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We thank the reviewer for their careful reading and for the useful com-
ments on the manuscript.

Overview

Reservoir Computer (RC) is one special version of RNN, which has been
applied to build ENSO prediction model including the study in this article.
This study aims to explain the high skill of RC in El Nino prediction the-
oretically. Based on ideal experiments, the author uses various ZC models
in different regimes to generate “observation”, and uses RC to learn these
data so that the ENSO dynamic characteristics of ZC and the Nino trajectory
can be learned. From the results, whether in the subcritical or supercritical
regime, RC shows high performance. In addition, through CNOP calculation,
the sensitivities of RC and ZC to the initial field are explored with meaningful
results. However, it seems to be contrary to the main purpose of the study,
and it does not seem to fully explain the reason why RC can produce high
El Nino forecasting skills. This is my biggest doubt about this work, and of
course it is also the most interesting point. I hope the author can have a
more elegant explanation. In addition, the following are some thoughts and
suggestions on this work or article:

Major comments:

1. The results in Figure 2 make me think deeply. It tells us that when
training a model, it doesn’t mean that the richer the data included, the
better the results will be. It seems to be related to the inherent dynamic
characteristics of the system. Could you please explain why. For ex-
ample, in the sub-critical state, why the prediction skill is better when
wind field is not included in the training period? Although you attribute
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it to the sensitivity to wind noise, this is not specific enough. I think it
can be discussed in more detail. By the way, I do not understand the
sentence in Line 115.

Author’s Reply:

In Machine Learning, adding input features does not always enhance
performance, as redundant or irrelevant information can degrade model
efficiency. In the subcritical regime, where ENSO variability is primar-
ily noise-driven and the system is linearly stable, including surface wind
speed anomalies (τc) during training may appear beneficial. However,
our results show that the impact of τc depends on the forecast horizon.
When initialized from ENSO neutral conditions, optimal atmospheric
noise patterns can trigger transient growth of perturbations, provided
the initial conditions are favorable. Conversely, if a perturbation is
already developing, subsequent noise patterns can either reinforce or
dampen its evolution. This makes τc particularly useful for predict-
ing short-term variability, as it provides critical information about the
external forcing that influences early perturbation dynamics. Accord-
ingly, the Reservoir Computer (RC) achieves better accuracy at shorter
lead times (3–6 months) when τc is included. At longer lead times (9–18
months), improved predictive performance requires the model to rely
more on the system’s internal dynamics rather than the short-term in-
fluence of stochastic noise. Including τc during training can lead to
overfitting, causing the model to focus excessively on short-term noise
patterns instead of learning the internal system dynamics. As a re-
sult, model performance deteriorates at longer lead times when τc is in-
cluded. On line 115, we clarify that instead of directly using zonal wind
stress anomalies to train the RC and LR model, we use zonal surface
wind speed anomalies as a proxy. These two variables are inherently
correlated through the bulk formula, conveying similar information.
However, a key distinction arises due to how noise is introduced in the
Zebiak and Cane (ZC) model: we introduce stochasticity in the form of
random zonal wind stress bursts. This results in random local fluctua-
tions in the zonal wind stress signal that are inherently difficult for the
RC and LR models to predict and reproduce. In contrast, the surface
wind speed anomaly signal is smoother and more predictable, making
it easier for the RC and LR models to learn and generalize effectively.

2



To illustrate this, Fig. 1 below shows the relationship between zonal
surface wind speed anomalies and zonal wind stress anomalies, both
normalized by their mean and standard deviation, in the supercritical
and subcritical regimes.

Changes in the Manuscript:
We will more clearly describe the RC performances in the “RC perfor-
mances” section on page 8, focusing on the contribution of the variable
τc in the subcritical and supercritical regime. We will better explain
why we choose to use surface zonal wind speed anomalies as a proxy
for wind stress in the “Reservoir Computer” section.
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(a)

(b)

Figure 1: Relationship between normalized zonal surface wind speed anoma-
lies and zonal wind stress anomalies in the subcritical (a) and supercritical
regimes (b).
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2. For the CNOP part, “lead time” in ms is optimization time, right?

Author’s Reply:
In Fig. 4 and 5 in the ”CNOP Analysis” section, the lead time in
months on the x-axis corresponds to the optimization time considered
during CNOP computation.

Changes in the Manuscript:
We will clarify that the lead time on the x-axis of Fig. 4 and 5 repre-
sents the optimization time considered during CNOP computation.

3. Some pictures need to be refined. For example, it is recommended that
the abscissa and ordinate in Figure A1 should be changed into the for-
mat of latitude and longitude coordinates.

Author’s Reply:
Suggestions will be followed.

Changes in the Manuscript:
In the revised manuscript, we will refine the figures, including modify-
ing the axes in Fig. A1.

4. The calculation of CNOP in complicated climate models has always been
a major problem. How did you use the gradient-free Cobyla optimiza-
tion algorithm to solve it? In addition, it is necessary to further verify
whether the obtained CNOP is truly the CNOP. It is recommended to
add random small perturbations to the obtained CNOP and project it
onto the constraint conditions to compare the development of errors, so
as to prove that the solution of CNOP is optimal.

Author’s Reply:
The Constrained Optimization BY Linear Approximation (COBYLA)
algorithm is a gradient-free optimization method designed for solving
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nonlinear optimization problems. At each iteration, the algorithm con-
structs linear approximations of the objective function and constraints
using linear interpolation at n + 1 points in the space of the opti-
mization variables. The worst-performing point is identified based on
the original, not approximated objective function. Using the linear
approximations, the algorithm then formulates and solves a linear op-
timization problem within a small radius around this point to update
its value. The COBYLA algorithm is particularly well-suited for non-
linear optimization problems with a relatively small number of vari-
ables, especially in cases where computing derivatives is challenging
or infeasible. These features make COBYLA an ideal choice for our
analysis. Our study compares how the error due to initial uncertainties
evolves over time for two different models, the RC and the ZC model.
The RC is trained on one-dimensional indices, including the NINO3
index, the mean thermocline depth anomalies in two regions (5°N–5°S,
120°E–180°E in the western Pacific and 5°N–5°S, 180°E–290°E in the
eastern Pacific), and the zonal surface wind speed anomalies (τc) over
the area 5°N–5°S, 145°E–190°E. In contrast, the state vector of the ZC
model consists of 2-dimensional fields of sea surface temperature, ther-
mocline depth, oceanic and atmospheric velocities, and atmospheric
geopotential. To address these differences in state vector dimension-
ality and ensure a fair comparison between the RC and ZC models,
we have applied a distinct uniform constant perturbation to all the
ZC model’s SST fields in the NINO3 area, all the thermocline depth
fields over the area 5°N-5°S 120°E-180°E and all the thermocline fields
over the area 5°N-5°S 180°E-290°E. This has been done to change the
mean values over these three areas of a specific quantity. By doing so,
we also reduced the number of variables of our optimization problem
to three, making the COBYLA algorithm an appropriate choice for
our analysis. To validate the estimated Conditional Optimal Nonlinear
Perturbations (CNOPs), we didn’t use the methodology suggested by
the reviewer. Instead, we evaluate error propagation resulting from ap-
plying numerous randomly chosen initial perturbations that satisfy the
constraint conditions to determine whether the CNOPs correspond to
the largest error growth. Furthermore, we verify whether the estimated
CNOPs lie on the boundary of the sphere defined by the constraints.
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Changes in the Manuscript:
In the revised manuscript, we will include a new appendix section pro-
viding a detailed description of the COBYLA algorithm. Additionally,
we will provide a more detailed description on the validation of the
CNOP.

5. Compared with linear regression, it seems that the advantages of RC
are not particularly significant either. What’s your view on this issue?

Author’s Reply:

While we acknowledge that the RC does not drastically outperform the
LR, our results demonstrate a clear advantage in adopting the RC, as its
ability to capture nonlinear relationships between input variables, made
possible by the use of a nonlinear activation function (the hyperbolic
tangent in our study), leads to a consistent performance improvement,
particularly in the supercritical regime, where non-linearities play a
more prominent role. This is further supported by the fact that in this
regime, model performance improves when τc is included during train-
ing, highlighting the importance of the nonlinear effects introduced by
this variable [1]. These effects are better captured by the RC, whereas
the LR can only provide a linear approximation. Furthermore, the rel-
atively small performance gap found in this study can be attributed to
the ZC model being a model of intermediate complexity in which ENSO
is a weakly nonlinear phenomena (e.g. all wave dynamics in ocean and
atmosphere is linear in the model). The data generated from the ZC
model exhibit simpler dynamics compared to real-world observations or
data from simulations with more complex General Circulation Models
(GCMs). In such cases, the performance advantage of the RC over the
LR is expected to be more pronounced.

Changes in the Manuscript:
In the revised manuscript, we will clarify the difference in performances
between the RC and the LR in the “RC performances” section, explain-
ing why the increase in performances is moderate.
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6. In RC, CNOP is not sensitive to the forecast duration, while the oppo-
site is true in ZC (Fig. 5). Why is this the case and what does it imply?

Author’s Reply:

Figure 5 shows that the Zebiak-Cane (ZC) model is more sensitive
to initial sea surface temperature (SST) perturbations at shorter lead
times (3 months) and more sensitive to initial thermocline depth per-
turbations at longer lead times (6 and 9 months). In contrast, the RC
appears to be more sensitive to SST perturbations across all lead times
(3 to 9 months). As discussed in the conclusion, thermocline anomalies
play a crucial role in error propagation, particularly in the ZC model,
where ENSO variability is strongly influenced by the thermocline feed-
back. The Reservoir, however, effectively reduces sensitivity to initial
thermocline perturbations, reducing error propagation.

Changes in the Manuscript:
We will include a better clarification of the results in the “CNOP anal-
ysis” section on page 11 of the revised manuscript.

7. Personally, to explain the advantages of RC in ENSO prediction, the
key is to focus on the extent to which RC has learned the ENSO dy-
namics or nonlinear behaviors.

Author’s Reply:
In our view, performing short-term forecasts and developing a perfect
model emulator capable of capturing the long-term dynamics and sta-
tistical properties of a system are fundamentally different tasks, each
requiring distinct model architectures, hyperparameter configurations,
and evaluation criteria. Assessing how well a Machine Learning model
captures a system’s dynamics and nonlinear behaviors is more relevant
when analyzing its ability to replicate the long-term characteristics and
statistics of the system (in the case of ENSO, on a decadal timescale).
In recent years, various Machine Learning models have demonstrated
strong ENSO forecasting skills on relatively short timescales (up to
21 months) without necessarily capturing all the underlying physical
processes. This suggests that their ability to achieve high short-term
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predictive skill relies on different factors. Here, we define forecasts
spanning a couple of years as ”short-term” compared to the decadal
timescales required to assess ENSO’s long-term behavior. In this study,
we focus on the RC model, specifically investigating the hypothesis that
its superior predictive performance, particularly its ability to overcome
the spring predictability barrier, stems from its capacity to reduce error
propagation caused by initial uncertainties. This aligns with the per-
spective proposed in previous studies [2], where the spring predictabil-
ity barrier in the ZC model was quantified in terms of sensitivity to
initial perturbations.

Changes in the Manuscript:
We will make a remark on this in the revised “Summary and Discus-
sion” section.
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