
Evaluation of Effectiveness of Intervention Strategy in Control
Simulation Experiment through Comparison with Model Predictive
Control
Rikuto Nagai1, Yang Bai2, Masaki Ogura2,1, Shunji Kotsuki3,4, and Naoki Wakamiya1

1Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
2Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
3Institute for Advanced Academic Research, Chiba University, Chiba, Japan
4Center for Environmental Remote Sensing, Chiba University, Chiba, Japan

Correspondence: Masaki Ogura (oguram@hiroshima-u.ac.jp)

Abstract. Climate change intensifies weather-related disasters, necessitating novel mitigation strategies beyond conventional

weather prediction methods. The Control Simulation Experiment (CSE) framework proposes altering weather systems through

small perturbations, but its effectiveness relative to other control methods remains uncertain. This study evaluates CSE’s effi-

cacy against Model Predictive Control (MPC), a well-established method in control engineering. We specifically develop an

MPC algorithm tailored for the Lorenz-63 model, incorporating temporal deep unfolding to address challenges in controlling5

chaotic systems. Simulations show that MPC achieves higher success rates with less control effort under certain conditions,

particularly with shorter prediction horizons. This work bridges control theory and atmospheric science, advancing the under-

standing of atmospheric controllability and informing future research efforts to mitigate extreme weather events.

1 Introduction

The Lorenz-63 system is a foundational model in the study of chaotic dynamics, originally developed to illustrate the unpre-10

dictable nature of atmospheric convection (Lorenz, 1963). Despite its simplicity, it captures essential features of deterministic

chaos, such as sensitivity to initial conditions and the emergence of structured yet non-repeating trajectories. As a result, it has

become a standard testbed for evaluating control methodologies in chaotic systems (Ott, 2002; Palmer, 1993).

Recent interest in weather control has further elevated the relevance of Lorenz-63, as atmospheric processes exhibit similar

chaotic characteristics (Palmer, 2000). Weather systems are highly complex, characterized by high-dimensionality, partial ob-15

servability, and chaotic behavior, making their control particularly challenging (Hoffman, 2002; Jarvis et al., 2008; Ban-Weiss

and Caldeira, 2010). However, despite its simplified nature, the Lorenz-63 system remains a valuable tool for studying fun-

damental properties of chaotic systems (Palmer, 2000). Atmospheric processes exhibit similar chaotic characteristics, making

Lorenz-63 an idealized yet insightful model for exploring weather control challenges, particularly in understanding how small

perturbations influence trajectory evolution – a key aspect of weather modification. Moreover, the “wings” of the Lorenz at-20

tractor have often been used as a conceptual analogy for weather regime transitions (Weller and Schulz, 2014; Soldatenko,
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2018). Studying control strategies within this simplified framework aids in technique development and lays the foundation to

adapt to more complex models for weather control (Sierra et al., 2021; Weller and Schulz, 2014).

Weather control still remains underdeveloped due to both physical and mathematical challenges. From a physical perspective,

atmospheric processes possess vast energy reserves, while human technological capabilities for intervention are orders of25

magnitude smaller. This discrepancy necessitates identifying physically justified methods for applying small perturbations

to atmospheric variables, such as using sensitivity approaches in dynamical systems (Hall et al., 1982; Daniel J. Lea and

Haine, 2000; Soldatenko and Chichkine, 2016). From a mathematical perspective, the atmospheric system and its components

(including the atmosphere) are high-dimensional, chaotic, and only partially observed, making observability and controllability

difficult to achieve. Additionally, defining realistic objective functions (cost functions) for control remains a challenge (Jarvis30

et al., 2009; Sun et al., 2023). These issues become even more critical when transitioning from conceptual models to more

realistic ones (Weller and Schulz, 2014; Soldatenko, 2018), as seen in studies on closed-loop control of the global carbon-

climate system (Sierra et al., 2021; Weller and Schulz, 2014). Given these challenges, it is essential to first study weather

control in simpler systems that still exhibit chaotic characteristics. Although the Lorenz-63 system is a simplified model, it

provides a controlled environment in which researchers can explore how small perturbations influence system evolution and35

test various control strategies.

However, effectively implementing control in chaotic systems requires experimental approaches that go beyond traditional

predictability-focused studies. A promising approach in this context is the Control Simulation Experiment (CSE), introduced

by Miyoshi and Sun (2022), which extends traditional numerical experiments by actively applying small perturbations to guide

system trajectories, offering valuable insights into chaotic system control. The CSE approach leverages the system’s inherent40

sensitivity to initial conditions, aiming to influence its long-term evolution with minimal interventions. The CSE extends the

traditional Observing Systems Simulation Experiment (OSSE) (Atlas, 1997) by shifting the focus from improving predictabil-

ity to exploring the potential for controlling chaotic systems (Miyoshi and Sun, 2022; Sun et al., 2023). Via infinitesimal

perturbations, CSE aims to influence the future evolution of chaotic systems toward more desirable trajectories. This approach

leverages the inherent sensitivity to initial conditions in chaotic systems, a phenomenon popularly known as the “butterfly45

effects” (Palmer, 1993; Ott, 2002), to steer the system’s trajectory with minimal interventions.

While CSE has shown promise in specific contexts (Miyoshi and Sun, 2022; Sun et al., 2023), its performance relative to

other established control methodologies has not been thoroughly examined (Kawasaki and Kotsuki, 2024). Hence, there is a

need to compare the CSE with control strategies extensively studied and applied in other fields of engineering (Slotine and

Li, 1991; Dorf and Bishop, 2011). Among them, Model Predictive Control (MPC) is one such method (see, e.g., Richalet50

et al., 1978; Mesbah, 2016), known for its robustness and ability to handle multi-variable control problems with explicit

consideration of constraints and optimization objectives. The MPC predicts future system behavior using dynamic models and

computes optimal control actions over a moving time horizon, making it a powerful tool for dynamical systems where future

states are influenced by current interventions.

The objective of this study is to rigorously assess the efficacy of the CSE framework in comparison to MPC. By developing55

an MPC-based algorithm tailored for the Lorenz-63 model and integrating a refined version of MPC that incorporates deep
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unfolding techniques (Kishida and Ogura, 2022; Hershey et al., 2014), we seek to explore whether established control method-

ologies can enhance the controllability of chaotic atmospheric models. This approach allows us to leverage MPC’s strengths

while accommodating the complexities of chaotic dynamics. To facilitate this investigation, we conduct comprehensive simu-

lation experiments comparing the performance of the MPC-based control method with the strategies employed in the CSE. Our60

findings indicate that the MPC approach not only achieves higher success rates under certain conditions but also can reduce

the required control effort. Specifically, when the prediction horizon parameter falls below a certain threshold, MPC exhibits a

significantly higher success rate compared to CSE’s control policies. Our findings show that, under certain conditions, particu-

larly for shorter prediction horizons, MPC not only achieves higher success rates but also reduces the required control effort in

steering the system away from undesirable regime shifts. These improvements underscore the potential benefits of integrating65

well-established control methodologies into CSE-like frameworks for chaotic systems.

The contribution of this study is twofold. On the one hand, we enhance the traditional MPC approach with temporal deep

unfolding to handle the unique challenges posed by chaotic systems, thereby extending MPC’s applicability to nonlinear

contexts. On the other hand, we provide a detailed comparative analysis between the MPC-based method and existing CSE

strategies, advancing the understanding of controllability in chaotic dynamics and laying the groundwork for future research70

in this area. By comparing CSE and MPC within the same framework, our study seeks to evaluate the potential advantages

and limitations of conventional control techniques in the domain of weather control applications. The insights gained from

this comparison can inform the development of more effective control strategies and guide future research efforts aimed at

mitigating the impact of extreme weather events through controllability.

We finally remark that, recently, Kawasaki and Kotsuki (2024) introduced MPC into the CSE framework and demonstrated75

its effectiveness in leading the Lorenz-63 system toward a prescribed regime. Their approach involves solving an optimal

control problem by deriving and iteratively solving the necessary conditions for optimality using numerical methods. While this

method shows promising results for low-dimensional systems like the Lorenz-63 model, it relies on analytical derivations and

iterative computations that may not scale well to higher-dimensional or more complex systems due to increased computational

demands. For this reason, we have chosen to use an MPC based on deep unfolding techniques, in which no symbolic execution80

is required.

The structure of the paper is as follows. Section 2 provides an overview of the CSE framework, including its theoretical

foundations and methodologies. Section 3 details the development of the MPC method based on temporal deep unfolding and

its implementation for the Lorenz-63 model. Section 4 presents the results of our comparative analysis between the MPC-based

control method and the traditional CSE strategies. Finally, conclusions are drawn in Section 5.85

2 Control Simulation Experiment

The CSE (Miyoshi and Sun, 2022) is a framework designed to explore the controllability of chaotic systems in the context of

weather control applications. In this section, we provide a comprehensive description of the Lorenz-63 model (Lorenz, 1963),

the control target in CSE. We then present an overview of the control strategies employed within the CSE framework, detailing
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the methods used to influence the system’s behavior. Finally, we discuss the limitations and challenges associated with these90

control strategies.

2.1 Control objective

The Lorenz-63 model is a simplified mathematical model that captures the essence of atmospheric convection and exhibits

chaotic behavior (Kravtsov and Tsonis, 2021). It has become a canonical example in the study of dynamical systems due to

its sensitive dependence on initial conditions. The model consists of a set of three coupled, nonlinear ordinary differential95

equations representing the evolution of three state variables x, y, and z, which correspond to idealized atmospheric quantities.

The controlled Lorenz-63 model in the CSE framework incorporates control inputs ux, uy , and uz for each state variable,

allowing for the application of external influences to the system:

dx

dt
= σ(y−x)+ux, (1)

dy

dt
= x(ρ− z)− y+uy, (2)100

dz

dt
= xy−βz+uz. (3)

In these equations, σ, ρ, and β are positive parameters representing the Prandtl number, Rayleigh number, and a geometric

factor, respectively. These parameters are set to σ = 10, ρ= 28, and β = 8/3, values known to produce chaotic dynamics

characterized by a butterfly attractor.

In the CSE framework, the Lorenz-63 model is discretized in time using the Runge-Kutta method with a step size of 0.01.105

Under these discretization parameters, the system’s solution is known to exhibit chaotic behavior, with the first state variable x

oscillating between positive and negative regions. This transition between regimes is referred to as a regime shift.

The primary control objective in CSE is to prevent regime shifts by maintaining the state variable x within the positive

region. By achieving this, the system can be stabilized in a desired regime. Controlling such a chaotic system is challenging

due to its inherent sensitivity to initial conditions and nonlinear dynamics, necessitating sophisticated control strategies.110

2.2 Control strategies

The control objective is achieved by applying control inputs of a predetermined magnitude to each state variable x, y, and z

within the Lorenz-63 model to stabilize the system and avoid transitions into the negative regime.

It is important to note that in the CSE framework, the values of the variables of the “true” system, called the nature run

(NR), cannot be directly observed. Instead, it is assumed that an additive noise, generated from a normal distribution with a115

variance of 2.0, is introduced to each variable, producing noisy observations of the NR. To estimate the true values of the

variables x, y, and z in the NR from these noisy observations, a data assimilation technique known as the ensemble Kalman

filter (Houtekamer and Zhang, 2016) is employed. The data assimilation interval is denoted as Ta. In the following analysis,

we use Ta = 8, consistent with the setup in CSE.

4



An overview of the control strategies proposed in CSE is provided below; for further details, refer to Miyoshi and Sun120

(2022).

1. Observation: An observation is obtained by adding Gaussian noise to the NR.

2. Data Assimilation: At time step t, the ensemble Kalman filter assimilates the latest observations to update the estimate

of the state of the NR. This provides the initial condition for subsequent forecasting.

3. Ensemble Forecasting: An ensemble of forecasts is generated from time t to t+T (where T is the ensemble forecast125

horizon) using analysis ensembles, which are slightly perturbed initial conditions. These perturbations simulate uncer-

tainties in the initial state and model errors. Typically, three ensemble members are generated to estimate the future state

of the NR.

4. Regime Shift Detection: The ensemble forecasts are analyzed to determine if any member predicts a regime shift (i.e., the

state variable x crossing into the negative region) within the forecast horizon. If at least one ensemble member indicates130

a regime shift, control actions are deemed necessary.

5. Control Input Determination: For each time step from t+1 to t+Ta−1, control inputs ux, uy , and uz are calculated to

prevent the predicted regime shift. The control inputs are determined by:

(a) Selecting an ensemble member S that predicts a regime shift and an ensemble member N that does not.

(b) Computing the difference S−N between the two ensemble members at each time step.135

(c) Normalizing this difference vector so that its Euclidean norm equals a predetermined magnitude D.

(d) Applying the normalized control inputs to the NR at each time step.

6. Iteration: After applying the control inputs, new observations are performed at time t+Ta, and the process repeats from

step 1.

2.3 Limitations of CSE140

Despite the promising results achieved by the control strategies within the CSE framework, several limitations impact their

overall effectiveness in controlling chaotic systems like the Lorenz-63 model. One significant limitation is the sensitivity of

the control strategy to the ensemble forecast horizon T . Experimental observations have indicated that when the prediction

horizon is relatively long, the success rate of preventing regime shifts is high. This is because a longer prediction horizon

allows for earlier detection of potential regime shifts, providing sufficient lead time to apply control inputs effectively. However,145

extending the prediction horizon also increases computational costs and introduces greater uncertainty due to the chaotic nature

of the system. Small errors in the initial conditions can grow exponentially over time, leading to significant deviations in the

forecasted trajectories. Conversely, when the prediction horizon is relatively short, the control strategy’s success rate decreases
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significantly. Shorter horizons may not provide enough time to detect and counteract impending regime shifts, resulting in a

higher likelihood of the system transitioning into undesirable states.150

Another challenge lies in determining the appropriate magnitude of the control inputs, represented by the Euclidean norm D

of the control vector [ux,uy,uz]
⊤. If D is set too small, the control inputs may be insufficient to influence the system’s dynam-

ics and prevent regime shifts. On the other hand, if D is too large, the control actions may be impractical for implementations

due to physical limitations. Balancing the magnitude of the control inputs to achieve effective control without causing adverse

side effects is a delicate task. This issue underscores the need for a more systematic approach to determine optimal control155

input magnitudes that consider both effectiveness and feasibility.

Additionally, the CSE framework lacks an optimization mechanism capable of addressing the multiple objectives and con-

straints inherent in practical control applications. Real-world control strategies must often balance competing goals, such as

minimizing control effort, satisfying physical constraints, and achieving desired system performance. Without such a mech-

anism, the CSE approach may produce suboptimal control inputs, limiting its efficiency, practicality, and applicability to160

complex systems or real-world scenarios where these considerations are critical.

These limitations highlight the necessity for alternative or enhanced control methodologies capable of addressing the inherent

challenges of controlling chaotic systems effectively. In particular, there is a need for control strategies that can optimize control

inputs while explicitly considering system constraints, uncertainties, and multiple objectives. Control methods such as MPC

offer a promising avenue in this regard. The MPC provides a systematic framework for optimizing control actions over a future165

horizon while handling multivariable systems with explicit constraints and objectives. By integrating such methods, it may be

possible to overcome the limitations of the current CSE approach, enhancing the controllability of chaotic systems like the

Lorenz-63 model and improving the practical feasibility of weather control applications.

3 MPC Using Temporal Deep Unfolding

MPC (Richalet et al., 1978; Mesbah, 2016) is a prominent control strategy extensively used in engineering disciplines for its170

capability to handle multivariable control problems with constraints and to anticipate future system behavior by solving an

optimization problem at each time step. In this study, we compare the effectiveness of MPC with that of the CSE in terms

of control success rates for chaotic systems like the Lorenz-63 model. Among the various MPC methodologies, we adopt an

advanced version known as MPC using temporal deep unfolding, which has demonstrated effectiveness in controlling nonlinear

systems (see, e.g., Kishida and Ogura, 2022; Liu et al., 2024; Aizawa et al., 2024). This section provides a comprehensive175

overview of MPC and elaborates on how temporal deep unfolding enhances its capabilities, particularly in the context of

controlling chaotic dynamics.

3.1 MPC

MPC is a control strategy that optimizes control inputs by predicting future states of a dynamic system over a finite predic-

tion horizon at each discrete time step (Rawlings and Mayne, 2009). By solving an optimization problem that minimizes a180

6



predefined cost function, MPC adjusts the control inputs to ensure that the system’s output follows a desired trajectory while

satisfying constraints on inputs and states. The key components of MPC include

– System Model: A mathematical representation of the system dynamics, which can be linear or nonlinear, deterministic

or stochastic;

– Cost Function: An objective function that quantifies the performance of the system, incorporating terms for tracking185

error, control effort, and possibly other considerations like energy consumption or economic costs;

– Constraints: Physical or operational limitations on the control inputs and system states, such as actuator limits, safety

requirements, or environmental regulations.

The discrete-time state equation governing the controlled system is expressed as

xt+1 = f(xt,ut), (4)190

where xt is the system state and ut is the control input. The objective is to find a sequence of control inputs {ut,ut+1, . . . ,ut+T−1}
over a prediction horizon T that minimizes a cost function J while satisfying the system dynamics and constraints. This for-

mulation of J enables the controller to minimize the cumulative cost J while adhering to dynamic constraints and specified

limits on control inputs and states. By iteratively solving this optimization problem, MPC adapts to changing dynamics and

disturbances, enhancing system performance.195

The optimization problem at each time step can be typically formalized as follows:

minimize
{ut+k}T−1

k=0

J

subject to xt+k+1 = f(xt+k,ut+k), k = 0, . . . ,T − 1,

umin ≤ ut+k ≤ umax, k = 0, . . . ,T − 1,

xmin ≤ xt+k ≤ xmax, k = 0, . . . ,T

(5)

where umin and umax represent input constraints while xmin and xmax represent state constraints.

This formulation enables the controller to minimize the cumulative cost J while adhering to the system dynamics and

specified constraints. By iteratively solving this optimization problem at each time step and implementing only the first control200

input ut, MPC adapts to changing dynamics and disturbances, enhancing system performance and robustness.

3.2 Temporal deep unfolding

Deep unfolding is a methodology that bridges the gap between iterative optimization algorithms and deep learning architectures

(Hershey et al., 2014; Jagannath et al., 2021). It involves unfolding an iterative algorithm into a layer-wise structure resembling

a neural network, where each iteration corresponds to a layer. Parameters within the algorithm can then be learned using205

backpropagation and gradient-based optimization techniques.
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Temporal deep unfolding extends this concept to dynamic systems by treating the state evolution equations as an iterative

algorithm (Kishida and Ogura, 2022; Aizawa et al., 2024). In this approach, the system dynamics over a prediction horizon

T are unfolded into a feed-forward network with T layers, each representing the system’s state at a future time step. The

control inputs {ut,ut+1, . . . ,ut+T−1} are treated as learnable parameters within this network. By leveraging deep learning210

techniques such as backpropagation, the control inputs are optimized to minimize the cost function. This approach offers

several advantages. First, in terms of efficiency, gradient-based optimization can be more efficient than traditional optimization

methods, especially for large-scale or complex problems. Second, it provides flexibility by handling nonlinear dynamics and

cost functions. Additionally, it facilitates the integration with machine learning, allowing for the incorporation of learning-

based components, such as neural network approximations of dynamics or cost functions.215

In the context of temporal deep unfolding, incremental learning is a technique where the model learns from new data

incrementally without retraining from scratch, preserving knowledge from previous learning. Specifically, incremental learning

involves progressively increasing the prediction horizon T . In this study, we employ incremental learning to refine the control

inputs obtained through temporal deep unfolding (denoted as MPCIL), enhancing the MPC’s ability to control the Lorenz-63

model effectively.220

3.3 Proposed control algorithm

The control system implemented in this study is controlled by adding the control inputs obtained by MPC using temporal deep

unfolding to the three variables of the Lorenz-63 model at each time step. The algorithm proceeds as follows.

1. Observation: An observation, xt, is obtained by adding Gaussian noise to the NR xNR
t .

2. Temporal deep unfolding: Using the observation, control inputs {ut,ut+1, . . . ,ut+Ta−1} are determined as follows.225

(a) We construct a feed-forward network with T layers. Each layer represents the state transition at time t+ k (k =

0,1, . . . ,T − 1) and incorporates the control input ut+k.

(b) The sequence of control inputs is then initialized, which can be done using previous control inputs or random

values.

(c) Using backpropagation and gradient descent, the control inputs {ut,ut+1, . . . ,ut+T−1} are updated to minimize230

the cost function

Jt,T =

T∑
i=0

c(xt), (6)

where

c(x) =

 0, if x < 0,

x, otherwise,
(7)
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Figure 1. Conceptual illustration of model predictive control via temporal deep unfolding

penalizes negative values of x, the first component of the vector state variable x. To ensure consistency with the235

CSE control strategy in which the magnitude of the control input is normalized to D, the MPC formulation trains

control inputs whose magnitude is also constrained to D.

3. Iteration: After applying the control inputs {ut,ut+1, . . . ,ut+Ta−1} to the NR, new observations are performed at time

t+Ta, and the process repeats from step 1.

When incremental learning is applied, Step 2c becomes as follows.240

(c’) Using backpropagation and gradient descent, the control inputs {ut,ut+1, . . . ,ut+T−1} are updated to minimize the cost

functions Jt,0, Jt,1, . . . , Jt,T sequentially.

The algorithm above can be illustrated more straightforwardly by Figure 1.

4 Evaluation Results

In this section, we evaluate the effectiveness of the control strategy employed in the CSE by comparing it with MPC using245

temporal deep unfolding applied to the Lorenz-63 model. Miyoshi and Sun (2022) conducted experiments performing CSE for

40 different initial conditions and investigated the control success rate. By comparing their results with the control success rate

obtained using MPC with temporal deep unfolding, we aim to assess the effectiveness of the control policies employed in CSE.

4.1 Parameters

We detail the parameters used in the control system of the Lorenz-63 model when applying MPC with temporal deep unfolding250

in Table 1. As stated in Section 2.1, standard parameters of the Lorenz-63 model are set as σ = 10, ρ= 28, β = 8/3. Each of the

component ux, uy , and uz of the initial control inputs before training are initialized as random numbers drawn from a normal

distribution with a mean of 0 and a standard deviation of 1. These are then normalized in such a way that the vector ut has
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Table 1. Parameters of the control system

Lorenz-63 model

σ 10

ρ 28

β 8/3

Parameters common in CSE, MPC, and MPCIL

Step size 0.01 sec

Upper limit of the Euclidean norm of the control input D

Length of NRs 8,000

Prediction horizon T step

Observation period Ta = 8

Parameters common in MPC and MPCIL

Optimizer Adam

Learning rate 10

The number of training iterations using error backpropagation m

the predetermined Euclidean norm of D . The learning rate, which determines the step size during the optimization process, is

set to 10. The number of training iterations using error backpropagation is denoted as m. We utilize the Adam optimizer (Bae255

et al., 2019) , a widely used optimization algorithm in deep learning, to minimize the cost function. The target value for the

cost function is set to 0, allowing the control inputs at each step to be learned so that the cost function approaches this target.

Control is performed for various combinations of the prediction horizon T (number of steps ahead in the prediction) and the

upper limit D of the Euclidean norm of the control input vector.

4.2 Control results of the Lorenz-63 model using MPC260

In this section, we present the results of controlling the Lorenz-63 model using MPC with temporal deep unfolding. The initial

values of the system were set according to Miyoshi and Sun (2022) as (x,y,z) = (8.20747939,10.0860429,23.86324441).

The values of the control inputs, x-coordinate, and the values of the variables x, y, and z for each combination of parameters T

and D are shown in Figure 2. Additionally, in Figure 3, we illustrate how the control inputs ux, uy , and uz evolve with the

number of parameter updates m. This provides insight into how the inputs are adjusted as learning progresses. These figures265

correspond to the first time step of the MPC implementation, where the control input at time step 0 is optimized while predicting

the system’s behavior over a prediction horizon of T = 113 steps with a control limit of D = 0.5.

We conducted control experiments with the prediction horizon T = 113 and various values of the upper limit D of the

Euclidean norm of the control input, specifically D = 0.5, 0.4, 0.3, and 0.2. Figure 2 illustrates the time series of the control

inputs, the x-coordinate values, and the trajectories of the system for each combination of T and D. The left column shows270
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Table 2. Comparison of control success rates between CSE and MPC, where PCSE and PMPC represent their respective success rates.

T = 113 T = 151 T = 188 T = 226 T = 301

PCSE PMPC PCSE PMPC PCSE PMPC PCSE PMPC PCSE PMPC

D = 0.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000
D = 0.03 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000 0.975 0.000
D = 0.04 0.000 0.000 0.000 0.000 0.000 0.000 0.425 0.000 0.975 0.025
D = 0.05 0.000 0.000 0.000 0.000 0.025 0.025 0.550 0.075 0.975 0.150
D = 0.1 0.000 0.400 0.000 0.375 0.250 0.375 0.800 0.575 0.825 0.525
D = 0.2 0.000 0.725 0.025 0.600 0.275 0.800 0.675 0.800 0.825 0.725
D = 0.3 0.000 0.750 0.000 0.725 0.250 0.850 0.400 0.750 0.725 0.650
D = 0.4 0.000 0.650 0.000 0.750 0.200 0.725 0.100 0.675 0.500 0.400
D = 0.5 0.025 0.600 0.000 0.625 0.175 0.400 0.200 0.125 0.525 0.025

Table 3. Comparison of control success rates between MPCIL and MPC, where PMPCIL and PMPC represent their respective success rates.

T = 19 T = 38 T = 57

PMPCIL PMPC PMPCIL PMPC PMPCIL PMPC

D = 0.02 0.000 0.000 0.000 0.000 0.000 0.000
D = 0.03 0.000 0.000 0.000 0.000 0.000 0.000
D = 0.04 0.000 0.000 0.000 0.000 0.000 0.000
D = 0.05 0.000 0.000 0.000 0.000 0.000 0.000
D = 0.1 0.000 0.000 0.675 0.000 0.725 0.675
D = 0.2 0.825 0.000 0.900 0.900 0.900 0.875
D = 0.3 0.975 0.975 0.925 0.925 0.975 0.975
D = 0.4 1.000 1.000 1.000 1.000 1.000 1.000
D = 0.5 1.000 1.000 1.000 1.000 1.000 1.000

how the control inputs evolve over time, the middle column depicts the time series of the x-coordinate, and the right column

presents the trajectory of the system in the phase space.

Subsequently, we conducted simulations for 40 different initial conditions to examine the control success rate, defined as the

proportion of successful control instances. Following the methodology in Miyoshi and Sun (2022), we varied the prediction

horizon T and the upper limit D of the Euclidean norm of the control input. Additionally, to ensure consistent experimental275

conditions, the 40 initial values used in this study are the same as those used by the original CSE. Table 2 presents a comparison

of the control success rates between CSE and our MPC approach for different values of T and D. We also investigated the

effect of incremental learning when performing control using MPC. Table 3 compares the control success rates obtained using

MPC without incremental learning and with incremental learning (denoted as MPCIL).

A detailed analysis of these results is provided in the the next section. In particular, we discuss the differences in control280

strategies between MPC and CSE, the impact of prediction horizon length and control input limits on performance, and the

trade-offs between control accuracy and computational efficiency. These insights contribute to a better understanding of how

advanced control methodologies can be effectively applied to complex atmospheric models.
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(d) T = 113, D = 0.2

Figure 2. Control of the Lorenz-63 model using MPC. Left figure: time series of control inputs, central figure: time series of x coordinate

values, right figure: trajectory of the system
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Figure 3. The process of training control inputs at the initial time instant when T = 113 and D = 0.5.
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Figure 4. The process of training control inputs at the initial time instant when T = 113 and D = 0.5.[Masaki: 小槻さん，ご指摘通

りcaptionが薄かったので記述をもう少し具体的にしました．]

Table 2. Comparison of control success rates between CSE and MPC, where PCSE and PMPC represent their respective success rates.

T = 113 T = 151 T = 188 T = 226 T = 301

PCSE PMPC PCSE PMPC PCSE PMPC PCSE PMPC PCSE PMPC

D = 0.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000
D = 0.03 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000 0.975 0.000
D = 0.04 0.000 0.000 0.000 0.000 0.000 0.000 0.425 0.000 0.975 0.025
D = 0.05 0.000 0.000 0.000 0.000 0.025 0.025 0.550 0.075 0.975 0.150
D = 0.1 0.000 0.400 0.000 0.375 0.250 0.375 0.800 0.575 0.825 0.525
D = 0.2 0.000 0.725 0.025 0.600 0.275 0.800 0.675 0.800 0.825 0.725
D = 0.3 0.000 0.750 0.000 0.725 0.250 0.850 0.400 0.750 0.725 0.650
D = 0.4 0.000 0.650 0.000 0.750 0.200 0.725 0.100 0.675 0.500 0.400
D = 0.5 0.025 0.600 0.000 0.625 0.175 0.400 0.200 0.125 0.525 0.025

horizon T and the upper limit D of the Euclidean norm of the control input. Additionally, to ensure consistent experimental

conditions, the 40 initial values used in this study are the same as those used by the original CSE.[Nagai: 初期値に関す

る記述を追加しました][Masaki: Thanks]Table 2 presents a comparison of the control success rates between CSE and260

our MPC approach for different values of T and D. We also investigated the effect of incremental learning when performing

control using MPC. Table 3 compares the control success rates obtained using MPC without incremental learning and with

12

Figure 3. The process of training control inputs at the initial time instant when T = 113 and D = 0.5.

Figure 5. Comparison of control success rates: (a) between CSE and MPC, where PMPC−PCSE represents the difference in success rates, and

(b) between MPCIL and MPC, where PMPC −PMPCIL denotes their success rate difference. Red bars indicate cases where MPC outperforms,

while blue bars show where MPC is less effective.
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Figure 6. Comparison of control success rates: (a) between CSE and MPC, where PMPC−PCSE represents the difference in success rates, and

(b) between MPCIL and MPC, where PMPC −PMPCIL denotes their success rate difference. Red bars indicate cases where MPC outperforms,

while blue bars show where MPC is less effective.

D ≤ 0.05, both MPC and CSE achieve 0% control success rate for T ≤ 188, and CSE demonstrates better control performance

for T ≥ 188. This indicates that while CSE control is effective for longer prediction horizons, it is less effective for shorter

prediction horizons.

In relatively short prediction horizons, the difference in control strategies between CSE and MPC could be considered as a

cause for the lower success rate of control by CSE compared to MPC. In the control strategy of CSE, at each time step, the290
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(b) between MPCIL and MPC, where PMPC −PMPCIL denotes their success rate difference. Red bars indicate cases where MPC outperforms,

while blue bars show where MPC is less effective.

4.3 Discussion

Figure 4 shows the comparison of the control success rate for each control method (MPC, CSE, and MPCIL) based on the285

results of Table 2. The comparison between MPC and CSE is illustrated by Figure 3.a, and that between MPC and MPCIL is

illustrated by Figure 3.b.

Based on the results from Figure 3.a, it is observed the larger D is and the smaller T is, the better the MPC performs.

Specifically, the control using MPC performs better than control using CSE for D values of 0.2 or higher. For D = 0.1,

MPC shows better control performance for T ≤ 226, whereas CSE exhibits higher control performance for T ≥ 226. For290

D ≤ 0.05, both MPC and CSE achieve 0% control success rate for T ≤ 188, and CSE demonstrates better control performance

for T ≥ 188. This indicates that while CSE control is effective for longer prediction horizons, it is less effective for shorter

prediction horizons.
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In relatively short prediction horizons, the difference in control strategies between CSE and MPC could be considered as a

cause for the lower success rate of control by CSE compared to MPC. In the control strategy of CSE, at each time step, the295

difference between ensemble members indicating regime shifts, denoted as S, and ensemble members not indicating regime

shifts, denoted as N , is taken, and the control input is calculated based on that difference S−N . However, it is not necessarily

the case that the value calculated from the difference of ensemble members always contributes to keeping the state of the

Lorenz-63 model in the positive region with respect to the value of x. On the other hand, in control by MPC, a cost function is

set up so that the cost increases when the value of x is negative, causing the control input to be updated to make the value of x300

positive.

Next, we will discuss the differences between using incremental learning and not using it in a control system under MPC. As

seen in Figure 3.b, significant differences can be seen for D = 0.2 and D = 0.1. For D = 0.2 and T = 19, the control success

rate was 0% without incremental learning but increased to 82.5% with incremental learning. For D = 0.1, T = 38, the control

success rate with incremental learning was 67.5% higher than without incremental learning. Additionally, the control success305

rate with incremental learning was never lower than without incremental learning for any combination of parameters T and D

in Table 3. Therefore, it can be concluded that the control accuracy is higher with incremental learning.

On the other hand, we need to consider the impact of incremental learning on computation time. The average computation

time of MPC-based control is 378s, 1272s, and 1965s for T = 19, T = 38, and T = 57, respectively. It increases almost linearly

with the prediction horizon T when control is performed without incremental learning. On the other hand, with incremental310

learning, the computation time is 16004s, 49556s, and 121578s. It can be observed that computation time increases significantly

as the prediction horizon T increases. This result indicates that MPCIL outperforms MPC in some cases but it requires a

substantial amount of computational resources.

These findings highlight a trade-off between control performance and computational efficiency. In applications where com-

putational resources are limited or real-time control is required, the standard MPC approach may be more practical despite its315

lower success rate in certain scenarios. Conversely, in situations where higher control accuracy is paramount and computational

resources are ample, employing incremental learning with MPC can provide superior performance.

Overall, the MPC approach, especially when enhanced with incremental learning, demonstrates a strong potential for con-

trolling chaotic systems like the Lorenz-63 model, outperforming the traditional CSE strategy under certain conditions. This

suggests that advanced control methodologies from control engineering can be effectively applied to complex atmospheric320

models, potentially contributing to the development of more effective weather control strategies.

5 Summary and Future Work

In this study, we conducted a comprehensive evaluation of the control strategy employed in the CSE by comparing it with MPC

using temporal deep unfolding to the Lorenz-63 model. Our findings revealed that while the CSE control strategy exhibited

high effectiveness for relatively long prediction horizons, its control success rate significantly decreased when the prediction325
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horizon was short. Conversely, the MPC approach demonstrated superior control performance over shorter prediction horizons,

effectively maintaining the system’s state within the desired regime.

This study contributes in two key ways: first, by integrating temporal deep unfolding into traditional MPC, we extended its

application to nonlinear and chaotic systems, enhancing robustness of the MPC. Second, we conducted a detailed comparison

between MPC-based methods and existing CSE strategies, advancing the understanding of controllability for chaotic dynamics.330

While this study primarily focuses on theoretical and numerical analyses, the results highlights the broader applicability of

MPC in tackling practical challenges associated with chaotic dynamics. One promising avenue is the management of extreme

weather events, where effectively understanding and controlling chaotic behavior is critical.

While our work provides a potential pathway toward weather control, several challenges remain for practical implementation

due to the inherent simplicity of the Lorenz system. The classical Lorenz system, though widely used to study deterministic335

chaos and to test new numerical algorithms (Wang, 2013; Soldatenko and Chichkine, 2016), only captures the essential features

of chaotic dynamics. Moreover, the concept of a “weather regime” is itself an open problem, and equating weather regimes

to the wings of the Lorenz-63 attractor remains a conceptual simplification. Therefore, more realistic models, including the

coupled (fast-slow) versions of the Lorenz system motivated by the atmosphere-ocean interaction (Peña and Kalnay, 2004;

Siqueira and Kirtman, 2012), are necessary to better address the challenges in the context of weather control (e.g., Ban-Weiss340

and Caldeira, 2010; Soldatenko, 2018). Furthermore, additional challenges such as physical feasibility and the formulation

of appropriate cost functions must be overcome to generalize the aforementioned conceptual insights into practical weather

control strategies. These aspects will be explored in our future research.
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