timestep for Lorenz 05 model is

3 hours with 240 grid points
:
b)

::::
CCN

::::
with

::
the

:::::
values

:::::::::::::
γ = 0.1,0.5,0.9.

5 Data assimilation experiments: Setup and results

Several experimentsare
:::
For

::::
each

::::::
model

:::::::::
subsection,

:::
we

::::
start

::::
with

::::::
briefly

:::::::::
discussing

:::
the

:::::::::
individual

:::::
model

::::::::::
parameters

::::
used

:::
for

::
the

:::::::::
following

:::::::::::
experiments.

:::
We

::::
then

:::::::
proceed

::::
with

::::::
details

::
of

:::
the

:::
DA

:::::::::::
experiments,

::::
such

::
as

:::
the

::::::
length

::
of

:::
the

::::
DA

:::::
period

::::
and

:::
the280

::::::::
frequency

::
in

::::::
which

::::::::::
observations

::::
are

::::::::::
assimilated,

:::
and

:::::::
discuss

:::
the

::::::
results

::::::
shown

::
in

:::
the

:::::
tables

::::
and

::::::
figures

::::::::
presented

:::
for

:::::
each

::::::
model.

:

:::::
Within

::::
this

:::::::
section,

::::::
several

::::::::::
experiments

:::
are carried out with different lengths of DA windows. The length of the forecast is

the same as the time window chosen for DA
:::::::::
experiment

:::::::
periods.

::::
Each

:::::::
forecast

::
is

::::::::
presented

:::
for

:::
the

:::::
same

:::::
length

::
of
:::::

time
::
as

:::
the

:::::::::::
corresponding

::::
DA

:::::::::
experiment

:::::::
window. The observations for these experiments will come from the start of truth for the DA285
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window length chosen. For example, an assimilation length of two months will bring in observations from the first two months

of truth and the DA accuracy is compared to these first two months. The latter two months of truth are then used for testing

the two month forecast accuracy.
:::::::::
assimilated

::
in

:::::
these

::::::::::
experiments

:::
are

:::::::
sampled

:::::
from

:::
the

::::
truth

:::
for

::::
each

::::::
model.

::::
We

::::::
remind

:::
the

:::::
reader

::
of

:::
the

::::::
results

::::
from

:::
the

::::::::::
preliminary

::::::
testing

::
in

:::
the

:::::::
previous

:::::::
section,

:::::
where

:::
the

::::::
values

:::::::
K = 25

::
for

:::::::
D-BFN

:::
and

:::::::
γ = 0.9

:::
for

::::
CCN

:::
are

::::
used

:::
for

:::
all

:::::
results

::::::
shown

::
in

:::
this

::::::
study.290

:::
The

::::
first

::
set

:::
of

::::::::::
experiments

:::
for

::::
each

:::::
model

::::::::::
assimilates

::::::::::
observations

::
at

::
all

::::
grid

::::::
points

::
for

:::::
every

::::::::
timestep

:::
and

::
is

:::::::
referred

::
to

::
as

::
the

:
‘
:::
ALL

::::
OBS’

::::::::::
experiments.

::::
The

:::::
tables

::::::::
presented

::::::
within

:::
this

::::::
section

:::::::
include

::::::::
shorthand

:::::
names

:::
for

:::::
other

:::::::::::
experiments,

:::::
where

:::
the

:::
first

:::::::
number

::::::::
represents

::::
how

:::::
many

::::::
spaces

:::::::
between

::::
grid

::::::
points

:::
and

:::
the

::::::
second

:::::::
number

:::::::::
represents

:::
the

::::
time

:::::::
between

:::::::::
timesteps.

:::
For

::::::::
example,

:::
the

:::::::::
experiment

:
‘
:::::::
3GP-2TS’

:::::::::
assimilated

:::::::::::
observations

::
at

:::::
every

::
3

::::
Grid

:::::
Points

:::
for

:::::
every

::
2
:::::
Time

:::::
Steps.

::::
The

::::::
results

:::::
shown

::
in

:::
the

::::::
tables

:::
are

:::
the

::::
mean

::::::::
absolute

::::
error

::::::
(MAE)

::::::::
averaged

::::
over

:::::
time.

:::
The

::::::::
columns

:::::::
separate

:::
the

:::::
errors

:::::::
between

:::
the

::::
DA295

:::::::::
experiment

::::::
periods

::::
and

:::
the

:::::::
forecast

::::::
periods.

:

:::
The

::::::
results

:::::
shown

::
in
:::
the

::::::
figures

::::::
within

:::
this

::::::
section

:::::::
contain

::
the

::::::
errors

::
for

::::
each

::::
DA

:::::::::
experiment

::::::::
evaluated

::::::
against

:::
the

::::
truth

::::
and

::
are

:::::::::
presented

::
in

:::
the

::::::::
following

:::::::
manner:

::
i)

:::::::::
experiment

::::::
results

:::
for

::::::
D-BFN

:::
are

::::::::
presented

:::
in

::
the

::::
top

:::
row

::
of

:::::
each

:::::
figure

::::::
(panels

:::
(a)

:::
and

::::
(c)),

:::::
while

:::::::::
experiment

::::::
results

:::
for

::::
CCN

:::
are

::::::::
presented

:::
in

:::
the

::::::
bottom

:::
row

::
of

:::::
each

:::::
figure

::::::
(panels

:::
(b)

:::
and

::::
(d)),

:::
ii)

::
the

:::::
error

:::
for

::
the

::::
DA

:::::::::
experiment

::::::
period

::
is

::::::
shown

::
in

:::
the

:::
left

::::
half

::
of

:::
the

:::::
panel,

:::::
while

:::
the

:::::
error

::
of

:::
the

:::::::
forecast

::::
(FC)

::
is

::::::
shown

::
in

:::
the

::::
right

::::
half300

::
of

:::
the

:::::
panel.

::::
This

:::::::::
distinction

::
is

:::::
shown

:::
by

:::::
color

::
in

:::
the

:::::
results

:::
for

::::::
Lorenz

:::
63

:::
and

::
is

::::::::
separated

::
by

::
a
::::::
vertical

::::
line

:::
for

::
all

:::::::::
remaining

::::::
figures.

5.1 Lorenz 63 model

The first set of experiments is carried out with the three-component Lorenz 63 model, Eq. (7). All experiments have the same

parameters of σ = 10,β = 8
3 , and ρ= 28 with a timestep of approximately six minutes (∆t= 1/100). Preliminary testing was305

done to choose the best value for the nudging terms. For CCN, the best value of γ is 0.9 and for D-BFN, any value of K = 25

or larger provided accurate results. The value of K = 25 was chosen because there was no improvement in the accuracy of the

DA experiments with higher values of K.
:::::::::::::
(∆t= 1/1000).

The experiments started with shorter time windows
:::
The

::::
first

:::::
setup

:::::
starts

:::::
with

::::::
shorter

::::
DA

:::::::::
experiment

:::::::
periods

:
of 5 and

10 daysof DA along with a ,
::::::
paired

::::
with

:::::
their

:
5 and 10 day forecast

:::::::
forecasts, respectively. For the best results possible,310

observations were brought in at all grid points and every timestep
:::
for

:::::
every

:::::::
timestep

:
(‘

:::
ALL

:::::
OBS’

:
). Table 2 shows the mean

absolute error (MAE ) averaged over time for both methods (D-BFN and CCN) and for the DA run
::::
MAE

:::
of

:::
the

:::
DA

:::::
period

:
and

the forecast
:::::
period

:
(FC)

::
for

::::
both

::::::::
methods,

:::::::
D-BFN

:::
and

:::::
CCN. While D-BFN does well with a short time

:::::::::
experiment

:
window,

CCN does not have an adequate amount of time for corrections to make an impact on the DA error. The time

:::
The

::::::::::
experiment window was then lengthened to a

:::::::
extended

::
to
:
one and two months DA run along with a one and two month315

forecast
:::
for

:::
the

:::
DA

::::::
period

:::
and

:::
FC

::::::
period. The results are shown in Table 2, as well as Fig. 6. While CCN shows higher MAE

for not having a long enough time window to reduce errors, the forecast MAE is on par with D-BFN for the one month forecast

and slightly better than D-BFN for the two month forecast. Figures 6(c) and 6(d) show that CCN has better accuracy in the

forecast for several days longer than D-BFN when given sufficient time to make corrections.
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(a) (c)

(b) (d)

Figure 6. (a,b) D-BFN (K = 25) and (c,d) CCN (γ = 0.9). Error plots between experiments with the
::
for

:
Lorenz 63 model compared with

‘
:::
ALL

::::
OBS’

::::::::
experiments

::::::::
evaluated

:::::
against

:
the truth for each variable, x (solid line), y (dashed line), z (dotted line).

:::
Blue

::::::
denotes

:::
the DA is

shown in blue and
::::
error,

::::
while

:::::
green

::::::
denotes the forecast (FC ) is shown in green

::::
error. The left column shows experiments with

:::::
results

:::
for

1 month of DA and 1 month of forecast
::
FC

:::
for

::
(a)

::::::
D-BFN

:::
and

:::
(b)

::::
CCN. The right column shows experiments with

:::::
results

::
for

:
2 months of

:::::
month DA and 2 months of forecast. All DA experiments assimilated all observations

:::::
month

:::
FC

::
for

:
(i.e., all grid points at every timestep/6

minutesc)
:::::

D-BFN
:::
and

:::
(d)

::::
CCN.

Further experiments were done in the case when all observations are not available. The experiment ‘
:::::::
1GP-2TS’1gp2ts’’320

shown in Table 2 is bringing
:::::
brings

:
in observations at all grid points but now every other timestep. These were only performed

for the longer time
:::::::::
experiment

:
windows of one and two months. D-BFN still provided high accuracy with less observations in

time but CCN was not able to make a suitable correction within this time window. Several factors play a role in this outcome

starting with internal factors of D-BFN, namely the backwards integration of the model and the iterations. The backwards

integration helps propagate the correction from the nudging term further into the model domain, an ability that is not present325

in CCN. It can also been
::
be seen in Fig. 5 that the rate in which corrections are made imply that D-BFN has a stronger nudging

term compared to CCN. It is possible that if a longer time window were considered, CCN would produce lower errors for the

DA run and the forecast. It was shown in the original paper that it took approximately 17 time units to converge with the KSE

model
::::::::::::::::::
Kuramoto-Sivashinsky

::::::::
equation, and these experiments are 6 time units (1 month) and 12 time units (2 months).

Other experiments were tested that are not shown in this paper but should be discussed. For all of the window lengths used330

for this model (5 days, 10 days, 1 month, and 2 months), observations were brought in for all variables every five timesteps,
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Table 2. Table of DA experiments. Observations used: ’all obs’
:::
‘ALL

:::::
OBS’ = all observations (every 6 minutes), ’1gp2ts’

::::::::
‘1GP-2TS’ = all

grid points, every other timestep (every 12 minutes). ’5d’
:::
‘5d’, ’10d’

::::
‘10d’, ’1m’

::::
‘1m’, and ’2m

::::
‘2m’ represent 5 days, 10 days, 1 month, and

2 months, respectively. ’DA’
:::
‘DA’ is the

::::::::
experiment window for data assimilation and ’Fcast’

::::
‘FC’ is the forecast window. Values shown are

the time averaged MAE.

Lorenz 63 Model

Observations DA Method 5d DA 5d Fcast
::
FC 10d DA 10d Fcast

::
FC

ALL OBS
D-BFN (K = 25) 0.0221 0.0225 0.0224 0.0279

CCN (γ = 0.9) 3.1663 3.3081 2.2818 6.8962

1m DA 1m Fcast
:::
FC 2m DA 2m Fcast

:::
FC

ALL OBS
D-BFN (K = 25) 0.0247 0.0254 0.0254 0.1766

CCN (γ = 0.9) 1.2605 0.0256 0.6434 0.0591

1GP-2TS
D-BFN (K = 25) 0.0317 0.0255 0.0508 0.0924

CCN (γ = 0.9) 7.9482 6.4443 8.0473 10.2191

approximately, every 30 minutes. While it is not unpredictable that CCN did not do well with even less observations, D-BFN

was still able to produce good results. We present this experiment for the example of how the nudging coefficient needs

to sometimes be adjusted. The value of K = 25 produced high forecast accuracy for the shorter time windows but did not

converge for the longer ones. Increasing the value to K = 50 produced similar results as K = 25 for the shorter windows335

but also produced accurate results for the longer time windows. The conclusion from these results was that a larger nudging

coefficient was needed for D-BFN in cases with sparse observations and/or longer time windows.

The results
:::
The

::::::
results

:
above confirmed that a longer time window is still needed with these models in order for CCN

to converge. Therefore, the next two models will have
:::
use only the longer DA runs. For these

:::::::::
experiment

:::::::
window.

::::
For

:::
the

::::::::
following experiments, the two lengths of assimilation and forecasting considered are one and two months followed by their340

respective forecast.

5.2 Lorenz 96 model

All numerical experiments for Lorenz 96, Eq. (8), will use the following parameters: N = 40 grid points, F = 8, and a time step

of approximately 6 hours (∆t= 1/20). The preliminary testing revealed the best choice of K = 25 and γ = 0.9 for D-BFN

and CCN, respectively.345

The first set of experiments with this model use observations at all grid points and all timesteps . The averaged Mean

Averaged Error (MAE )
:
(‘

:::
ALL

::::
OBS’

:
).
::::
The

::::
time

::::::::
averaged

:::::
MAE

:
is shown in Table 3 where CCN produces a slightly better

forecast than D-BFN. Of course, CCN has a higher error for DA since it only corrects in the forward model. Figures 7(a) and

7(c)
:
, for the one month experiment,

:
show how long the forecast is accurate, which is around 12–15 days for both methods.
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Figures 7(c) and 7(d) have
:::::
contain

:
the results for the two month experiment,

:
showing that the accuracy in

:::
the forecast for350

D-BFN has dropped
::::::::
decreased to around 5 days, whereas, CCN is consistent with accuracy for about 12–15 days.

Table 3.
::::
Table

::
of

:::
DA

::::::::::
experiments.

::::::::::
Observations

::::
used:

::::
‘ALL

:::::
OBS’

:
=

::
all

::::::::::
observations

:::::
(every

:
6
::::::
hours),

::::::::
‘1GP-2TS’

:
=
::
all

::::
grid

:::::
points,

:::::
every

::::
other

::::::
timestep

:::::
(every

:::
12

:::::
hours).

::::
‘1m’

::
and

::::
‘2m’

::::::
represent

:
1
::::::

month
:::
and

:
2
::::::
months,

::::::::::
respectively.

::::
‘DA’

:
is
:::

the
::::::
window

:::
for

:::
data

::::::::::
assimilation

:::
and

:::
‘FC’

:
is
:::
the

::::::
forecast

::::::
window.

::::::
Values

:::::
shown

::
are

:::
the

::::
time

:::::::
averaged

:::::
MAE.

Lorenz 96 Model

::::::::::
Observations

:::
DA

::::::
Method

::
1m

:::
DA

:::
1m

:::
FC

::
2m

:::
DA

:::
2m

:::
FC

ALL OBS ::::::
D-BFN

:::::::
(K = 25)

: :::::
0.4006

:::::
1.8820

: :::::
0.4036

:::::
3.6572

:

::::
CCN

:::::::
(γ = 0.9)

: :::::
0.7620

:::::
1.5284

: :::::
0.5581

:::::
3.1434

1GP-2TS ::::::
D-BFN

:::::::
(K = 25)

: :::::
0.4062

:::::
1.8197

: :::::
0.4075

:::::
3.4985

::::
CCN

:::::::
(γ = 0.9)

: :::::
1.9662

:::::
3.6858

: :::::
1.6443

:::::
3.8755

(a) (c)

(b) (d)

Figure 7. (a,b) D-BFN (K = 25) and (c,d) CCN (γ = 0.9). Error plots between experiments with the
::
for

:
Lorenz 96 model compared with

‘
:::
ALL

::::
OBS’

::::::::
experiments

::::::::
evaluated

:::::
against

:
the Truth

:::
truth. The left column shows experiments with

:::::
results

::
for

:
1 month of DA and 1 month

of forecast
::
FC

:::
for

::
(a)

::::::
D-BFN

:::
and

:::
(b)

::::
CCN. The right column shows experiments with

:::::
results

:::
for 2 months of

::::
month

:
DA and 2 months of

forecast. The vertical line represents the change from the DA window to the forecast window. All DA experiments ’allobs’ assimilated all

observations
::::

month
:::
FC

::
for

:
(i.e., all grid points every timestep/6 hours

:
c)

:::::
D-BFN

::::
and

::
(d)

::::
CCN.

The next set of experiments brought in observations at all grid points and every other timestep
:
(
::::::::
‘1GP-2TS’1gp2ts’). Figure

8 shows the error between truth and each method along with their forecast. D-BFN produces similar results as compared to

assimilating all observations. CCN, however, does not make much of a correction during assimilation, which in return does not

produce a usable forecast. We would hypothesize that CCN needs a much longer assimilation window to account for not having355
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a full observation set. We carried out experiments with smaller and slightly higher values for γ, but the resulting assimilation

and forecast errors did not improve. (Results not shown).

Table of DA experiments. Observations used: ’all obs’ = all observations (every 6 hours), ’1gp2ts’ = all grid points, every

other timestep (every 12 hours). ’1m’ and ’2m’ represent 1 month and 2 months, respectively. ’DA’ is the window for data

assimilation and ’Fcast’ is the forecast window. Values shown are the time averaged MAE. Observations DA Method 1m360

DA 1m Fcast 2m DA 2m Fcast D-BFN (K = 25) 0.4006 1.8820 0.4036 3.6572 CCN (γ = 0.9) 0.7620 1.5284 0.5581

3.1434D-BFN (K = 25) 0.4062 1.8197 0.4075 3.4985CCN (γ = 0.9) 1.9662 3.6858 1.6443 3.8755

(a) (c)

(b) (d)

Figure 8.
::::
Error

::::
plots

:::
for

:::::
Lorenz

:::
96 ‘

::::::
1GP-2TS’

::::::::
experiments

::::::::
evaluated

:::::
against

:::
the

::::
truth.

::::
The

::
left

::::::
column

:::::
shows

::::::
results

::
for

::
1

:::::
month

:::
DA

:::
and

:
1
:::::
month

:::
FC

::
for

:
(a,b) D-BFN (K = 25) and (c,d

:
b) CCN(γ = 0.9). Similar to Fig. 7 except the

:::
The

::::
right

:::::
column

:::::
shows

::::::
results

::
for

::
2

:::::
month

DA experiments ’1gp2ts’ assimilated observations at all grid points and every other timestep
:
2
:::::
month

:::
FC

:::
for (every 12 hours

:
c)

::::::
D-BFN

:::
and

::
(d)

::::
CCN.

A few other experiments were performed to test the capabilities of these methods with sparse observations. All of these were

completed with the two month DA
:::::::::
experiment

:
window. Observations were assimilated less frequently in time, from every

five
::::::::
‘1GP-5TS’1gp5ts’ to every ten

::::::::::
‘1GPG-10TS’1gp10ts’ to every twenty

:::::::::
‘1GP-20TS’1gp20ts’ timesteps. The results are365

displayed in Table 4. The results for CCN are poor as it did not have enough observations to make a correction in the forward

model. D-BFN has the benefit of propagating the observations back in time, correcting the initial conditions, and running the

forward model again. This process allows D-BFN to give a much better correction during the assimilation window. However,

the forecast accuracy decreases with the frequency of observations. The results for every five timesteps (every 30 hours) is
:::
are

comparable to the results from all observations. The days of accuracy for the less frequent observations drastically decrease370

::::::::
decreases as the observations decrease.
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Table 4. A variety of other experiments testing the sparsity of observations. The first number represents how many spaces between grid

points whereas the second represents the time between timesteps. For example, ’3gp2ts’
::::::::
‘3GP-2TS’ are observations brought in at every

three gridpoints and every two timesteps. Recall that one timestep is equal to 6 hours for this model, so every two timesteps would be every

12 hours. Values shown are the time averaged MAE.

Lorenz 96 Model

Observations DA Method 1m DA 1m Fcast
:::
FC

1GP-5TS
D-BFN (K = 25) 0.4255 3.2234

CCN (γ = 0.9) 2.6634 4.1855

1GP-10TS
D-BFN (K = 25) 0.5181 3.5457

CCN (γ = 0.9) 3.0572 4.2346

1GP-20TS
D-BFN (K = 25) 1.8630 4.1870

CCN (γ = 0.9) 3.7072 4.2537

2GP-2TS
D-BFN (K = 25) 0.9046 3.7016

CCN (γ = 0.9) 2.6375 4.1872

3GP-2TS
D-BFN (K = 25) 1.7059 3.9207

CCN (γ = 0.9) 3.0278 4.3588

4GP-3TS
D-BFN (K = 25) 2.1865 3.9240

CCN (γ = 0.9) 3.3608 4.0710

5.3 Lorenz 2005 model

The Lorenz 05 model, Eq. (9) and Eq. (10), will use the same parameters for all numerical experiments: 240 grid points (N),

an even number L= 8, a forcing constant of 15 to ensure chaos (F ), and a time step of approximately 3 hours (∆t= 1/40

time unit). Recall that in Eq. (9) and Eq. (10), one unit of time is equivalent to 5 days. (a,b) D-BFN (K = 50), (c,d) D-BFN375

(K = 25), and (e,f) CCN (γ = 0.9). Error plots between experiments with the Lorenz 05 model compared with the Truth.

The left column shows experiments with 1 month of DA and 1 month of forecast. The right column shows experiments with 2

months of DA and 2 months of forecast. The vertical line represents the change from the DA window to the forecast window. All

DA experiments ’allobs’ assimilated observations at all grid points and every timestep (i.e. every 3 hours). In the preliminary

testing, shown in Fig. 5, the values tested for D-BFN were K = 1,5,50. The quickest convergence was shown with K = 50.380

Other values were used as well, such as K = 25, which had very similar convergence to K = 50. Due to them having nearly

identically results, both values are tested in the original experiments. Consistent with the previous models, the optimal value

found for CCN is γ = 0.9.
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The first set of experiments with this model use observations at all times and space (‘
:::
ALL

:::::
OBS’

:
) for one and two months DA.

Two values for the nudging coefficient K are used to further evaluate the best choice. The results are quite close for K = 50 and385

K = 25, but K = 25 has a lower error at the end of the DA window and a slightly better forecast.
:::::
month

::::::::::
experiment

::::::::
windows.

For this model, CCN has the lowest forecast accuracy of all results for both the one month and two month. The forecast has

low errors for around 30 days, as seen in Fig. 9.

(a) (c)

(b) (d)

Figure 9.
::::
Error

::::
plots

:::
for

:::::
Lorenz

:::
05 ‘

:::
ALL

::::
OBS’

::::::::
experiments

::::::::
evaluated

:::::
against

:::
the

::::
truth.

::::
The

:::
left

:::::
column

:::::
shows

::::::
results

::
for

::
1

:::::
month

:::
DA

:::
and

:
1
:::::
month

:::
FC

::
for

:::
(a)

:::::
D-BFN

:::
and

:::
(b)

:::::
CCN.

:::
The

::::
right

::::::
column

:::::
shows

:::::
results

::
for

::
2

:::::
month

:::
DA

:::
and

:
2
:::::
month

:::
FC

::
for

:::
(c)

::::::
D-BFN

:::
and

::
(d)

:::::
CCN.

The second set of experiments uses all points in space and assimilates them at every other timestep
:
(‘

:::::::
1GP-2TS’

:
). D-BFN

produces very similar results as with the all observations experiment. Looking at the difference in results between
::
the

:
one390

month and two month
::::::::::
experiments, the CCN method needs a longer window to converge with the sparser set of observations,

as seen in Fig. 10. Table 5 contains further details of the mean absolute errors
:::
time

::::::::
averaged

:::::
MAE

:
for the first two sets of

experiments. The values in Table 5 are separated to show error contained during the DA window
:::::
period

:
and error maintained

during the forecast window
:::::
period.

D-BFN does well compared to CCN for observations that are sparse in time. Table 6 shows the results for a
:::
the two month DA395

and forecast
:::
FC

::::::::::
experiments

:
for observations brought in every five

::::::::
‘1GP-5TS’1gp5ts’ and every twenty ’1gp20ts

:::::::::
‘1GP-20TS’

timesteps. The correction in the DA brings the error down to provide a decent forecast. The error in the forecast is relatively

low compared to the errors in CCN and the larger errors are towards the end of the forecast period. The figure is not shown in

this paper but both results have high accuracy for approximately the first 30 days of the forecast.
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(a) (c)

(b) (d)

Figure 10.
::::
Error

::::
plots

:::
for

:::::
Lorenz

::
05

:
‘
:::::::
1GP-2TS’

:::::::::
experiments

:::::::
evaluated

::::::
against

::
the

:::::
truth.

:::
The

:::
left

::::::
column

:::::
shows

:::::
results

::
for

::
1

:::::
month

:::
DA

:::
and

:
1
:::::
month

:::
FC

::
for

:
(a,b) D-BFN (K = 50), (c,d) D-BFN (K = 25), and (e,f

:
b) CCN(γ = 0.9). Similar to Fig. 9 except the

:::
The

::::
right

::::::
column

::::
shows

::::::
results

::
for

:
2
:::::
month

:
DA experiments ’1gp2ts’ assimilated observations at all grid points and every other timestep

:
2
:::::
month

::
FC

:::
for (every

6 hours
:
c)

::::::
D-BFN

:::
and

::
(d)

::::
CCN.

Table 5. Table of DA experiments. Observations used: ’all obs’
::::
‘ALL

::::
OBS’ = all observations (every 3 hours), ’1gp2ts’

::::::::
‘1GP-2TS’ = all grid

points, every other timestep (every 6 hours). ’1m’
:::
‘1m’ and ’2m’

::::
‘2m’ represent 1 month and 2 months, respectively. ’DA’

:::
‘DA’ is the window

for data assimilation and ’Fcast’
:::
‘FC’ is the forecast window. Values shown are the time averaged MAE.

Lorenz 05 Model

Observations DA Method 1m DA 1m Fcast
:::
FC 2m DA 2m Fcast

:::
FC

ALL OBS
D-BFN (K = 50) 0.2095 0.3856 0.2959 1.8137D-BFN (K = 25) 0.1827 0.2480 0.1960 2.1770

CCN (γ = 0.9) 0.3984 0.1948 0.2246 2.1161

1GP-2TS
D-BFN (K = 50) 0.2102 0.3718 0.2249 2.2100D-BFN (K = 25) 0.1861 0.2417 0.1977 1.9577

CCN (γ = 0.9) 0.8913 2.9029 0.5941 3.3410

6 Conclusions400

Overall each method has their own advantages and disadvantages. While D-BFN performs better with short windows and

sparse observations, it does require iterations of forward and backward integrations of the model. This is not suitable for all

cases, most importantly when a model cannot be integrated backwards. For some cases where the assimilation window was

long enough, the DA error at the end of the window was lower from the CCN method than D-BFN, resulting in a forecast that

maintained accuracy longer in time. Furthermore, CCN only requires the forward model, which is useful for models that do405

not allow a backwards integration and also makes this method more computationally efficient.
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Table 6. A variety of other experiments testing the sparsity of observations. The first number represents how many spaces between grid

points whereas the second represents the time between timesteps. For example, ’3gp2ts’
::::::::
‘3GP-2TS’ are observations brought in at every

three gridpoints and every two timesteps. Recall that one timestep is equal to 6 hours for this model, so every two timesteps would be every

12 hours. Values shown are the time averaged MAE.

Lorenz 05 Model

Observations DA Method 1m DA 1m Fcast
:::
FC

1GP-5TS
D-BFN (K = 25) 0.2095 1.5355

CCN (γ = 0.9) 2.2238 4.5812

1GP-20TS
D-BFN (K = 25) 0.3997 1.9565

CCN (γ = 0.9) 3.5654 4.3697

2GP-2TS
D-BFN (K = 25) 0.6533 3.7837

CCN (γ = 0.9) 2.3233 4.3569

3GP-2TS
D-BFN (K = 25) 1.0572 3.9058

CCN (γ = 0.9) 2.5416 4.3568

4GP-3TS
D-BFN (K = 25) 2.0827 4.2232

CCN (γ = 0.9) 3.6660 4.7131

We want to remember a goal of this paper was to determine the best method to apply to an ocean model. For this reason,

we do not want to implement a longer time window as it is not practical for ocean DA. In terms of implementing either

method for an ocean model, based on the findings in this paper, Auroux and Blum’s D-BFN method seems more applicable

to the assimilation window constraints and sparse ocean observations available. However, the implementation of CCN may be410

suitable for other scenarios with a long assimilation in the ocean such as done in reanalysis or assimilations that start much

further in the past.

The results from this paper led us to the conclusions above, but we leave the reader with this final remark. While D-BFN

is able to retain accuracy for observations that are sparse in time, due to the advantage of spreading these corrections through

the back and forth iterations, we observed that the results from CCN decayed as the density and/or frequency of observations415

were reduced. These results may be partial to the models not having strong dynamics capable of propagating the corrections

to other unobserved points in space or time. However, for models with strong advection, the corrected term may be able to

disperse these corrections to places where observations are not observed, which would allow CCN to have a higher impact

when adjusting the trajectory from sparse observations.
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