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Point-by-point reply to reviewer #1
March 12, 2025

We thank the reviewer for their careful reading and for the useful com-
ments on the manuscript.

Overview

This study focuses on explaining the origins of high forecasting skills of
recently emerging deep learning models for ENSO predictions. More specifi-
cally, the authors firstly build a skillful Reservoir Computers (RC) model for
simulating Zebiak-Cane numerical model, and then investigate and compare
the sensitivities on initial perturbations of RC and ZC models (also including
an LC model). The authors find RC models are less susceptible to initial per-
turbations no matter for short and long lead months, which is also the possi-
ble reason of weakening the impact of spring predictability barrier (SPB) and
extending the effective lead time. In general, this study crafts some novel ex-
periments, and I have the following major questions for the author to answer:

Major comments:

1. Wi, in FEquation (4a) and W™ in the following illustration is not con-
sistent.

Author’s reply:
We thank the reviewer for pointing out this imprecision.

Changes in manuscript:
We have addressed this imprecision in the revised manuscript. Please
refer to lines 104-107.



2. What is the value of N, in your study, which is quite an important
configuration for forecasting skill of RC model.

Author’s reply:

For both the supercritical and subcritical regimes, as well as for each set
of training variables, we determined the optimal hyperparameter sets
using a Bayesian search. The search consistently converged on large
reservoir dimensions N,, with notable differences between the super-
critical and subcritical regimes. In the supercritical regime, the optimal
reservoir dimension is approximately 400, regardless of whether zonal
surface wind speed anomalies (7¢) are included in the training variable
set. In the subcritical regime, the optimal reservoir dimension is larger,
with N, = 476 when 7¢ is included and N, = 534 when 7¢ is excluded.

Changes in manuscript:

In the revised manuscript, we have specified the N, values used in our
study and described the function and impact of this hyperparameter on
the Reservoir model (please refer to lines 194-204). Moreover, a sum-
mary table reporting the optimal hyperparameter sets for each regime
and training variable set has been added to Appendix C.

3. Around line 169, the authors mention that “the initial reservoir state
for each prediction was determined using 5 years of data before the time
t 7. Can you explain this expression more to those unfamiliar with RC
models?

Author’s reply:

We agree with the reviewer that this expression may not be clear to
those unfamiliar with the Reservoir Computer (RC) model. Discarding
the initial x(n) reservoir states for 0 < n < Nyansient before training
and evaluation is a standard practice in Reservoir Computing. This
step is necessary to mitigate the impact of initial transients caused by
the arbitrary initialization of the reservoir state, which is typically set
to 2(0) = 0 or initialized randomly. In our case, the reservoir state was
initialized as x(0) = 0. This initialization creates an artificial starting
state that is unlikely to recur once the reservoir dynamics stabilize. A



warmup period is therefore introduced to allow the reservoir to reach a
stable dynamical regime before training or inference. The length of the
warmup period depends on the reservoir’s memory capacity and the
specific learning task. Based on our experiments, a warmup period of 5
years is sufficient to stabilize the reservoir dynamics and eliminate the
effects of initial transients. As a result, before inference, the reservoir
states corresponding to the 5 years preceding the initial time step t(n)
(the starting point of our forecast) are discarded. In our notation, this
means discarding x(n) reservoir states for t(n) — Nyansient < n < t(n),
where nyransiens = 180, given our 10-days time step.

Changes in manuscript:

In the revised manuscript, we have clarified why a warm-up period
is necessary when working with a Reservoir Computer model in the
"Training and Validation’” section. Please refer to lines 180-189.

. Around line 224, the authors mention that “This result aligns with ex-
pectations, as non-linearities play a more important role in the super-
critical regime”. I am wondering is it true that the supercritical regime
exhibits more nonlinear than subcritical regime, which favors the perfor-
mance of the RC model? What’s the relationship between nonlinearity
of regime and RC model performance?

Author’s reply:

ENSO can be described by two different theoretical frameworks. Ac-
cording to one perspective, it is a stable (damped) mode sustained
primarily by random atmospheric noise (subcritical regime). Alterna-
tively, it can be viewed as a self-sustained oscillatory mode (supercriti-
cal regime). In the latter scenario, nonlinearity is essential in modulat-
ing ENSO behavior. In the Zebiak and Cane (ZC) model, nonlinearities
come from three main sources: heat advection, wind stress anomalies,
and subsurface water temperature variations [1].

The Reservoir Computing (RC) model can capture complex nonlinear
relationships between input variables by employing a nonlinear acti-
vation function (in our study, the hyperbolic tangent). In contrast, a
Linear Regressor (LR) can only estimate linear relationships between



input variables. Consequently, the performance gap between the RC
model and the LR is expected to be more pronounced in the supercrit-
ical regime, where nonlinear effects are more important.

Changes in manuscript:

In the revised manuscript, in the ”Zebiak and Cane (ZC) model” sec-
tion, we have improved our explanation of why nonlinearities are more
influential in the supercritical regime. We now specify the three main
sources of these nonlinearities and cite [1], which assesses their relative
importance. Please refer to lines 72-76. In the ”Reservoir Computer”
section, we clarify why the RC model is better suited to capture com-
plex nonlinear relationships between input variables than a simple LR.
Please refer to lines 101-104. Furthermore, in the "RC performances”
section, we explain why including the variable 7 during training the
RC model’s performance increase in the supercritical regime, under-
scoring the crucial role of the nonlinear effects introduced by this vari-
able. Please refer to lines 227-232.

. Around line 248, do the authors use values of the CNOP objective func-
tion to assess whether the model is susceptible?

Author’s reply:

For both the RC and the ZC model, we used the Cobyla optimization
algorithm to maximize the CNOP objective function and estimate the
optimal initial perturbations. The resulting maximal error growth, cal-
culated for a specific lead time, was then taken as our measure of the
model’s sensitivity to initial perturbations.

Changes in manuscript:
In the revised manuscript we have better specify this point in the
"CNOP analysis” section. Please refer to lines 291-294.

. For figure 5, why the CNOP results for ZC model is quite symmetrical
while the CNOP results for RC models are usually biased?



Author’s reply:

The ZC model’s optimal initial perturbations exhibit a notably sym-
metrical distribution, evident in both SST perturbations at shorter lead
times (3 months) and thermocline depth perturbations at longer lead
times (6 and 9 months). This symmetry suggests that the model is
sensitive to both negative and positive initial perturbations, depending
on the specific event.

In contrast, the RC generally demonstrates greater sensitivity to ini-
tial SST perturbations across both shorter and longer lead times, and
the distribution of these optimal initial SST perturbations consistently
shows a clear preference for either positive or negative values.

To better understand the origins of these differences, we have divided
the initial conditions considered in the ”CNOP analysis” section, span-
ning the months [March, April,May| into three categories (positive, neg-
ative, and neutral) based on the initial eastern Pacific sea surface tem-
perature anomalies (SSTA). This categorization allowed us to compare
the CNOPs behavior for each category across both the ZC model (in
the subcritical and supercritical regimes) and the RC model (in both
regimes, with and without the inclusion of the variable 7~ during train-

ing).

Changes in manuscript:

In the revised manuscript, we have incorporated the results of this
new analysis in the "CNOPs analysis” section. Please refer to lines
346-424. Additionally, Appendix D now includes two plots that il-
lustrate the distribution of CNOPs for the various initial condition
categories. These plots cover both the ZC model (in the subcritical
and supercritical regimes) and the RC model (in the subcritical and
supercritical regimes, with and without the inclusion of the variable 7
during training).

. Around line 297, the authors mention that the inclusion or exclusion
of wind speed anomalies has a large effect on the different variables of
CNOP in the RC models for the subcritical regime. I am wondering
why this is not obvious in the RC models for the supercritical regime?



Author’s reply:

In the subcritical regime, ENSO variability is primarily sustained by
atmospheric noise, introduced as stochastic wind stress forcing. This
noise influences the thermocline slope, activating mechanisms that lead
to the development of perturbations. When the variable 7. is included
during training, the RC explicitly learns the relationship between wind
anomalies and thermocline adjustments, and the state of the surface
winds is provided as an initial condition. Consequently, smaller ther-
mocline perturbations can be amplified by wind anomalies, leading to
larger deviations from the reference trajectory. In contrast, when 7. is
not included, the RC only learns the direct relationship between SST
and thermocline depth anomalies without explicit knowledge of how
wind anomalies influence thermocline slope adjustments. As a result,
in the absence of wind-forcing information, a larger initial thermocline
perturbation is required to generate significant error propagation over
time.

In the supercritical regime, thermocline depth perturbations are not
purely activated by atmospheric noise but also emerge due to the in-
ternal instability of the system. The influence of stochastic atmospheric
noise is weaker than in the subcritical case. This means that even if
the model does not explicitly account for the effect of wind forcing on
the thermocline slope, strong initial thermocline depth anomalies are
not needed to maximize error propagation.

However, even in the supercritical regime, when 7. is not included,
the RC remains more sensitive to initial thermocline perturbations at
longer lead times than when 7, is included, but the difference is much
less pronounced than in the subcritical regime.

In every case, the Reservoir Computer is consistently less sensitive to
thermocline depth perturbations at longer lead times compared to the
Zebiak and Cane model. This suggests that the RC effectively miti-
gates error propagation from thermocline perturbations.

Changes in manuscript:

In the revised manuscript, in the "CNOP analysis” section, we have
provided a clearer explanation of why the inclusion of the variable 7¢
has a greater impact on the RC model’s optimal initial perturbations in
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the subcritical regime than in the supercritical regime, connecting this
explanation with the new analysis provided for the previous comment
about the symmetrical distribution of the ZC model CNOPs and the
more biased distribution of the RC model’s CNOPs. Please refer to
lines 389424 for further details.

. I have noticed there is another similar study that revealing the initial
perturbations of SST for ENSO predictions in AI model
(hitps://doi.org/10.1002/q5.4882). Maybe this is a more comprehensive
way to detecting the detailed patterns and physical variables of initial
perturbations related to SPB from index models (such as RC models
used in this study) to spatial models.

Author’s reply:

We thank the reviewer for bringing to our attention a study similar to
ours that was not cited in our manuscript. Although the analysis by
Qin et al. [2] bears similarities to our experiments, there are substantial
differences that make both studies valuable:

(a) In [2], the GFDL CM2pl dynamical numerical model is used solely
to validate the optimal initial perturbations computed for the
Deep Learning model employed in their study. However, they
do not compute the optimal initial perturbations for the GFDL
CM2p1 model itself. As a result, their analysis does not explore
whether the GFDL CM2pl and Deep Learning models exhibit
similar optimal initial perturbations or how optimal initial errors
propagate in both models. This comparison is a central aspect of
our study.

(b) In [2], the CNOP objective function for the deep-learning model
is optimized using automatic differentiation, a feature available
in most modern deep-learning frameworks, such as PyTorch and
TensorFlow. However, this approach does not apply to dynamical
numerical models since these models are not implemented using
modern deep-learning frameworks. Moreover, for these models,



computing or approximating gradients with respect to their out-
puts is often highly complex or practically infeasible, making it
challenging to apply gradient-based optimization techniques. To
enable a meaningful comparison of how optimal initial perturba-
tions evolve in both machine learning and numerical models, a
gradient-free optimization method, like the Cobyla algorithm em-
ployed in our study, is essential.

These differences in the analysis performed and the methods adopted
underscore the complementary contributions of our study and that in

2].

Changes in manuscript:

In the revised manuscript, in the ”Summary and Discussion” section,
we reference [2] to discuss their interesting results and underline the key
differences between their study and ours. Please refer to lines 433-445.

. The AI model appears to be less sensitive to the initial perturbations,
or the initial perturbations do not grow as fast as those in numerical
models, which is the reason for the higher skill of the AI model. Similar
conclusions are also obtained in another similar study
(https://doi.org/10.1029/2023GL105747). Can the authors discuss the
pros and cons of this characteristics? I think this will be significantly
valuable for the future modelling, as well as further understanding, of
earth system.

Author’s reply:

We agree with the referee that discussing the pros and cons of this char-
acteristic of Al models compared to dynamical models will be highly
valuable.

Changes in manuscript:
In the “Summary and Discussion” section of the revised manuscript, we
discussed the pros and cons of this characteristic of AI models, referring



to the interesting results presented by Selz et al. in [3]. Please refer to
lines 467-473.

Authors’ comments: Due to minor imprecisions in our initial results,
we have updated two entries in Tables D1 and D2 in Appendix D. Conse-
quently, Fig. D1 (a)—(d) has been revised to reflect these corrections; the
differences from the previous version are minimal. Additionally, Fig. 6(b)
and Fig. 5(c)—(d) have been updated, with the observed variations being
negligible and not affecting our final conclusions. The corrected results have
been uploaded to Zotero, and the new link is provided in the code availability
section.
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MS-No.:npg-2024-24
Title: Explaining the high skill of Reservoir Computing method in El Nifio prediction
Authors: Francesco Guardamagna, Claudia E. Wieners and Henk A. Dijkstra

Point-by-point reply to reviewer #2
March 12, 2025

We thank the reviewer for their careful reading and for the useful com-
ments on the manuscript.

Overview

Reservoir Computer (RC) is one special version of RNN, which has been
applied to build ENSO prediction model including the study in this article.
This study aims to explain the high skill of RC in El Nino prediction the-
oretically. Based on ideal experiments, the author uses various ZC models
in different regimes to generate “observation”, and uses RC to learn these
data so that the ENSO dynamic characteristics of ZC and the Nino trajectory
can be learned. From the results, whether in the subcritical or supercritical
regime, RC shows high performance. In addition, through CNOP calculation,
the sensitivities of RC and ZC' to the initial field are explored with meaningful
results. However, it seems to be contrary to the main purpose of the study,
and it does not seem to fully explain the reason why RC can produce high
El Nino forecasting skills. This is my biggest doubt about this work, and of
course it 1s also the most interesting point. I hope the author can have a
more elegant explanation. In addition, the following are some thoughts and
suggestions on this work or article:

Major comments:

1. The results in Figure 2 make me think deeply. It tells us that when
training a model, it doesn’t mean that the richer the data included, the
better the results will be. It seems to be related to the inherent dynamic
characteristics of the system. Could you please explain why. For ex-
ample, in the sub-critical state, why the prediction skill is better when
wind field is not included in the training period? Although you attribute



it to the sensitivity to wind noise, this is not specific enough. I think it
can be discussed in more detail. By the way, I do not understand the
sentence in Line 115.

Author’s Reply:

In Machine Learning, adding input features does not always enhance
performance, as redundant or irrelevant information can degrade model
efficiency. In the subcritical regime, where ENSO variability is primar-
ily noise-driven and the system is linearly stable, including surface wind
speed anomalies (7.) during training may appear beneficial. However,
our results show that the impact of 7. depends on the forecast horizon.
When initialized from ENSO neutral conditions, optimal atmospheric
noise patterns can trigger transient growth of perturbations, provided
the initial conditions are favorable. Conversely, if a perturbation is
already developing, subsequent noise patterns can either reinforce or
dampen its evolution. This makes 7. particularly useful for predict-
ing short-term variability, as it provides critical information about the
external forcing that influences early perturbation dynamics. Accord-
ingly, the Reservoir Computer (RC) achieves better accuracy at shorter
lead times (3-6 months) when 7, is included. At longer lead times (9-18
months), improved predictive performance requires the model to rely
more on the system’s internal dynamics rather than the short-term in-
fluence of stochastic noise. Including 7. during training can lead to
overfitting, causing the model to focus excessively on short-term noise
patterns instead of learning the internal system dynamics. As a re-
sult, model performance deteriorates at longer lead times when 7, is in-
cluded. On line 115, we clarify that instead of directly using zonal wind
stress anomalies to train the RC and LR model, we use zonal surface
wind speed anomalies as a proxy. These two variables are inherently
correlated through the bulk formula, conveying similar information.
However, a key distinction arises due to how noise is introduced in the
Zebiak and Cane (ZC) model: we introduce stochasticity in the form of
random zonal wind stress bursts. This results in random local fluctua-
tions in the zonal wind stress signal that are inherently difficult for the
RC and LR models to predict and reproduce. In contrast, the surface
wind speed anomaly signal is smoother and more predictable, making
it easier for the RC and LR models to learn and generalize effectively.



To illustrate this, Fig. 1 below shows the relationship between zonal
surface wind speed anomalies and zonal wind stress anomalies, both
normalized by their mean and standard deviation, in the supercritical
and subcritical regimes.

Changes in the Manuscript:

In the revised manuscript, in the "RC performances” section, we pro-
vide a clearer explanation of how the variable 7 contributes to RC
performance in both the subcritical and supercritical regimes. Please
refer to lines 217-232 on page 9. Additionally, in the ”Reservoir Com-
puter” section, we better explain why we use surface zonal wind speed
anomalies as a proxy for wind stress. Please refer to lines 120-126.
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Figure 1: Relationship between normalized zonal surface wind speed anoma-

lies and zonal wind stress anomalies in the subcritical (a) and supercritical
regimes (b).



2. For the CNOP part, “lead time” in ms is optimization time, right?

Author’s Reply:

In Fig. 4 and 5 in the "CNOP Analysis” section, the lead time in
months on the x-axis corresponds to the optimization time considered
during CNOP computation.

Changes in the Manuscript:

In the revised manuscript, we specify that the lead time on the x-axis of
Fig. 4 and 5 represents the optimization time considered during CNOP
computation. Please refer to line 287-288.

3. Some pictures need to be refined. For example, it is recommended that
the abscissa and ordinate in Figure A1 should be changed into the for-
mat of latitude and longitude coordinates.

Author’s Reply:
Suggestions have been followed.

Changes in the Manuscript:

In the revised manuscript, the axes in Fig. Al. have been modified
using the format of latitude and longitude coordinates. We also refine
Fig. A2. to make it more consistent with the previous figures in the
manuscript.

4. The calculation of CNOP in complicated climate models has always been
a major problem. How did you use the gradient-free Cobyla optimiza-
tion algorithm to solve it? In addition, it is necessary to further verify
whether the obtained CNOP is truly the CNOP. It is recommended to
add random small perturbations to the obtained CNOP and project it
onto the constraint conditions to compare the development of errors, so
as to prove that the solution of CNOP is optimal.



Author’s Reply:

The Constrained Optimization BY Linear Approximation (COBYLA)
algorithm is a gradient-free optimization method designed for solving
nonlinear optimization problems. At each iteration, the algorithm con-
structs linear approximations of the objective function and constraints
using linear interpolation at n + 1 points in the space of the opti-
mization variables. The worst-performing point is identified based on
the original, not approximated objective function. Using the linear
approximations, the algorithm then formulates and solves a linear op-
timization problem within a small radius around this point to update
its value. The COBYLA algorithm is particularly well-suited for non-
linear optimization problems with a relatively small number of vari-
ables, especially in cases where computing derivatives is challenging
or infeasible. These features make COBYLA an ideal choice for our
analysis. Our study compares how the error due to initial uncertainties
evolves over time for two different models, the RC and the ZC model.
The RC is trained on one-dimensional indices, including the NINO3
index, the mean thermocline depth anomalies in two regions (5°N-5°S,
120°E-180°E in the western Pacific and 5°N-5°S, 180°E-290°E in the
eastern Pacific), and the zonal surface wind speed anomalies (7,) over
the area 5°N-5°S, 145°E-190°E. In contrast, the state vector of the ZC
model consists of 2-dimensional fields of sea surface temperature, ther-
mocline depth, oceanic and atmospheric velocities, and atmospheric
geopotential. To address these differences in state vector dimension-
ality and ensure a fair comparison between the RC and ZC models,
we have applied a distinct uniform constant perturbation to all the
ZC model’s SST fields in the NINO3 area, all the thermocline depth
fields over the area 5°N-5°S 120°E-180°E and all the thermocline fields
over the area 5°N-5°S 180°E-290°E. This has been done to change the
mean values over these three areas of a specific quantity. By doing so,
we also reduced the number of variables of our optimization problem
to three, making the COBYLA algorithm an appropriate choice for
our analysis. To validate the estimated Conditional Optimal Nonlinear
Perturbations (CNOPs), we didn’t use the methodology suggested by
the reviewer. Instead, we evaluate error propagation resulting from ap-
plying numerous randomly chosen initial perturbations that satisfy the
constraint conditions to determine whether the CNOPs correspond to
the largest error growth. Furthermore, we verify whether the estimated
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CNOPs lie on the boundary of the sphere defined by the constraints.

Changes in the Manuscript:

In the revised manuscript, we include a new appendix section provid-
ing a detailed description of the COBYLA algorithm. Please refer to
lines 589-613. Additionally, We include plots in Appendix 2 showing
the outcome of our validation procedure.

. Compared with linear regression, it seems that the advantages of RC
are not particularly significant either. What’s your view on this issue?

Author’s Reply:

While we acknowledge that the RC does not drastically outperform the
LR, our results demonstrate a clear advantage in adopting the RC, as its
ability to capture nonlinear relationships between input variables, made
possible by the use of a nonlinear activation function (the hyperbolic
tangent in our study), leads to a consistent performance improvement,
particularly in the supercritical regime, where non-linearities play a
more prominent role. This is further supported by the fact that in this
regime, model performance improves when 7, is included during train-
ing, highlighting the importance of the nonlinear effects introduced by
this variable [1]. These effects are better captured by the RC, whereas
the LR can only provide a linear approximation. Furthermore, the rel-
atively small performance gap found in this study can be attributed to
the ZC model being a model of intermediate complexity in which ENSO
is a weakly nonlinear phenomena (e.g. all wave dynamics in ocean and
atmosphere is linear in the model). The data generated from the ZC
model exhibit simpler dynamics compared to real-world observations or
data from simulations with more complex General Circulation Models
(GCMs). In such cases, the performance advantage of the RC over the
LR is expected to be more pronounced.

Changes in the Manuscript:
In the revised manuscript, we better analyze the difference in perfor-
mances between the RC and the LR in the “RC performances” section,



explaining why the increase in performances is moderate. Please refer
to lines 236-248.

. In RC, CNOP is not sensitive to the forecast duration, while the oppo-
site is true in ZC' (Fig. 5). Why is this the case and what does it imply?

Author’s Reply:

Figure 5 shows that the Zebiak-Cane (ZC) model is more sensitive
to initial sea surface temperature (SST) perturbations at shorter lead
times (3 months) and more sensitive to initial thermocline depth per-
turbations at longer lead times (6 and 9 months). In contrast, the RC
appears to be more sensitive to SST perturbations across all lead times
(3 to 9 months). As discussed in the conclusion, thermocline anomalies
play a crucial role in error propagation, particularly in the ZC model,
where ENSO variability is strongly influenced by the thermocline feed-
back. The Reservoir, however, effectively reduces sensitivity to initial
thermocline perturbations, reducing error propagation.

Changes in the Manuscript:
In the revised manuscript, we provide a clearer explanation of this as-
pect in the "CNOP analysis” section (see lines 340-344 on page 17).

. Personally, to explain the advantages of RC in ENSO prediction, the
key is to focus on the extent to which RC has learned the ENSO dy-
namaics or nonlinear behaviors.

Author’s Reply:

In our view, performing short-term forecasts and developing a perfect
model emulator capable of capturing the long-term dynamics and sta-
tistical properties of a system are fundamentally different tasks, each
requiring distinct model architectures, hyperparameter configurations,
and evaluation criteria. Assessing how well a Machine Learning model
captures a system’s dynamics and nonlinear behaviors is more relevant
when analyzing its ability to replicate the long-term characteristics and
statistics of the system (in the case of ENSO, on a decadal timescale).



In recent years, various Machine Learning models have demonstrated
strong ENSO forecasting skills on relatively short timescales (up to
21 months) without necessarily capturing all the underlying physical
processes. This suggests that their ability to achieve high short-term
predictive skill relies on different factors. Here, we define forecasts
spanning a couple of years as ”short-term” compared to the decadal
timescales required to assess ENSQO’s long-term behavior. In this study,
we focus on the RC model, specifically investigating the hypothesis that
its superior predictive performance, particularly its ability to overcome
the spring predictability barrier, stems from its capacity to reduce error
propagation caused by initial uncertainties. This aligns with the per-
spective proposed in previous studies [2], where the spring predictabil-
ity barrier in the ZC model was quantified in terms of sensitivity to
initial perturbations.

Changes in the Manuscript:
In the revised manuscript we made a remark on this in the ”Summary
and Discussion” section. Please refer to lines 483-491.

Authors’ comments: Due to minor imprecisions in our initial results,
we have updated two entries in Tables D1 and D2 in Appendix D. Conse-
quently, Fig. D1 (a)—(d) has been revised to reflect these corrections; the
differences from the previous version are minimal. Additionally, Fig. 6(b)
and Fig. 5(c)—(d) have been updated, with the observed variations being
negligible and not affecting our final conclusions. The corrected results have
been uploaded to Zotero, and the new link is provided in the code availability
section.
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MS-No.:npg-2024-24
Title: Explaining the high skill of Reservoir Computing method in El Nino prediction
Authors: Francesco Guardamagna, Claudia E. Wieners and Henk A. Dijkstra

Point-by-point reply to reviewer #3
March 12, 2025

We thank the reviewer for their careful reading and for the useful com-
ments on the manuscript.

Overview

This manuscript investigates the prediction skill of a specific type of Re-
current Neural Network, known as Reservoir Computer (RC), in relation to
ENSO forecasting. It finds that error propagation in RC is lessened compared
to the Zebiak-Cane (ZC) model. While the RC demonstrates high prediction
skill (e.g., an ACC greater than 0.6 at 18 months lead time), I believe this
manuscript is not suitable for publication for several reasons:

Major comments:

1. The predictions are not based on real-world data. Both the training
and testing datasets are generated from the ZC model, which does not
reflect actual observations. It is unclear how well RC performs when
predicting realworld events, such as the ENSO events of 2014-2015.

Author’s reply:

First of all, the RC model’s effectiveness in predicting real ENSO events
has already been demonstrated in previous studies [2]. Second, we can
easily clarify why we only work with data from the Zebiak and Cane
(ZC) model rather than real-world observations. The objective of our
study is to demonstrate that the Reservoir Computer (RC) can miti-
gate error propagation resulting from initial conditions perturbations
more effectively than a classical dynamical numerical model. This is
proposed as a potential explanation for the RC model’s high perfor-
mances in ENSO forecasting and its ability to overcome the Spring



Predictability Barrier problem, which was previously quantified in the
ZC model in terms of sensitivity to initial conditions perturbations [3].
Such an analysis and comparison is simply impossible using real-world
observations as we do not know the evolution operator of the real-world
system and hence cannot determine the CNOP. By focusing on the ZC
model data, we analyze the RC model’s behavior and learned dynamics
within a controlled environment.

Changes in manuscript:
No changes in the manuscript needed.

. The prediction accuracy of RC is very similar to that achieved by linear
regression (LR, as shown in Fig. 2). First, error bars should be included
for the LR results. Second, the performance of LR is comparable to that
of RC, particularly as indicated by the prozimaity of the red and blue lines
at lead times of 1-9 months.

Author’s reply:

In Fig. 2, the yellow and red lines represent the performance of the LR
with and without surface wind speed anomalies (7.) included during
training, respectively. Similarly, the blue and green lines correspond
to the performance of the RC with and without 7, included during
training, respectively. To ensure a fair comparison, the yellow line
should be compared with the blue line (LR vs. RC with 7. included),
and the red line with the green line (LR vs. RC without 7. included).

While we acknowledge that the RC does not drastically outperform the
LR, our results demonstrate a clear advantage in adopting the RC, as
its ability to capture nonlinear relationships between input variables,
made possible by the use of a nonlinear activation function (the hyper-
bolic tangent in our study), leads to a consistent performance improve-
ment, particularly in the supercritical regime, where nonlinearities play
a more prominent role. This is further supported by the fact that in this
regime, model performance improves when 7, is included during train-
ing, highlighting the importance of the nonlinear effects introduced by
this variable [1]. These effects are better captured by the RC, whereas
the LR can only provide a linear approximation.

It is impossible to show error bars for the LR model because, unlike



the RC, the LR does not rely on random weights initialization. The
LR will consistently produce the same results for a given training set,
so given a specific training set, there is no variability in the LR outputs.

Changes in manuscript:

In the revised manuscript, we provide a more complete analysis of the
performance difference between the RC and the LR models, focusing
on why the RC model seems to provide only a moderate advantage.
Please refer to lines 237-248.

. The influence of wind stress in RC' is inconsistent. In some instances,
incorporating wind stress enhances ENSO predictions, while in others,
it does not. This inconsistency undermines the conclusions drawn, as
it does not provide clear insights for real-world predictions, particularly
regarding whether ENSO s damped or self-exciting in actual observa-
tions.

Author’s reply:
We appreciate this critical comment of the reviewer, but our results are
actually consistent and show a clear pattern.

In the supercritical regime, the RC consistently performs better across
all lead times when 7, is included during training. This highlights the
importance of the nonlinear effects introduced by this variable, which
the RC can efficiently capture through the use of a nonlinear activa-
tion function. In the subcritical regime, the Reservoir Computer (RC)
achieves higher accuracy at shorter lead times (3-6 months) when 7.
is included, while at longer lead times (9-18 months), performance im-
proves when 7, is excluded. This is because 7. plays a crucial role in
capturing short-term variability, providing valuable information about
the external stochastic forcing that drives the early perturbations dy-
namics. At longer lead times (9-18 months), improved predictive per-
formance requires the model to rely more on the system’s internal dy-
namics rather than the short-term influence of stochastic noise. In-
cluding 7, during training can lead to overfitting, causing the model to
focus excessively on short-term noise patterns instead of learning the
internal system dynamics. As a result, model performance deteriorates



at extended lead times when 7, is included. These results clearly show
how the inclusion of the variable 7. influences the RC performances in
the subcritical and supercritical regimes.

Drawing conclusions about the true nature of ENSO is not the objec-
tive (and far beyond the scope) of this study.

Changes in manuscript:

In the revised manuscript, we clarify in the “Summary and Discussion”
section that the goal of our study is not to draw conclusions about the
real ENSO. Rather, we aim to provide a potential explanation for the
RC model’s high forecasting performance compared to the ZC dynam-
ical model. Please refer to lines 443-448 on page 20. We also better
explain the influence of the variable 7. on the RC performances in the
subcritical and supercritical regimes in the “RC performances” section.
Please refer to lines 218-232.

4. The results from the ZC model raise concerns. For instance, in Fig.
A2, the Nino3 index only fluctuates between 0.1 and -0.1.

Author’s reply:

Fig. A2 only illustrates the response of the deterministic ZC model to
a small initial perturbation applied to the seasonal background state in
the subcritical (ry < 0.8) and supercritical (rq > 0.8) regimes. In the
subcritical regime, the perturbation rapidly decays, and without noise,
oscillations cannot occur. In contrast, in the supercritical regime, the
perturbation evolves into a stable limit cycle with a period of approxi-
mately 4 years. Fig. A2 does not show the actual long term behaviour
of the ZC model in the presence of noise, which is depicted in Fig. 1.

Changes in manuscript:
No changes in the manuscript needed.

Authors’ comments: Due to minor imprecisions in our initial results,
we have updated two entries in Tables D1 and D2 in Appendix D. Conse-
quently, Fig. D1 (a)—(d) has been revised to reflect these corrections; the
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differences from the previous version are minimal. Additionally, Fig. 6(b)
and Fig. 5(c)—(d) have been updated, with the observed variations being
negligible and not affecting our final conclusions. The corrected results have
been uploaded to Zotero, and the new link is provided in the code availability
section.
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