
Explaining the high skill of Reservoir Computing methods in El
Niño prediction
Francesco Guardamagna1,2, Claudia Wieners1,2, and Henk A. Dijkstra1,2

1Institute for Marine and Atmospheric research Utrecht, Department of Physics, Utrecht University, Utrecht, the Netherlands
2Center for Complex Systems Studies, Utrecht University, Utrecht, the Netherlands

Correspondence: Francesco Guardamagna <f.guardamagna@uu.nl>

Abstract. Accurate prediction of the extreme phases of the El Niño Southern Oscillation (ENSO) is important to mitigate the

socioeconomic impacts of this phenomenon. It has long been thought that prediction skill was limited to a 6 months lead time.

However, Machine Learning methods have shown to have skill at lead times up to 21 months. In this paper we aim to explain

for one class of such methods, i.e. Reservoir Computers (RCs), the origin of this high skill. Using a Conditional Nonlinear

Optimal Perturbation (CNOP) approach, we compare the initial error propagation in a deterministic Zebiak-Cane (ZC) ENSO5

model and that in an RC trained on synthetic observations derived from a stochastic ZC model. Optimal initial perturbations

at long lead times in the RC involve both sea surface temperature and thermocline anomalies which leads to a decreased error

propagation compared to the ZC model, where mainly thermocline anomalies dominate the optimal initial perturbations. This

reduced error propagation allows the RC to provide a higher skill at long lead times than the deterministic ZC model.

1 Introduction10

The El Niño Southern Oscillation (ENSO) phenomenon, driven by ocean-atmosphere interactions in the tropical Pacific, is one

of the biggest sources of interannual climate variability (Neelin et al., 1998). The full ENSO cycle shows an irregular period of

2-7 years. During its warm (El Niño) and cold (La Niña) phases, ENSO strongly affects the climate all over the globe through

well-known teleconnections (McPhaden et al., 2006), increasing the incidence of extreme weather events like global droughts

(Yin et al., 2022) and tropical cyclones (Wang et al., 2010). ENSO can therefore have a substantial impact on the worldwide15

economy (Liu et al., 2023a), and accurate and reliable forecasts are necessary to mitigate its socioeconomic consequences.

For this reason, ENSO modeling and forecasting have been a central topic of extensive research, which thanks to the con-

tribution of the Tropical Ocean–Global Atmosphere program, led to the development of a complete hierarchy of models. This

hierarchy includes conceptual models (Jin, 1997; Suarez and Schopf, 1988; Takahashi et al., 2019; Timmermann et al., 2003),

intermediate complexity models (Zebiak and Cane, 1987; Battisti and Hirst, 1989) and Global Climate Models (Planton et al.,20

2021). Many of these classical dynamical models can reasonably forecast ENSO up to a lead time of 6 months, with a corre-

lation between predictions and observations larger than 0.5 (Barnston et al., 2012), but their skill rapidly decreases for longer

lead times.
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In recent years, the application of Machine Learning (ML) techniques for predicting ENSO has significantly advanced

(Bracco et al., 2024). Ham et al. (2019a) showed that Convolutional Neural Networks (CNNs) trained with CMIP5 and reanal-25

ysis data could obtain reasonable skill up to lead times of about 17 months. Hu et al. (2021) advanced the CNN approach by

integrating dropout and transfer learning with a residual CNN, obtaining a good performance up to a lead time of 21 months.

Long Short-Term Memory (LSTM) networks, able to exploit the temporal dynamics present in the training data, have also

been successfully applied to ENSO forecasting (Xiaoqun et al., 2020). More recent studies have combined LSTM with other

methods like Graph Neural Networks (Jonnalagadda and Hashemi, 2023), CNNs (Mahesh et al., 2019) and AutoEncoders30

(Jonnalagadda and Hashemi, 2023) to create hybrid models boosting the performance, as they are able to capture both the

spatial and temporal dynamics present in the data. Reservoir Computer (RC) methods, a special class of Recurrent Neural

Networks (RNNs), have shown optimal performance in predicting ENSO (Hassanibesheli et al., 2022). The RC offers a good

balance between performance and model simplicity, which enhances explainability and facilitates analysis of model predic-

tions. Moreover, like other RNN-based models, the RC offers the possibility of generating a self-evolving system that does not35

rely on external inputs (Guardamagna et al., 2024). This characteristic is crucial to understanding the internal dynamics of the

RC and the evolution of errors over time during forecasting.

All these new tools provide more accurate forecasting skills than classical dynamical models, especially for longer lead

times, and seem to be able to circumvent the “Spring Predictability Barrier" (SPB). The SPB (Webster and Yang, 1992; Lau and

Yang, 1996) has been identified and documented across all the ENSO’s dynamical models hierarchy from conceptual models40

(Jin and Liu, 2021a, b; Jin et al., 2021) to comprehensive GCMs (Duan and Wei, 2013). In particular, in the intermediate-

complexity Zebiak and Cane (ZC) model (Zebiak and Cane, 1987), the SPB has been rigorously studied and quantified using the

Conditional Nonlinear Optimal Perturbation (CNOP) framework (Mu et al., 2007). This tool has been applied to investigate the

sensitivity of the ZC model to both initial conditions (Duan et al., 2013) and model parameters (Yu et al., 2014) uncertainties.

Thus, the ZC model is an excellent testbed to analyze why ML algorithms can have skill beyond the SPB, providing good45

predictions even when initialized during boreal spring.

In this paper, we aim to explain the good performance of RC methods in ENSO prediction. Specifically, we will compare

the evolution of optimal initial perturbations, determined using the CNOP approach, between the RC (trained with synthetic

observations from the stochastic ZC model) and the deterministic ZC model. In section 2, we shortly describe the ZC model

and the CNOP technique, focusing on the changes introduced to adapt them to our analysis; in addition, the RC approach is50

briefly presented. In section 3 we first assess the performance of the RC, and then present results of the CNOP analysis for

both the RC approach and the ZC model. A summary and discussion of the results follows in section 4.

2 Models and Methods

2.1 Zebiak and Cane (ZC) model

The ZC model is an intermediate complexity ENSO model that describes the evolution of anomalies with respect to a prescribed55

seasonal mean climatological state across the tropical Pacific. The state vector of this model consists of two-dimensional fields
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of sea surface temperature, thermocline depth, oceanic and atmospheric velocities, and the atmospheric geopotential. For a

complete description of the model’s components and equations, we refer the reader to Zebiak and Cane (1987). We will use

both the original deterministic ZC model and a stochastic ZC model following the approach described in Roulston and Neelin

(2000). In this stochastic version, only noise in the zonal wind-stress field is applied as follows. First, a linear regression60

model relating SST anomalies and surface zonal wind-stress anomalies was constructed empirically from observations using

the ORAS5 dataset (Copernicus Climate Change Service, 2021) over the period between 1961 and 1991 with a time step of 10

days (corresponding to the ZC model time step). Next, the variability explained by this linear model was subtracted from the

total zonal wind-stress field to obtain the residual zonal wind-stress anomalies. The first EOF of this residual (Fig. A1) shows

a strong component over the eastern Pacific. In Feng and Dijkstra (2017), the first two EOFs were included, where the second65

EOF captures the westerly wind bursts, but to keep the spatial noise structure simple, we only included the first EOF. Finally,

the principal component (PC) related to the first EOF was fitted to a first-order autoregressive model:

xt+1 = axt + bϵt, (1)

where ϵt is a white noise term following a Gaussian distribution with zero mean and unit variance (ϵt ∼N(0,1)), while a

and b are the fitted parameters. This fitted first-order autoregressive model was used during integration to generate a different70

(random) zonal wind-stress anomaly pattern at each time step.

There is still a debate on whether the Pacific climate state is in a supercritical or subcritical regime (Kessler, 2002; Guarda-

magna et al., 2024). This distinction hinges on whether ENSO variability occurs as a sustained oscillation or limit cycle

(supercritical) or is a damped oscillation excited by stochastic forcing (subcritical). Hence, we study here both regimes, which

can be easily distinguished in the ZC model by varying a single parameter. Following Tziperman et al. (1994), we use a pa-75

rameter rd in the drag coefficient Cd = rdC
0
d , where C0

d is the standard value in the ZC model. Given the zonal and meridional

wind velocities ua = (ua,va), the ZC model computes the wind stress (τx, τy) acting on the ocean surface according to the

bulk formula:

(τx, τy) = ρairrdC
0
d |ua|(ua,va), (2)

where ρair is the air density, and rd = 1 in the original model configuration (Zebiak and Cane, 1987). With increasing rd,80

the ZC model generates a larger wind-stress response to sea surface temperature anomalies, intensifying the coupling strength

between ocean and atmosphere.

In the deterministic version of the ZC model, an initial anomaly on the seasonal background state rapidly decays for rd =

0.79 (Fig. A2a). In contrast, for rd = 0.8, ENSO variability occurs as a periodic solution with a ∼ 4 years period (Fig. A2b).

Hence, the Hopf bifurcation bounding the two regimes is located between rd = 0.79 and rd = 0.8; here we choose rd = 0.7785

as a value in the subcritical regime and rd = 0.9 in the supercritical regime. When noise is introduced, the ZC model’s ENSO

is phase-locked in the winter season (Fig. A3) for both rd = 0.77 and rd = 0.9. The SPB is identified with the initial month

corresponding to the fastest decrease in autocorrelation in eastern Pacific SST anomalies (Jin and Liu, 2021a). According to

this definition, the ZC model shows a clear SPB in May for both rd = 0.77 and rd = 0.9 (Fig. A4). All these aspects make
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the ZC model a good testbed for understanding why the RC can circumvent the SPB, both in the subcritical and supercritical90

regime.

2.2 Reservoir Computer

Although the procedure to generate a RC has been well described elsewhere (Pathak et al., 2018), we briefly summarise the

approach here, also introducing our notation. Given an input signal u(n) ∈RNu ,n = 1, ..,Nt, where Nt is the total number of

time steps and a given output signal ytarget(n) ∈RNy , the RC has to learn how to estimate an output signal y(n) ∈RNy as95

similar as possible to ytarget(n). To do that during the training procedure, an error measure E(y,ytarget) is minimized, for

which we choose a common measure for regression problems: the Mean Squared Error (MSE) defined by

E(y,ytarget) =
1

Ny

Ny∑

i=1

(
1
Nt

Nt∑

n=1

(yi(n)− ytarget
i (n))2

)
. (3)

Before the training procedure, the input data u(n) are nonlinearly expanded into a higher dimensional so-called reservoir

space, generating in this way a new signal x(n) ∈RNx . This new representation of the data also contains temporal information

and is based on the following update equations:

x̃(n) = tanh
(
W inu(n) +Wx(n− 1)

)
, (4a)

x(n) = (1−α)x(n− 1) +αx̃(n), (4b)

where the tanh is applied component wise. The two matrices Win ∈RNx×Nu and W ∈RNx×Nx are generated randomly

according to chosen hyperparameters. The non-zero elements of W and Win are sampled from a uniform distribution over the100

range [−a,a]. The sparse matrix W derives from a random network with mean degree < k >, while Win is a dense matrix. The

quantity α ∈ (0,1] in (4b) is the leaking rate. The output layer is defined as y(n) = W outx(n), where W out ∈RNy×Nx , and

during the training procedure only the weights of W out are estimated by minimising E(y,ytarget) through a linear regression

procedure. We use a ridge regression to avoid overfitting, leading to the loss function L:

L(W out) = E(y,ytarget) + ϵ

Ny∑

i=1

Nx∑

j=1

(W out
i,j )2. (5)105

The hyperparameters are given by the dimension of the reservoir (Nx), the spectral radius of the matrix W (ρ), the sparsity

of W ’s connections < k >, the input scaling a and the leaking rate α. Given an input sequence u(n) = ytarget(n), the RC is

trained by determining W out from the sequence y(n) = u(n + 1) = ytarget(n + 1), using the loss function (5).

After training, the RC can be transformed into an autonomous evolving dynamical system to be used for prediction (Pathak

et al., 2018). Thereto feedback connections between the outputs at time step n and the inputs at the subsequent time step are

introduced. In this way, a model is generated that autonomously evolves in time, according to

x(n + 1) = (1−α)x(n) +αtanh(Wx(n) +W inu(n + 1)), (6a)

u(n + 1) = y(n) = W outx(n), (6b)
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where x(n) and x(n+1) are the reservoir states at time step n and n+1, while y(n) is the output at time step n and u(n+1) is

the input at the subsequent time step n+1. This property of the RC allows us to make predictions similar to classical dynamical110

systems. Consequently, we can study how an initial perturbation evolves in the RC.

In the results below, the input vector u consists of the following feature variables: the NINO3 index, the thermocline depth

anomalies hW and hE averaged over the regions 5◦N-5◦S ×120◦E-180◦E, and 5◦N-5◦S ×180◦E-290◦E, respectively and

the zonal surface wind speed anomalies τC averaged over the area 5◦N-5◦S × 145◦E-190◦E. We chose to use zonal surface

wind speed instead of directly using the wind stress, as the noise in the Stochastic ZC model is applied directly to the zonal115

wind stress (see Section 2.1). This strategy helps mitigate the risk of the RC to overfit the noise present in the training data.

In addition, a sine signal with a period of 12 months representing the seasonal cycle was added such that Nu = 5. Although a

combination of sine and cosine signals is required to identify uniquely each month of the year, we found that including both

made little difference in performance. Therefore, to minimize the number of input variables and reduce the complexity of the

learned function, we decided to use only the sine signal. The output vector consists of the same variables as in the input except120

for the sine signal, hence Ny = 4. In self-evolving mode, the sine signal encoding the seasonal cycle is provided as an external

input rather than generated directly by the RC.

2.3 CNOP computation

Our implementation of the CNOP methodology follows the one described by Duan et al. (2013). Let Mt0,t be the propagator

of a nonlinear model from initial time t0 to a chosen end time te. We indicate v0 as the initial perturbation super-imposed on

the model’s background state V0 at time t0. For a selected norm ||.||, an initial perturbation v0δ is defined as a CNOP if and

only if:

J(v0) = ||Mt0,te
(V0 + v0)−Mt0,te

(V0)||, (7a)

J(v0δ) = max
C(v0)≤δ

J(v0), (7b)

where C(v0) is the constraint condition and Mt0,t(V0) represents the model state at time t when the integration starts from the

background state V0 at time t0. In Duan et al. (2013), an initial perturbation is applied to all the grid points over the tropical125

area and the constraint condition to the initial perturbation amplitude C(v0) is defined as:

C(v0) =
√∑

i,j

[(w−1
T T ′i,j)2 + (w−1

h h′i,j)2], (8)

where T ′i,j and h′i,j are the initial sea surface temperature anomalies (SSTA) and thermocline depth anomalies, respectively,

at grid point (i, j). The weights wT = 2◦C and wh = 50 m represent the characteristics scale of SST and thermocline depth

anomalies, respectively.130

As mentioned in section 2.2, the RC is trained using a limited feature vector. To ensure a fair comparison of CNOPs between

those of the RC and the ZC models, the tropical area of the ZC model is divided into boxes and uniform perturbations are

applied over those boxes. Specifically, we apply a uniform SSTA perturbation T ′E over all the grid points in the NINO3 area

5
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(5◦N-5◦S × 210◦E-270◦E), a uniform thermocline depth perturbation h′W to all the grid points in the area 5◦N-5◦S ×120◦E-

180◦E and a uniform thermocline depth perturbation h′E to all the grid points in the area 5◦N-5◦S × 180◦E-290◦E. The135

constraint condition can then be written as:

C(v0) =
√

(w−1
T T ′E)2 + (w−1

h h′E)2 + (w−1
h h′W )2. (9)

For both the RC and the ZC model, the objective function J(v0) in (7) has been defined as the Root Squared Error (RSE) be-

tween the perturbed and background trajectories. Specifically if we define the NINO3 index value at time t when the integration

start from the initial state V0 as NINO3(t,V0), the objective function J(v0) is defined as:140

J(v0) =

√√√√
t=tN∑

t=t0

(NINO3(t,(V0 + v0))−NINO3(t,V0))2, (10)

where tN = te. To solve the optimization problem associated with determining the CNOP, we use the gradient-free Cobyla

optimization algorithm (Powell, 1994). Since the Cobyla algorithm starts its optimization process from a random initial guess,

we always perform 10 different realizations starting from 10 different initial guesses to select the CNOPs that shows the largest

error propagation according to the value of J(v0).145

3 Results

In the results section, we will first explain the training and validation of the RC (section 3.1), demonstrate the forecasting skills

of the RC (section 3.2), also demonstrating the importance of the zonal surface wind velocity anomalies as a training variable.

Next, in subsection 3.3, we present the results of the CNOP analysis for both the RC and deterministic ZC models.

3.1 Training and Validation of the RC150

For both subcritical (rd = 0.77 ) and supercritical (rd = 0.9) regimes we first performed a simulation of 1000 years with

the stochastic ZC model using a time step of 10 days. We will refer to these data as ‘synthetic observations’. The NINO3

amplitudes of the supercritical case (Fig. 1b) are, as expected, about a factor 2 larger than those of the subcritical case

(Fig. 1a). As mentioned in section 2.2., the 12 months period sine signal and the feature vector components hW , hE , τC ,

and NINO3 (extracted from the synthetic observation time series) are used to train the RC. To investigate the effect of τC on155

the performance of the RC, we also trained a second RC using only hW , hE , NINO3 and the sine signal. Before training the

NINO3 and both hW and hE have been normalized by wT = 2◦C and wh = 50m, respectively. From the total 1000 years of

synthetic observations, the first 300 years were discarded to avoid capturing any initial transient behavior. The next 500 years

were used for training and validation (300 years for training and 200 years for validation), and the last 200 years were used for

testing, ensuring an independent evaluation of the RC model performance. The training of the RC was described in section 2.2,160

where given an input sequence u(n) = ytarget(n), W out is determined from the sequence y(n) = u(n + 1) = ytarget(n + 1),

using the loss function (5).
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(a)

(b)

Figure 1. NINO3 index from the last 700 years of the stochastic ZC model simulations (synthetic observations) used to train, validate, and

test the RC model: (a) rd = 0.77, (b) rd = 0.9.

To determine the performance of the RC, we use the RC in self-evolving mode (section 2.2) to make predictions using a

time step of 10 days. When we let the RC self evolve, the only external information we provide is the value of the sine signal

representing the current month of the year. All the other variables (NINO3, hE , hW , and τC when the latter is included as a165

training variable) are directly produced by the output of the RC and are not provided as external information during prediction.

To evaluate the RC’s performance over the entire 200 years of validation trajectories for different lead times, we adopt a rolling

approach. For each time step t in the validation data set, a RC trajectory with a specific lead time was generated. The initial
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reservoir state for each prediction was determined using 5-years of data prior to the time t (i.e. 180 steps). The final values of

each trajectory, corresponding to the lead time of interest, were then concatenated to form a complete 200-years trajectory, say170

yfull.

To identify the best set of hyperparameters, a separate validation procedure was conducted for each regime (rd = 0.77 and

rd = 0.9) and for each set of training variables (including and excluding the zonal surface wind speed anomalies) using a

Bayesian search. For each hyperparameter set, the RC model’s 18-month lead time predictions were evaluated using the root

mean square (RMS) error computed including all feature variables in yfull. This latter was done to ensure that the RC model175

could replicate the synthetic observations for all variables of interest rather than simply replicating the NINO3 index. After

validation, the RC model’s performance was evaluated on the 200-years test set using the identified best hyperparameter set,

as described next.

3.2 RC performances

Figure 2 presents the mean and standard deviation of the Anomaly Correlation Coefficient (ACC) of 50 different RC’s predic-180

tion trajectories and the target NINO3 index from the 200-years test dataset, computed at a monthly time step (so averaged

over three model time steps). We evaluated the RC’s ability to replicate the monthly NINO3 index rather than the 10-day time

step index used for training, since this is the common approach for assessing the performance of ENSO forecasting models.

As the reservoir is generated by random W and W in values, each RC needs to be retrained first (using the 300 years data

set) as described in section 2.2 and hence multiple RCs are used for evaluating the ACC. Again a rolling approach (as for the185

validation data set, see (section 3.1) was used for the test set and hence the ACC is determined using the 200-years vector yfull.

In the supercritical regime (Fig. 2b), the RC model performs better when zonal surface wind speed anomalies τC are included

as a training variable, though its performance is also acceptable even when τC is excluded. On the other hand, in the subcritical

regime (Fig. 2a), the RC performance for longer lead times (9 to 18 months) improves when τC is excluded during training. This

is due to the fact that the RC model is overfitting the noise in the subcritical regime when τC is included in the feature vector.190

In the stochastic ZC model, the noise is introduced as random zonal wind-stress burst (section 2.1), and in the subcritical

regime the oscillation is purely noise driven. Although we use zonal wind speed instead of directly use the wind stress to

reduce noise sensitivity, the RC still tends to overfit the noise, reducing its predictive performance. The RC performs better

in the supercritical regime, achieving an ACC of 0.8 at a 12-month lead time when zonal surface wind speed anomalies were

included during training. In the subcritical regime, the RC model achieves an ACC of 0.75 at a 12-month lead time when τC is195

excluded during training.

To better appreciate the performance of the RC model, we also compared it with a simple Linear Regressor as a benchmark;

results are also included in Fig. 2. In the supercritical regime the Linear Regressor also performs worse when τC is excluded

during training, further demonstrating the importance of this variable. In contrast, in the subcritical regime the Linear Regressor

performs similar whether τC is included or excluded during training, reinforcing the idea that this variable is not essential in200

this regime. The RC outperforms the Linear Regressor both in the supercritical and subcritical regimes, whether τC is included
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or excluded during training. This is due to the capability of the RC to capture the nonlinear behavior in the dynamics of the

stochastic ZC model.

(a) subcritical regime (b) supercritical regime

Figure 2. Mean and standard deviation of the Anomaly Correlation Coefficient (ACC) of 50 different RC model realizations and the 200-

years synthetic observations for the NINO3 index, computed at a monthly time step. Results are shown for the 2 regimes: (a) subcritical

(rd = 0.77) and (b) supercritical (rd = 0.9), with zonal surface wind speed anomalies (τC ) either included or excluded during training.

Results from the Linear Regressor are also included for comparison

The ability of the RC model to mitigate the SPB is demonstrated in Fig. 3. This figure presents the normalized mean

absolute error (MAE) between the median NINO3 of 50 different RC’s predictions and the corresponding target values from205

the synthetic observations test dataset (see section 3.1) at various lead times and for both the RC initialized before the SPB in

March, April, and May, and after the SPB in September, October, and November. As a comparison benchmark, the normalized

MAE for the Linear Regressor (LR) predictions is also included for the same initialization months. Additionally, to ensure a fair

comparison between the subcritical and supercritical regimes, all RC and LR predictions and the corresponding target values

have been normalized by the standard deviation of the 200-years synthetic observations test dataset (0.47 for the supercritical210

regime and 0.24 for the subcritical regime) before computing the MAE. In Fig. 3, we present results for the different input

variable configurations for both the subcritical and supercritical cases. Specifically, the variable τC is excluded from the input

variables in the subcritical regime but included in the input variables in the supercritical regime.

In both the subcritical and supercritical regimes, the RC model outperforms the LR also in terms of mean absolute error,

regardless of the initialization period. However, to a certain extent, it is still affected by the SPB, which occurs in May in the ZC215

model (as discussed in Section 2.1). On the other hand, the RC model demonstrates a clear ability to mitigate the effects of the
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SPB compared to the LR. This can be most clearly seen when comparing the pre-spring initialization performance of the two

models at 3-months and 6-months lead times. In the supercritical regime, with pre-SPB initialization, the RC model achieves

a normalized MAE of 0.2 at 3-months lead time and 0.35 at 6-months lead time, while the LR shows a higher normalized

MAE of 0.3 at 3-months lead time and 0.5 at 6-months lead time. In the subcritical regime, with pre-SPB initialization, the220

RC achieves a MAE of 0.34 at 3-months lead time and 0.5 at 6-months lead time, while the LR shows a MAE of 0.36 at 3-

months lead time and 0.54 at 6-months lead time. In the supercritical regime, the RC shows a larger performance improvement,

compared to the subcritical regime where the difference in performance with respect to the LR is less evident. Moreover, also

in terms of normalized MAE, the RC performs better in the supercritical regime than in the subcritical one. This result aligns

with expectations, as non-linearities play a more important role in the supercritical regime.225

(a) subcritical regime (b) supercritical regime

Figure 3. Normalized mean absolute error (MAE) between the median of 50 different RC realizations’ predictions and the 200-years synthetic

observation test set, for the NINO3 index computed at a monthly time step, and with the RC initialized both before (March, April, May) and

after (September, October, November) the SPB: (a) rd = 0.77, zonal surface wind speed anomalies excluded during training. (b) rd = 0.9,

zonal surface wind speed anomalies included during training. Results from the Linear Regressor (LR) are also included for comparison. Both

predictions and target values have been normalized by the standard deviation of the 200 years synthetic observations test dataset (0.47 for

the supercritical regime and 0.24 for the subcritical regime), before computing the MAE.
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3.3 CNOP analysis

For both the RC model and the deterministic ZC model and for both rd = 0.77 (subcritical regime) and rd = 0.9 (supercritical

regime), we computed the CNOPs for different lead times using the last 50 years of the 200-years synthetic observations test

dataset as initial conditions (cf. section 3.1). This choice has been made to balance computational efficiency and statistical

significance. The CNOP computations using the Cobyla algorithm are highly computationally expensive, and 50 years of230

data is sufficient to obtain statistically significant results. By selecting the last 50 years of the 200-year test period, we also

ensure complete statistical independence between the training and test data. For the RC model, perturbations were directly

applied to NINO3 and mean thermocline depth anomalies (hE and hW ). In contrast, for the deterministic ZC model, a uniform

perturbation was applied over three different boxes in the Pacific for both SSTA and thermocline depth anomalies (as described

in section 2.3).235

(a) subcritical regime (b) supercritical regime

Figure 4. Distribution of the normalized RSE distances between the perturbed and unperturbed trajectories for different lead times when

CNOPs are applied, taking as initial conditions the months [March,April,May] for (a) rd = 0.77 and (b) rd = 0.9. The boxes indicate the

interquartile range (IQR), the range within which the central 50% of data points are located. The whiskers extend to the minimum and

maximum values within 1.5 times the IQR from the first and third quartile. The central line corresponds to the median. All the RSE distances

have been normalized by the standard deviation of the NINO3 index extracted from the 50 years of synthetic observations considered for the

CNOP computation (0.29 for the subcritical regime and 0.56 for the supercritical regime).

Before computing the CNOPs for the RC model, we identified and saved the best-performing RC realization out of 50 for

each combination of lead time, rd value, and training variables set based on the forecasting skill for the 200-years synthetic

observations test period (see section 3.1). The top-performing realization (for each combination of lead time, rd value and
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training variables) was then considered for the CNOP computation. This was done to avoid biases related to the random

initialization of the RC. We computed the CNOPs for lead times 3, 6, and 9 months, focusing on a single constraint value240

δ = 0.05 and a specific forecast initialization season just before the SPB, encompassing March, April, and May. The value of

δ corresponds to a maximum NINO3 perturbation of 0.1◦C (section 2.3) or a maximum he or hw perturbation of 2.5m. To

quantify the divergence between two trajectories caused by the CNOPs, we computed the Root Square Error (RSE) distance

between the perturbed and unperturbed trajectories as defined in (10). For the deterministic ZC model, the same procedure to

compute the CNOP was used (see section 2.3). To make a fair comparison between the subcritical and supercritical regimes, all245

the RSE distances obtained have been normalized by the standard deviation of the 50 years of NINO3 synthetic observations

considered for the CNOPs computation (0.29 for the subcritical regime and 0.56 for the supercritical regime).

In the supercritical regime (Fig. 4b), the RC model is more susceptible to initial perturbations at shorter lead times. However,

at a 6-months lead time, the RC model’s sensitivity to initial perturbations becomes, on average, smaller when τC is excluded

during training and similar to that of the deterministic ZC model when τC is included during training (see Table A2). At250

9-months lead time, the RC’s sensitivity to initial perturbations is on average smaller for both τC included and excluded.

At both 6- and 9-months lead times, the deterministic ZC model’s sensitivity results show a much wider distribution than

the RC, regardless of whether τC is included or excluded as a training variable. In the subcritical regime (Fig. 4a), the RC

model becomes more susceptible to perturbations than the deterministic ZC model when τC is included as a training variable.

Conversely, when this variable is excluded, the RC model shows less sensitivity to perturbations than the deterministic ZC255

model. This difference is likely because including τC as a training variable causes the RC model to learn more the noise

component of synthetic observations. Since ENSO variability in the subcritical regime is highly affected by noise, including

these anomalies during training leads to a system with a larger error propagation.

Previous studies (Mu et al., 2007) have quantified the SPB in the deterministic ZC model using the CNOP framework,

revealing that the deterministic ZC model is particularly sensitive to initial perturbations when initialized just before the boreal260

spring season. Our results support this finding, showing that the deterministic ZC model exhibits a stronger sensitivity to initial

condition perturbations when initialized close to the SPB than when it is initialized later in the year (see Table A1). This

also holds for summer initialization (not shown) in June, July, and August, where the models show results similar to spring

initialization in March, April, and May, with the RC mitigating sensitivity to initial perturbations similarly. This behavior is

due to the proximity of the summer season to the SPB. The CNOP cost function evaluates the distance between the entire265

perturbed and unperturbed trajectories (see 10), taking all months into account. When the deterministic ZC model integration

is initialized just before the SPB, the number of months affected by the SPB is maximized, and at longer lead times (6 and 9

months), we observe a pronounced increase in the sensitivity to initial conditions perturbations compared to when the model is

initialized in the autumn and winter seasons. This effect is also found when comparing the sensitivities of autumn and winter

initializations. Compared to an autumn-initialized trajectory, an integration initialized in winter has crossed the SPB before at270

a 9-months lead time and the sensitivity to initial perturbations for an integration initialized in winter is, on average, larger than

for the autumn initialization.
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(a) subcritical regime (b) supercritical regime

(c) subcritical regime (d) supercritical regime

Figure 5. Violin plots showing the distribution of the CNOPs obtained for both the NINO3 Index and hE+hW (sum of the thermocline

anomalies for both the western and eastern Pacific). (a)-(c) rd = 0.77 (b)-(d) rd = 0.9. In both cases, δ = 0.05, the period considered

corresponds to the last 50 years of the 200 years synthetic observation test dataset, and the months [Mar, Apr, May] are taken as initial

conditions.

On the other hand, when the RC is initialized later than the SPB, it exhibits a sensitivity to initial perturbations similar to

that found when it is initialized just close to the SPB (see Table A2). As the number of months affected by the SPB increases

(at 6- and 9-months lead time, with a forecast initialized in spring), the RC effectively reduces both the average sensitivity275
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to initial condition perturbations and the width of sensitivity results’ distribution compared to the ZC model, consequently

decreasing the number of events strongly sensitive to initial conditions perturbations. The only exception is the RC trained,

including the variable τC in the subcritical regime, which consistently has a greater sensitivity to initial condition perturbations

than the deterministic ZC model, for reasons already mentioned above. Moreover the inclusion of this variable decreases the

performance of the RC in the subcritical regime at longer lead times (see section 3.2). These results demonstrate that the RC280

model effectively mitigates the sensitivity to initial condition perturbations at long lead times (6, 9 months) when a forecast is

initialized just before the SPB, compared to the ZC model, for which the spring season corresponds to the strongest sensitivity

to initial perturbations. This capability explains why the RC model can reduce the effects of the SPB, delivering skillful

predictions at long lead times.

(a) (b)

Figure 6. Scatter plot of the CNOPs in the normalized NINO3 index, hE+hW anomaly plane. (a) rd = 0.77 (b) rd = 0.9. In both cases,

δ = 0.05, the period considered corresponds to the last 50 years of the 200-years synthetic observation test dataset, the months [Mar, Apr,

May] are taken as initial conditions and the lead time considered is 9 months. The NINO3 index and hE+hW anomalies have been normalized

dividing by 2°C and 50m, respectively.

Figure 5 shows the estimated CNOPs for both the ZC and RC models when initialized just before the SPB in March, April,285

and May. The estimated CNOPs are presented for the NINO3 index and the sum of the thermocline perturbations in the eastern

and western Pacific (hE + hW ). The ZC model’s sensitivity to initial NINO3 perturbations decreases as the forecasting lead

time increases. In contrast, perturbations to the thermocline depth become increasingly crucial for optimal perturbation growth

at longer lead times. This is true for both rd = 0.77 and rd = 0.9. On the other hand, the CNOPs of the RC have different

behavior, both for the supercritical and subcritical regimes. The RC is sensitive to quite different initial perturbations leading290

to less variability in the error propagation compared to the ZC model. This is supported by Fig. 6, which shows the distribution
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of the CNOPs in the (NINO3, hE+hW ) plane for a 9 months lead time. For visualization purposes, the initial anomalies for

NINO3 and (hE+hW ) have been normalized dividing by 2◦C and 50m, respectively (see section 2.3). The CNOPs for the RC

and the ZC models show a strongly different distribution, with perturbations in NINO3 being more dominant at longer lead

times for the RC model than for the deterministic ZC model. In the ZC model, ENSO variability is highly affected by the295

thermocline feedback (Zebiak, 1987). The RC reduces this sensitivity and consequently reduces the error propagation. It is

worth noticing that in the subcritical regime, when zonal surface wind speed anomalies are not included during training, the

RC shows a weaker sensitivity to initial NINO3 perturbations at longer lead times compared to both the supercritical case and

the subcritical case when zonal surface wind speed anomalies are included as a training variable. However, it remains more

sensitive to initial NINO3 perturbations than the deterministic ZC model.300

4 Summary and Discussion

Relatively limited research has been carried out to understand the underlying reasons for the strong performance of ML pre-

diction models in ENSO prediction, in particular their apparent ability to reduce error propagation and overcome the Spring

Predictability Barrier (SPB) as deduced from dynamical models. In previous studies, explainable AI techniques like Layerwise

Relevance Propagation (LRP) have been used to identify and estimate which patterns in the data are exploited by Machine305

Learning (ML) methods to make specific ENSO predictions (Ham et al., 2019b; Rivera Tello et al., 2023), or to explore tele-

connections of ENSO (Ito et al., 2021; Liu et al., 2023b). The LRP technique has also been extended to the Echo State Network

(ESN) framework to investigate the importance of the leaking rate parameter α and the ESN’s robustness to random input per-

turbations while performing a El Niño/La Niña binary classification task (Landt-Hayen et al., 2022). Our work focused on a

single ML technique, i.e., Reservoir Computing (RC) and showed that the RC model’s higher predictive skill at long lead times310

can be attributed to its capacity to limit the growth of initial uncertainties over time, compared to the dynamical Zebiak-Cane

(ZC) model.

We first demonstrated that the RC, when trained on data from the stochastic ZC model (acting as synthetic observations),

exhibits good predictive skill up to an 18-month lead time and hence effectively overcomes the SPB problem both in the

subcritical and supercritical regimes. In the supercritical regime, the RC model performs better when zonal surface wind speed315

anomalies are included during training while in the subcritical regime the RC actually performs better for longer lead times (9

to 18 months) when the zonal surface wind speed anomalies are excluded. While this result may depend on the implementation

of the wind-stress noise (Feng and Dijkstra, 2017) which we restricted here mostly to the eastern Pacific (by using only the

first EOF of the residual wind-stress field), the reason is that the RC is overfitting the noise in the subcritical regime.

Previous studies have also noticed strong predictive performances when applying the RC to ENSO forecasting. For instance,320

Hassanibesheli et al. (2022) achieved high prediction skills (ACC > 0.8) up to a lead time of 14 months when training the

RC with the observed NINO3 and NINO3.4 indexes, decomposed into a low-frequency and high-frequency components.

Their performance is comparable to ours at long lead times but our model performs better at shorter lead times (3-6 months).

Additionally, like in our study, they found that their approach could mitigate the SPB problem. However, care must be taken
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when comparing our findings with their results due to substantial differences in the data used for training, the training variables325

considered, and the implementation of the forecasting framework.

After the RC’s performance analysis, we investigated the propagation of errors in initial conditions in boreal spring (just

before the SPB) for both the RC and deterministic ZC models using the Conditional Nonlinear Optimal Perturbation (CNOP)

approach (Duan et al., 2013). In the supercritical regime, the RC can significantly reduce error propagation in particular at

longer lead times (6-9 months). In the subcritical regime, the RC is less susceptible to perturbations compared to the ZC330

model, when surface wind anomalies are excluded during training and more susceptible when they are included. The actual

CNOPs have quite a different pattern for the ZC and RC cases; the CNOP pattern of the ZC resembles the one obtained in

earlier papers (Duan et al., 2013) with a dominant response in the thermocline field for longer lead times, but in the CNOP

pattern of the RC also a strong sea surface temperature component is present.

The thermocline anomalies are important for error propagation on the longer time scales, in particular in the ZC model in335

which the ENSO variability is highly affected by the thermocline feedback (Zebiak and Cane, 1987). Hence, effectively, the

RC model reduces the components in the thermocline anomalies and hence reduces error propagation. While we restricted to

only particular cases, as we only used one value of parameter in the constraint condition δ and we allowed only one EOF in the

ZC wind-stress noise, we think that the modification of the dynamical behavior in the RC (with respect to the ZC) to change

the spatio-temporal properties of the error propagation is the key explanation for the superior skill of the RC on long lead340

times and the reason for being able to overcome the SPB. The same possibly also holds for other ML techniques, such as CNN

approaches (Ham et al., 2019b) and the methodology used here (using the CNOP approach) is a promising way to determine

whether this is the case.

Code availability. All data and code used in this study are available at this link https://zenodo.org/records/14101363?token=eyJhbGciOiJI

UzUxMiJ9.eyJpZCI6IjhlY2MzNDg1LTJmYWItNDQ3ZC1iMzU1LWEwYjIwMTM1NWVlNCIsImRhdGEiOnt9LCJyYW5kb20iOiI4N345

GEyYTA1NjYwM2I0Y2VkMzZiOTdhZmE1YzEwNzY5OSJ9.phNa3QLX_acryQ0MmqLO2HsUXnuaKM215FLTrRW86wiGv4J33g67il

cr7bxGuTI6GCQmg_Vdr7QFJaW0Ltr7cw
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Appendix A: Zebiak and Cane model results

Figure A1. First EOF of the residual zonal wind stress anomalies as determined from the ORAS5 dataset (Copernicus Climate Change

Service (2021)).
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(a)

(b)

Figure A2. NINO3 index from the deterministic ZC model for (a) rd = 0.79 and (b) rd = 0.8.
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(a)

(b)

Figure A3. Frequency of the occurrence of La Niña and El Niño events for each calendar month. (a) rd = 0.77 (b) rd = 0.9. For both rd

values a stochastic ZC model realization of 1000 years has been considered.
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(a)

(b)

Figure A4. Level of autocorrelation of the NINO3 index for different starting months for (a) rd = 0.77 and (b) rd = 0.9. The black dots

indicate the lag month corresponding to the maximum decrease in autocorrelation. In each case, a 1000 years stochastic ZC model realization,

has been considered
23

https://doi.org/10.5194/npg-2024-24
Preprint. Discussion started: 20 November 2024
c© Author(s) 2024. CC BY 4.0 License.



(a) subcritical regime (b) supercritical regime

(c) subcritical regime (d) supercritical regime

Figure A5. Distribution of the normalized RSE distances between perturbed and unperturbed trajectories for different lead times with

the application of CNOPs, using initial conditions from: (a)-(b) [December,January,February], and (c)-(d) [September,October,November].

The left plots (a) and (c) display results for rd = 0.77, while the right plots (b) and (d) show results for rd = 0.9. The boxes indicate the

interquartile range (IQR), the range within the central 50% of data points lie. The whiskers extend to the minimum and maximum values

within 1.5 times the IQR from the first and third quartile. The central line corresponds to the median. The RSE distances are normalized by

the standard deviation of the NINO3 index extracted from the 50 years of synthetic observations considered for CNOPs computation (0.29

for the subcritical regime and 0.56 for the supercritical regime).
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Subcritical Regime (rd = 0.77)

Start/Lead 3 Months 6 Months 9 Months

Spring 0.6 1.52 1.88

Winter 0.56 1.16 1.78

Autumn 0.62 1.08 1.47

Supercritical Regime (rd = 0.9)

Start/Lead 3 Months 6 Months 9 Months

Spring 0.41 1.41 2.07

Winter 0.43 0.94 1.6

Autumn 0.53 0.96 1.28

Blue: Forecast crosses the SPB Orange: Forecast does not cross the SPB

Table A1. Table showing the median of the normalized RSE distances between perturbed and unperturbed trajectories at various lead times,

with CNOPs applied across different starting seasons. Only the Zebiak and Cane model is considered, with the top table representing the

subcritical regime (rd = 0.77) and the bottom table representing the supercritical regime (rd = 0.9). All RSE distances are normalized by

the standard deviation of the NINO3 index from the 50 years of synthetic observations considered for the CNOPs computation (0.29 for the

subcritical regime and 0.56 for the supercritical regime).
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Subcritical Regime, τC Included During Training

Model Start/Lead 3 Months 6 Months 9 Months

RC

Spring 1.35 (0.14) 2.07 (0.33) 2.4 (0.54)

Winter 1.42 (0.33) 2.19 (0.52) 2.33 (0.71)

Autumn 1.24 (0.12) 1.89 (0.14) 2.21 (0.1)

ZC

Spring 0.6 (0.28) 1.52 (1.49) 1.88 (1.86)

Winter 0.56 (0.17) 1.16 (0.74) 1.78 (1.23)

Autumn 0.62 (0.32) 1.08 (0.88) 1.47 (1.01)

Subcritical Regime, τC Excluded During Training

Model Start/Lead 3 Months 6 Months 9 Months

RC

Spring 0.76 (0.11) 1.2 (0.05) 1.44 (0.08)

Winter 0.79 (0.16) 1.22 (0.03) 1.44 (0.06)

Autumn 0.75 (0.12) 1.24 (0.05) 1.47 (0.08)

ZC

Spring 0.6 (0.28) 1.52 (1.49) 1.88 (1.86)

Winter 0.56 (0.17) 1.16 (0.74) 1.78 (1.23)

Autumn 0.62 (0.32) 1.08 (0.88) 1.47 (1.01)

Blue: Forecast crosses the SPB Orange: Forecast does not cross the SPB
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Supercritical Regime, τC Included During Training

Model Start/Lead 3 Months 6 Months 9 Months

RC

Spring 0.86 (0.09) 1.46 (0.22) 1.82 (0.32)

Winter 0.91 (0.33) 1.52 (0.44) 1.95 (0.64)

Autumn 0.75 (0.11) 1.36 (0.25) 1.7 (0.8)

ZC

Spring 0.41 (0.28) 1.41 (1.36) 2.07 (1.85)

Winter 0.43 (0.28) 0.94 (0.94) 1.6 (1.07)

Autumn 0.54 (0.46) 0.96 (1.17) 1.28 (1.52)

Supercritical Regime, τC Excluded During Training

Model Start/Lead 3 Months 6 Months 9 Months

RC

Spring 0.67 (0.07) 1.3 (0.23) 1.65 (0.52)

Winter 0.68 (0.11) 1.27 (0.29) 1.72 (0.58)

Autumn 0.68 (0.12) 1.23 (0.14) 1.7 (0.41)

ZC

Spring 0.41 (0.28) 1.41 (1.36) 2.07 (1.85)

Winter 0.43 (0.28) 0.94 (0.94) 1.6 (1.07)

Autumn 0.54 (0.46) 0.96 (1.17) 1.28 (1.52)

Blue: Forecast crosses the SPB Orange: Forecast does not cross the SPB

Table A2. Median (IQR) of the normalized RSE distances between perturbed and unperturbed trajectories at various lead times, with CNOPs

applied across different starting seasons. Both ZC and RC models (trained with and without τC ) are considered in the subcritical (rd = 0.77)

and supercritical (rd = 0.9) regime. RSE distances are normalized by the standard deviation of NINO3 index from the 50 years of synthetic

observations considered for CNOPs computation (0.29 for the subcritical regime and 0.56 for the supercritical regime). The interquartile

range IQR is defined as the distance between the first and third quartile.
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