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Abstract. Climate change intensifies weather-related disasters, necessitating innovative mitigation strategies beyond conven-

tional weather prediction methods. The Control Simulation Experiment (CSE) framework proposes altering weather systems

through small perturbations, but its effectiveness relative to other control methods remains uncertain. This study evaluates

CSE’s efficacy against Model Predictive Control (MPC), a well-established method in control engineering. We develop an

MPC algorithm tailored for the Lorenz-63 model, incorporating temporal deep unfolding to address challenges in controlling5

chaotic systems. Simulations reveal that MPC achieves higher success rates with less control effort under certain conditions,

particularly with shorter prediction horizons. This work bridges control theory and atmospheric science, advancing the under-

standing of atmospheric controllability and informing future strategies to mitigate extreme weather events.

1 Introduction

Climate change has led to a significant increase in the frequency of severity of weather-related disasters, such as typhoons10

and torrential rains (Field et al., 2012; Hoeppe, 2016; Masson-Delmotte et al., 2021). These extreme events pose substantial

threats to societies worldwide, causing loss of life, economic damage, and long-term environmental impacts (Coumou and

Rahmstorf, 2012; Peterson et al., 2012). Traditional approaches to mitigate these threats have focused on enhancing accuracy

of weather predictions through advanced numerical weather prediction (NWP) models (Bauer et al., 2015) and strengthening

disaster prevention infrastructures like dams, levees, and flood control systems (Hinkel et al., 2014; Jongman et al., 2012).15

However, these methods are inherently limited by the chaotic nature of atmospheric dynamics, which imposes fundamental

constraints on predictability (Lorenz, 1963; Palmer, 2000). As a result, there is a growing interest in exploring alternative

strategies that go beyond predictions to actively influence weather systems in order to reduce the occurrence or impact of

extreme events (Miyoshi and Sun, 2022; Moore et al., 2015).

One promising avenue in this regard is the concept of weather control through small-scale interventions. The Control Sim-20

ulation Experiment (CSE), introduced by Miyoshi and Sun (2022), offers a novel experimental framework for studying con-

trollability of chaotic systems. The CSE extends the traditional Observing Systems Simulation Experiment (OSSE) (Atlas,
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1997) by shifting the focus from improving predictability to exploring the potential for controlling chaotic systems including

the atmosphere (Miyoshi and Sun, 2022; Sun et al., 2023). By applying infinitesimal perturbations to the atmospheric state

within numerical models, CSE aims to influence the future evolution of chaotic systems toward more desirable trajectories.25

This approach leverages the inherent sensitivity to initial conditions in chaotic systems – a phenomenon popularly known as

the “butterfly effects” (Palmer, 1993; Ott, 2002) – to steer the system’s trajectory with minimal interventions.

Despite the potential of this CSE approach, the effectiveness of various control methods in achieving these objectives re-

mains uncertain. While CSE has shown promise in specific contexts (Miyoshi and Sun, 2022; Sun et al., 2023), its performance

relative to other established control methodologies has not been thoroughly examined (Kawasaki and Kotsuki, 2024). In par-30

ticular, there is a need to compare the CSE with control strategies that have been extensively studied and applied in other

fields of engineering (Slotine and Li, 1991; Dorf and Bishop, 2011). Model Predictive Control (MPC) is one such method (see,

e.g., Richalet et al., 1978; Mesbah, 2016), known for its robustness and ability to handle multi-variable control problems with

explicit consideration of constraints and optimization objectives. The MPC predicts future system behavior using dynamic

models and computes optimal control actions over a moving time horizon, making it a powerful tool for dynamical systems35

where future states are influenced by current interventions.

In this study, we aim to rigorously assess the efficacy of the CSE framework in comparison to MPC within the realm

of weather control applications. By developing an MPC-based algorithm tailored for the Lorenz-63 model and integrating a

refined version of MPC that incorporates deep unfolding techniques (Kishida and Ogura, 2022; Hershey et al., 2014), we seek

to determine whether established control methodologies can enhance the controllability of chaotic atmospheric models. This40

approach allows us to leverage MPC’s strengths while accommodating the complexities of chaotic dynamics. To facilitate

this investigation, we conduct comprehensive simulation experiments comparing the performance of the MPC-based control

method with the strategies employed in the CSE. Our findings indicate that the MPC approach not only achieves higher success

rates under certain conditions but also reduces the required control effort. Specifically, when the prediction horizon parameter

falls below a certain threshold, MPC exhibits a significantly higher success rate compared to CSE’s control policies.45

The contribution of this study is twofold. On the one hand, we enhance the traditional MPC approach with temporal deep

unfolding to handle the unique challenges posed by chaotic systems, thereby extending MPC’s applicability to nonlinear

contexts. On the other hand, we provide a detailed comparative analysis between the MPC-based method and existing CSE

strategies, advancing the understanding of controllability in chaotic dynamics and laying the groundwork for future research

in this area. By comparing CSE and MPC within the same framework, our study seeks to evaluate the potential advantages50

and limitations of conventional control techniques in the domain of weather control applications. The insights gained from

this comparison can inform the development of more effective control strategies and guide future research efforts aimed at

mitigating the impact of extreme weather events through controllability.

We finally remark that, recently, Kawasaki and Kotsuki (2024) introduced MPC into the CSE framework and demonstrated

its effectiveness in leading the Lorenz-63 system toward a prescribed regime. Their approach involves solving an optimal55

control problem by deriving and iteratively solving the necessary conditions for optimality using numerical methods. While this

method shows promising results for low-dimensional systems like the Lorenz-63 model, it relies on analytical derivations and
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iterative computations that may not scale well to higher-dimensional or more complex systems due to increased computational

demands. For this reason, we have chosen to use an MPC based on deep unfolding techniques, in which no symbolic execution

is required.60

The structure of the paper is as follows. Section 2 provides an overview of the CSE framework, including its theoretical

foundations and methodologies. Section 3 details the development of the MPC method based on temporal deep unfolding and

its implementation for the Lorenz-63 model. Section 4 presents the results of our comparative analysis between the MPC-based

control method and the traditional CSE strategies. Finally, conclusions are drawn in Section 5.

2 Control Simulation Experiment65

The CSE (Miyoshi and Sun, 2022) is a framework designed to explore the controllability of chaotic systems in the context of

weather control applications. In this section, we provide a comprehensive description of the Lorenz-63 model (Lorenz, 1963),

the control target in CSE. We then present an overview of the control strategies employed within the CSE framework, detailing

the methods used to influence the system’s behavior. Finally, we discuss the limitations and challenges associated with these

control strategies.70

2.1 Control objective

The Lorenz-63 model is a simplified mathematical model that captures the essence of atmospheric convection and exhibits

chaotic behavior (Kravtsov and Tsonis, 2021) . It has become a canonical example in the study of dynamical systems due

to its sensitive dependence on initial conditions. The model consists of a set of three coupled, nonlinear ordinary differential

equations representing the evolution of three state variables x, y, and z, which correspond to idealized atmospheric quantities.75

The controlled Lorenz-63 model in the CSE framework incorporates control inputs ux, uy , and uz for each state variable,

allowing for the application of external influences to the system:

dx

dt
= σ(y−x) +ux, (1)

dy

dt
= x(ρ− z)− y + uy, (2)

dz

dt
= xy−βz + uz. (3)80

In these equations, σ, ρ, and β are positive parameters representing the Prandtl number, Rayleigh number, and a geometric

factor, respectively. These parameters are set to σ = 10, ρ = 28, and β = 8/3, values known to produce chaotic dynamics

characterized by a butterfly attractor.

In the CSE framework, the Lorenz-63 model is discretized in time using the Runge-Kutta method with a step size of 0.01.

Under these discretization parameters, the system’s solution is known to exhibit chaotic behavior, with the first state variable x85

oscillating between positive and negative regions. This transition between regimes is referred to as a regime shift.
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The primary control objective in CSE is to prevent regime shifts by maintaining the state variable x within the positive

region. By achieving this, the system can be stabilized in a desired regime. Controlling such a chaotic system is challenging

due to its inherent sensitivity to initial conditions and nonlinear dynamics, necessitating sophisticated control strategies.

2.2 Control strategies90

The control objective is achieved by applying control inputs of a predetermined magnitude to each state variable x, y, and z

within the Lorenz-63 model to stabilize the system and avoid transitions into the negative regime.

It is important to note that in the CSE framework, the values of the variables in the Lorenz-63 model cannot be directly

observed. Instead, it is assumed that an additive noise, generated from a normal distribution with a variance of 2.0, is introduced

to each variable, producing noisy observations. To estimate the true values of the variables x, y, and z from these noisy95

observations, a data assimilation technique known as the ensemble Kalman filter (Houtekamer and Zhang, 2016) is employed.

The data assimilation interval is denoted as Ta. In the following analysis, we use Ta = 8, consistent with the setup in CSE.

An overview of the control strategies proposed in CSE is provided below; for further details, refer to Miyoshi and Sun

(2022).

1. Data Assimilation: At time step t, the ensemble Kalman filter assimilates the latest observations to update the estimate100

of the system’s state. This provides the initial condition for subsequent forecasting.

2. Ensemble Forecasting: An ensemble of forecasts is generated from time t to t + T (where T is the ensemble forecast

horizon) using analysis ensembles, which are slightly perturbed initial conditions. These perturbations simulate uncer-

tainties in the initial state and model errors. Typically, three ensemble members are generated to estimate the future state

of the Lorenz-63 model.105

3. Regime Shift Detection: The ensemble forecasts are analyzed to determine if any member predicts a regime shift (i.e., the

state variable x crossing into the negative region) within the forecast horizon. If at least one ensemble member indicates

a regime shift, control actions are deemed necessary.

4. Control Input Determination: For each time step from t+1 to t+Ta−1, control inputs ux, uy , and uz are calculated to

prevent the predicted regime shift. The control inputs are determined by:110

(a) Selecting an ensemble member S that predicts a regime shift and an ensemble member N that does not.

(b) Computing the difference S−N between the two ensemble members at each time step.

(c) Normalizing this difference vector so that its Euclidean norm equals a predetermined magnitude D.

(d) Applying the normalized control inputs to the Lorenz-63 model at each time step.

5. Iteration: After applying the control inputs, new observations are assimilated at time t+Ta, and the process repeats from115

step 1.
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2.3 Limitations of CSE

Despite the promising results achieved by the control strategies within the CSE framework, several limitations impact their

overall effectiveness in controlling chaotic systems like the Lorenz-63 model. One significant limitation is the sensitivity of

the control strategy to the ensemble forecast horizon T . Experimental observations have indicated that when the prediction120

horizon is relatively long, the success rate of preventing regime shifts is high. This is because a longer prediction horizon

allows for earlier detection of potential regime shifts, providing sufficient lead time to apply control inputs effectively. However,

extending the prediction horizon also increases computational costs and introduces greater uncertainty due to the chaotic nature

of the system. Small errors in the initial conditions can grow exponentially over time, leading to significant deviations in the

forecasted trajectories. Conversely, when the prediction horizon is relatively short, the control strategy’s success rate decreases125

significantly. Shorter horizons may not provide enough time to detect and counteract impending regime shifts, resulting in a

higher likelihood of the system transitioning into undesirable states.

Another challenge lies in determining the appropriate magnitude of the control inputs, represented by the Euclidean norm D

of the control vector [ux,uy,uz]⊤. If D is set too small, the control inputs may be insufficient to influence the system’s dynam-

ics and prevent regime shifts. On the other hand, if D is too large, the control actions may be impractical for implementations130

due to physical limitations. Balancing the magnitude of the control inputs to achieve effective control without causing adverse

side effects is a delicate task. This issue underscores the need for a more systematic approach to determine optimal control

input magnitudes that consider both effectiveness and feasibility.

Additionally, the CSE framework lacks an optimization mechanism capable of addressing the multiple objectives and con-

straints inherent in practical control applications. Real-world control strategies must often balance competing goals, such as135

minimizing control effort, satisfying physical constraints, and achieving desired system performance. Without such a mech-

anism, the CSE approach may produce suboptimal control inputs, limiting its efficiency, practicality, and applicability to

complex systems or real-world scenarios where these considerations are critical.

These limitations highlight the necessity for alternative or enhanced control methodologies capable of addressing the inherent

challenges of controlling chaotic systems effectively. In particular, there is a need for control strategies that can optimize control140

inputs while explicitly considering system constraints, uncertainties, and multiple objectives. Control methods such as MPC

offer a promising avenue in this regard. The MPC provides a systematic framework for optimizing control actions over a future

horizon while handling multivariable systems with explicit constraints and objectives. By integrating such methods, it may be

possible to overcome the limitations of the current CSE approach, enhancing the controllability of chaotic systems like the

Lorenz-63 model and improving the practical feasibility of weather control applications.145

3 MPC Using Temporal Deep Unfolding

MPC (Richalet et al., 1978; Mesbah, 2016) is a prominent control strategy extensively used in engineering disciplines for its

capability to handle multivariable control problems with constraints and to anticipate future system behavior by solving an

optimization problem at each time step. In this study, we compare the effectiveness of MPC with that of the CSE in terms
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of control success rates for chaotic systems like the Lorenz-63 model. Among the various MPC methodologies, we adopt an150

advanced version known as MPC using temporal deep unfolding, which has demonstrated effectiveness in controlling nonlinear

systems (Kishida and Ogura, 2022; Liu et al., 2024; Aizawa et al., 2024, see, e.g., ). This section provides a comprehensive

overview of MPC and elaborates on how temporal deep unfolding enhances its capabilities, particularly in the context of

controlling chaotic dynamics.

3.1 MPC155

MPC is a control strategy that optimizes control inputs by predicting future states of a dynamic system over a finite predic-

tion horizon at each discrete time step (Rawlings and Mayne, 2009). By solving an optimization problem that minimizes a

predefined cost function, MPC adjusts the control inputs to ensure that the system’s output follows a desired trajectory while

satisfying constraints on inputs and states. The key components of MPC include

– System Model: A mathematical representation of the system dynamics, which can be linear or nonlinear, deterministic160

or stochastic;

– Cost Function: An objective function that quantifies the performance of the system, incorporating terms for tracking

error, control effort, and possibly other considerations like energy consumption or economic costs;

– Constraints: Physical or operational limitations on the control inputs and system states, such as actuator limits, safety

requirements, or environmental regulations.165

The discrete-time state equation governing the controlled system is expressed as

xt+1 = f(xt,ut), (4)

where xt is the system state and ut is the control input.

The objective is to find a sequence of control inputs {ut,ut+1, . . . ,ut+T−1} over a prediction horizon T that minimizes a

cost function J while satisfying the system dynamics and constraints. This formulation of J enables the controller to minimize170

the cumulative cost J while adhering to dynamic constraints and specified limits on control inputs and states. By iteratively

solving this optimization problem, MPC adapts to changing dynamics and disturbances, enhancing system performance.

The optimization problem at each time step can be typically formalized as follows:

minimize
{ut+k}T−1

k=0

J

subject to xt+k+1 = f(xt+k,ut+k), k = 0, . . . ,T − 1,

umin ≤ ut+k ≤ umax, k = 0, . . . ,T − 1,

xmin ≤ xt+k ≤ xmax, k = 0, . . . ,T

(5)

where umin and umax represent input constraints while xmin and xmax represent state constraints.175
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This formulation enables the controller to minimize the cumulative cost J while adhering to the system dynamics and

specified constraints. By iteratively solving this optimization problem at each time step and implementing only the first control

input ut, MPC adapts to changing dynamics and disturbances, enhancing system performance and robustness.

3.2 Temporal deep unfolding

Deep unfolding is a methodology that bridges the gap between iterative optimization algorithms and deep learning architectures180

(Hershey et al., 2014; Jagannath et al., 2021). It involves unfolding an iterative algorithm into a layer-wise structure resembling

a neural network, where each iteration corresponds to a layer. Parameters within the algorithm can then be learned using

backpropagation and gradient-based optimization techniques.

Temporal deep unfolding extends this concept to dynamic systems by treating the state evolution equations as an iterative

algorithm (Kishida and Ogura, 2022; Aizawa et al., 2024). In this approach, the system dynamics over a prediction horizon185

T are unfolded into a feed-forward network with T layers, each representing the system’s state at a future time step. The

control inputs {ut,ut+1, . . . ,ut+T−1} are treated as learnable parameters within this network. By leveraging deep learning

techniques such as backpropagation, the control inputs are optimized to minimize the cost function. This approach offers

several advantages. First, in terms of efficiency, gradient-based optimization can be more efficient than traditional optimization

methods, especially for large-scale or complex problems. Second, it provides flexibility by handling nonlinear dynamics and190

cost functions. Additionally, it facilitates the integration with machine learning, allowing for the incorporation of learning-

based components, such as neural network approximations of dynamics or cost functions.

In the context of temporal deep unfolding, incremental learning is a technique where the model learns from new data

incrementally without retraining from scratch, preserving knowledge from previous learning. Specifically, incremental learning

involves progressively increasing the prediction horizon T . In this study, we employ incremental learning to refine the control195

inputs obtained through temporal deep unfolding, enhancing the MPC’s ability to control the Lorenz-63 model effectively.

3.3 Control algorithm

The control system implemented in this study is controlled by adding the control inputs obtained by MPC using temporal deep

unfolding to the three variables of the Lorenz-63 model at each time step.

The algorithm proceeds as follows. First, at each time step t, the current state of the system is observed or estimated. Next,200

the system state dynamics are unfolded over the prediction horizon T , forming a feed-forward network with T layers. Each

layer represents the state transition at time t+k (k = 0,1, . . . ,T −1) and incorporates the control input ut+k. The sequence of

control inputs is then initialized, which can be done using previous control inputs or random values . The cost function J is

defined to reflect the control objectives; for the Lorenz-63 model, the goal is to keep the variable x in the positive region. For

this reason, the cost function is formulated as205

J =
T∑

i=0

ReLU(−xt+i), (6)
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Table 1. Parameters of the control system using MPC

Parameters of the Lorenz-63 model

σ 10

ρ 28

β 8/3

Parameters of the temporal deep unfolding

Step size 0.01 sec

Prediction horizon T step

Upper limit of the Euclidean norm of the control input D

Optimizer Adam

Learning rate 10

The number of training iterations using error backpropagation m

where

ReLU(x) =





0, if x < 0,

x, otherwise,
(7)

penalizes negative values of x. Using backpropagation and gradient descent, the control inputs {ut,ut+1, . . . ,ut+T−1} are

updated to minimize the cost function J . To ensure consistency with the CSE control strategy in which the magnitude of the210

control input is normalized to D, the MPC formulation trains control inputs whose magnitude is also constrained to D. The

optimized control input ut for the current time step is then applied to the system. The system state is updated using the control

input ut and the system dynamics. Finally, the process repeats from the state observation at the next time step t + 1.

4 Evaluation Results

In this section, we evaluate the effectiveness of the control strategy employed in the CSE by comparing it with MPC using215

temporal deep unfolding applied to the Lorenz-63 model. Miyoshi and Sun (2022) conducted experiments performing CSE for

40 different initial conditions and investigated the control success rate. By comparing their results with the control success rate

obtained using MPC with temporal deep unfolding, we aim to assess the effectiveness of the control policies employed in CSE.

4.1 Parameters

We detail the parameters used in the control system of the Lorenz-63 model when applying MPC with temporal deep unfolding220

in Table 1. The standard parameters of the Lorenz-63 model are set as σ = 10, ρ = 28, β = 8/3. Each of the component ux,

uy , and uz of the initial control inputs before training are initialized as random numbers drawn from a normal distribution with

a mean of 0 and a standard deviation of 1. These are then normalized in such a way that the vector ut has the predetermined
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Table 2. Comparison of control success rates between CSE and MPC, where PCSE and PMPC represent their respective success rates.

T = 113 T = 151 T = 188 T = 226 T = 301

PCSE PMPC PCSE PMPC PCSE PMPC PCSE PMPC PCSE PMPC

D = 0.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000
D = 0.03 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000 0.975 0.000
D = 0.04 0.000 0.000 0.000 0.000 0.000 0.000 0.425 0.000 0.975 0.025
D = 0.05 0.000 0.000 0.000 0.000 0.025 0.025 0.550 0.075 0.975 0.150
D = 0.1 0.000 0.400 0.000 0.375 0.250 0.375 0.800 0.575 0.825 0.525
D = 0.2 0.000 0.725 0.025 0.600 0.275 0.800 0.675 0.800 0.825 0.725
D = 0.3 0.000 0.750 0.000 0.725 0.250 0.850 0.400 0.750 0.725 0.650
D = 0.4 0.000 0.650 0.000 0.750 0.200 0.725 0.100 0.675 0.500 0.400
D = 0.5 0.025 0.600 0.000 0.625 0.175 0.400 0.200 0.125 0.525 0.025

Euclidean norm of D. The learning rate, which determines the step size during the optimization process, is set to 10. The

number of training iterations using error backpropagation is denoted as m. We utilize the Adam optimizer (Bae et al., 2019) , a225

widely used optimization algorithm in deep learning, to minimize the cost function. The target value for the cost function is set

to 0, allowing the control inputs at each step to be learned so that the cost function approaches this target. Control is performed

for various combinations of the prediction horizon T (number of steps ahead in the prediction) and the upper limit D of the

Euclidean norm of the control input vector.

4.2 Control results of the Lorenz-63 model using MPC230

In this section, we present the results of controlling the Lorenz-63 model using MPC with temporal deep unfolding. The initial

values of the system were set according to Miyoshi and Sun (2022) as (x,y,z) = (8.20747939,10.0860429,23.86324441).

The values of the control inputs, x-coordinate, and the values of the variables x, y, and z for each combination of parameters T

and D are shown in Figure 1. Additionally, in Figure 2, we illustrate how the control inputs ux, uy , and uz evolve with the

number of parameter updates m. This provides insight into how the inputs are adjusted as learning progresses. These figures235

correspond to the first time step of the MPC implementation, where the control input at time step 0 is optimized while predicting

the system’s behavior over a prediction horizon of T = 113 steps with a control limit of D = 0.5.

We conducted control experiments with the prediction horizon T = 113 and various values of the upper limit D of the

Euclidean norm of the control input, specifically D = 0.5, 0.4, 0.3, and 0.2. Figure 1 illustrates the time series of the control

inputs, the x-coordinate values, and the trajectories of the system for each combination of T and D. The left column shows240

how the control inputs evolve over time, the middle column depicts the time series of the x-coordinate, and the right column

presents the trajectory of the system in the phase space.

Subsequently, we conducted simulations for 40 different initial conditions to examine the control success rate, defined as the

proportion of successful control instances. Following the methodology in Miyoshi and Sun (2022), we varied the prediction

horizon T and the upper limit D of the Euclidean norm of the control input. Additionally, to ensure consistent experimental245

conditions, the 40 initial values used in this study are the same as those used by the original CSE.Table 2 presents a comparison
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Figure 2. Control of the Lorenz-63 model using MPC. Left figure: time series of control inputs, central figure: time series of x coordinate

values, right figure: trajectory of the system
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Figure 1. Control of the Lorenz-63 model using MPC. Left figure: time series of control inputs, central figure: time series of x coordinate

values, right figure: trajectory of the system
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Figure 3. The process of training control inputs at the initial time instant when T = 113 and D = 0.5.
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Figure 4. The process of training control inputs at the initial time instant when T = 113 and D = 0.5.[Masaki: 小槻さん，ご指摘通

りcaptionが薄かったので記述をもう少し具体的にしました．]

Table 2. Comparison of control success rates between CSE and MPC, where PCSE and PMPC represent their respective success rates.

T = 113 T = 151 T = 188 T = 226 T = 301

PCSE PMPC PCSE PMPC PCSE PMPC PCSE PMPC PCSE PMPC

D = 0.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000
D = 0.03 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000 0.975 0.000
D = 0.04 0.000 0.000 0.000 0.000 0.000 0.000 0.425 0.000 0.975 0.025
D = 0.05 0.000 0.000 0.000 0.000 0.025 0.025 0.550 0.075 0.975 0.150
D = 0.1 0.000 0.400 0.000 0.375 0.250 0.375 0.800 0.575 0.825 0.525
D = 0.2 0.000 0.725 0.025 0.600 0.275 0.800 0.675 0.800 0.825 0.725
D = 0.3 0.000 0.750 0.000 0.725 0.250 0.850 0.400 0.750 0.725 0.650
D = 0.4 0.000 0.650 0.000 0.750 0.200 0.725 0.100 0.675 0.500 0.400
D = 0.5 0.025 0.600 0.000 0.625 0.175 0.400 0.200 0.125 0.525 0.025

horizon T and the upper limit D of the Euclidean norm of the control input. Additionally, to ensure consistent experimental

conditions, the 40 initial values used in this study are the same as those used by the original CSE.[Nagai: 初期値に関す

る記述を追加しました][Masaki: Thanks]Table 2 presents a comparison of the control success rates between CSE and260

our MPC approach for different values of T and D. We also investigated the effect of incremental learning when performing

control using MPC. Table 3 compares the control success rates obtained using MPC without incremental learning and with
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Figure 2. The process of training control inputs at the initial time instant when T = 113 and D = 0.5.

Table 3. Comparison of control success rates between MPCIL and MPC, where PMPCIL and PMPC represent their respective success rates.

T = 19 T = 38 T = 57

PMPCIL PMPC PMPCIL PMPC PMPCIL PMPC

D = 0.02 0.000 0.000 0.000 0.000 0.000 0.000
D = 0.03 0.000 0.000 0.000 0.000 0.000 0.000
D = 0.04 0.000 0.000 0.000 0.000 0.000 0.000
D = 0.05 0.000 0.000 0.000 0.000 0.000 0.000
D = 0.1 0.000 0.000 0.675 0.000 0.725 0.675
D = 0.2 0.825 0.000 0.900 0.900 0.900 0.875
D = 0.3 0.975 0.975 0.925 0.925 0.975 0.975
D = 0.4 1.000 1.000 1.000 1.000 1.000 1.000
D = 0.5 1.000 1.000 1.000 1.000 1.000 1.000

of the control success rates between CSE and our MPC approach for different values of T and D. We also investigated the

effect of incremental learning when performing control using MPC. Table 3 compares the control success rates obtained using

MPC without incremental learning and with incremental learning (denoted as MPCIL).

A detailed analysis of these results is provided in the the next section. In particular, we discuss the differences in control250

strategies between MPC and CSE, the impact of prediction horizon length and control input limits on performance, and the

trade-offs between control accuracy and computational efficiency. These insights contribute to a better understanding of how

advanced control methodologies can be effectively applied to complex atmospheric models.

4.3 Discussion

Figure 3 shows the comparison of the control success rate for each control method (MPC, CSE, and MPCIL) based on the255

results of Table 2. The comparison between MPC and CSE is illustrated by Figure 3.a, and that between MPC and MPCIL is

illustrated by Figure 3.b.

Based on the results from Figure 3.a, it is observed the larger D is and the smaller T is, the better the MPC performs.

Specifically, the control using MPC performs better than control using CSE for D values of 0.2 or higher. For D = 0.1,

MPC shows better control performance for T ≤ 226, whereas CSE exhibits higher control performance for T ≥ 226. For260
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Figure 5. Comparison of control success rates: (a) between CSE and MPC, where PMPC−PCSE represents the difference in success rates, and

(b) between MPCIL and MPC, where PMPC−PMPCIL denotes their success rate difference. Red bars indicate cases where MPC outperforms,

while blue bars show where MPC is less effective.
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Figure 6. Comparison of control success rates: (a) between CSE and MPC, where PMPC−PCSE represents the difference in success rates, and

(b) between MPCIL and MPC, where PMPC−PMPCIL denotes their success rate difference. Red bars indicate cases where MPC outperforms,

while blue bars show where MPC is less effective.

D ≤ 0.05, both MPC and CSE achieve 0% control success rate for T ≤ 188, and CSE demonstrates better control performance

for T ≥ 188. This indicates that while CSE control is effective for longer prediction horizons, it is less effective for shorter

prediction horizons.

In relatively short prediction horizons, the difference in control strategies between CSE and MPC could be considered as a

cause for the lower success rate of control by CSE compared to MPC. In the control strategy of CSE, at each time step, the290
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Figure 3. Comparison of control success rates: (a) between CSE and MPC, where PMPC−PCSE represents the difference in success rates, and

(b) between MPCIL and MPC, where PMPC−PMPCIL denotes their success rate difference. Red bars indicate cases where MPC outperforms,

while blue bars show where MPC is less effective.

D ≤ 0.05, both MPC and CSE achieve 0% control success rate for T ≤ 188, and CSE demonstrates better control performance

for T ≥ 188. This indicates that while CSE control is effective for longer prediction horizons, it is less effective for shorter

prediction horizons.

In relatively short prediction horizons, the difference in control strategies between CSE and MPC could be considered as a

cause for the lower success rate of control by CSE compared to MPC. In the control strategy of CSE, at each time step, the265

difference between ensemble members indicating regime shifts, denoted as S, and ensemble members not indicating regime

shifts, denoted as N , is taken, and the control input is calculated based on that difference S−N . However, it is not necessarily

the case that the value calculated from the difference of ensemble members always contributes to keeping the state of the

Lorenz-63 model in the positive region with respect to the value of x. On the other hand, in control by MPC, a cost function is

set up so that the cost increases when the value of x is negative, causing the control input to be updated to make the value of x270

positive.

Next, we will discuss the differences between using incremental learning and not using it in a control system under MPC. As

seen in Figure 3.b, significant differences can be seen for D = 0.2 and D = 0.1. For D = 0.2 and T = 19, the control success

rate was 0% without incremental learning but increased to 82.5% with incremental learning. For D = 0.1, T = 38, the control

success rate with incremental learning was 67.5% higher than without incremental learning. Additionally, the control success275

rate with incremental learning was never lower than without incremental learning for any combination of parameters T and D

in Table 3. Therefore, it can be concluded that the control accuracy is higher with incremental learning.

On the other hand, we need to consider the impact of incremental learning on computation time. The average computation

time of MPC-based control is 378s, 1272s, and 1965s for T = 19, T = 38, and T = 57, respectively. It increases almost linearly
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with the prediction horizon T when control is performed without incremental learning. On the other hand, with incremental280

learning, the computation time is 16004s, 49556s, and 121578s. It can be observed that computation time increases significantly

as the prediction horizon T increases. This result indicates that MPCIL outperforms MPC in some cases but it requires a

substantial amount of computational resources.

These findings highlight a trade-off between control performance and computational efficiency. In applications where com-

putational resources are limited or real-time control is required, the standard MPC approach may be more practical despite its285

lower success rate in certain scenarios. Conversely, in situations where higher control accuracy is paramount and computational

resources are ample, employing incremental learning with MPC can provide superior performance.

Overall, the MPC approach, especially when enhanced with incremental learning, demonstrates a strong potential for con-

trolling chaotic systems like the Lorenz-63 model, outperforming the traditional CSE strategy under certain conditions. This

suggests that advanced control methodologies from control engineering can be effectively applied to complex atmospheric290

models, potentially contributing to the development of more effective weather control strategies.

5 Summary and Future Work

In this study, we conducted a comprehensive evaluation of the control strategy employed in the CSE by comparing it with MPC

using temporal deep unfolding to the Lorenz-63 model. Our findings revealed that while the CSE control strategy exhibited

high effectiveness for relatively long prediction horizons, its control success rate significantly decreased when the prediction295

horizon was short. Conversely, the MPC approach demonstrated superior control performance over shorter prediction horizons,

effectively maintaining the system’s state within the desired regime.

This study contributes in two key ways: first, by integrating temporal deep unfolding into traditional MPC, we extended its

application to nonlinear and chaotic systems, enhancing robustness of the MPC. Second, we conducted a detailed comparison

between MPC-based methods and existing CSE strategies, advancing the understanding of controllability for chaotic dynamics.300

While this study primarily focuses on theoretical and numerical analyses, the results highlights the broader applicability of

MPC in tackling practical challenges associated with chaotic dynamics. One promising avenue is the management of extreme

weather events, where effectively understanding and controlling chaotic behavior is critical.

Despite these advancements, certain aspects warrant further investigation. Understanding the specific reasons why the CSE

control strategy maintains high effectiveness for longer prediction horizons could lead to improvements in control methodolo-305

gies. Additionally, exploring the applicability of these control strategies to more complex chaotic systems such as Lorenz-96

model would provide insights into their scalability and robustness. Future work may also focus on enhancing computational

efficiency and integrating uncertainty quantification to make these control approaches more practical for applications.

Code availability. The code that supports the findings of this study is available from the corresponding author upon reasonable request.
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