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We thank the reviewer for their careful reading and for the useful com-
ments on the manuscript.

Overview

This study focuses on explaining the origins of high forecasting skills of
recently emerging deep learning models for ENSO predictions. More specifi-
cally, the authors firstly build a skillful Reservoir Computers (RC) model for
simulating Zebiak-Cane numerical model, and then investigate and compare
the sensitivities on initial perturbations of RC and ZC models (also including
an LC model). The authors find RC models are less susceptible to initial per-
turbations no matter for short and long lead months, which is also the possi-
ble reason of weakening the impact of spring predictability barrier (SPB) and
extending the effective lead time. In general, this study crafts some novel ex-
periments, and I have the following major questions for the author to answer:

Major comments:

1. Win in Equation (4a) and W in in the following illustration is not con-
sistent.

Author’s reply:
We thank the reviewer for pointing out this imprecision.

Changes in manuscript:
We will correct this imprecision in lines 99, 100, and 101 on page 4 of
the revised manuscript.
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2. What is the value of Nx in your study, which is quite an important
configuration for forecasting skill of RC model.

Author’s reply:

For both the supercritical and subcritical regimes, as well as for each set
of training variables, we determined the optimal hyperparameter sets
using a Bayesian search. The search consistently converged on large
reservoir dimensions Nx, with notable differences between the super-
critical and subcritical regimes. In the supercritical regime, the optimal
reservoir dimension is approximately 400, regardless of whether zonal
surface wind speed anomalies (τC) are included in the training variable
set. In the subcritical regime, the optimal reservoir dimension is larger,
with Nx = 476 when τC is included and Nx = 534 when τC is excluded.

Changes in manuscript:
We will specify the Nx values used in our study in the ”Training and
validation of the RC” section on page 8. Moreover, a summary table
reporting the optimal hyperparameter sets for each regime and training
variable set will be added to the Appendix.

3. Around line 169, the authors mention that “the initial reservoir state
for each prediction was determined using 5 years of data before the time
t ”. Can you explain this expression more to those unfamiliar with RC
models?

Author’s reply:
We agree with the reviewer that this expression may not be clear to
those unfamiliar with the Reservoir Computer (RC) model. Discarding
the initial x(n) reservoir states for 0 ≤ n ≤ ntransient before training
and evaluation is a standard practice in Reservoir Computing. This
step is necessary to mitigate the impact of initial transients caused by
the arbitrary initialization of the reservoir state, which is typically set
to x(0) = 0 or initialized randomly. In our case, the reservoir state was
initialized as x(0) = 0. This initialization creates an artificial starting
state that is unlikely to recur once the reservoir dynamics stabilize. A
warmup period is therefore introduced to allow the reservoir to reach a
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stable dynamical regime before training or inference. The length of the
warmup period depends on the reservoir’s memory capacity and the
specific learning task. Based on our experiments, a warmup period of 5
years is sufficient to stabilize the reservoir dynamics and eliminate the
effects of initial transients. As a result, before inference, the reservoir
states corresponding to the 5 years preceding the initial time step t(n)
(the starting point of our forecast) are discarded. In our notation, this
means discarding x(n) reservoir states for t(n)− ntransient ≤ n ≤ t(n),
where ntransient = 180, given our 10-days time step.

Changes in manuscript:
We will better explain why, when working with a RC model, a warm-
up period is necessary to properly initialize the Reservoir state in the
”Training and validation of the RC” section on page 8.

4. Around line 224, the authors mention that “This result aligns with ex-
pectations, as non-linearities play a more important role in the super-
critical regime”. I am wondering is it true that the supercritical regime
exhibits more nonlinear than subcritical regime, which favors the perfor-
mance of the RC model? What’s the relationship between nonlinearity
of regime and RC model performance?

Author’s reply:
ENSO can be described by two different theoretical frameworks. Ac-
cording to one perspective, it is a stable (damped) mode sustained
primarily by random atmospheric noise (subcritical regime). Alterna-
tively, it can be viewed as a self-sustained oscillatory mode (supercriti-
cal regime). In the latter scenario, nonlinearity is essential in modulat-
ing ENSO behavior. In the Zebiak and Cane (ZC) model, nonlinearities
come from three main sources: heat advection, wind stress anomalies,
and subsurface water temperature variations [1].

The Reservoir Computing model can capture complex nonlinear re-
lationships between input variables by employing a nonlinear activa-
tion function (in our study, the hyperbolic tangent). In contrast, a
Linear Regressor can only estimate linear relationships between input
variables. Consequently, the performance gap between the Reservoir
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Computing model and the Linear Regressor is expected to be more pro-
nounced in the supercritical regime, where nonlinear effects are more
important.

Changes in manuscript:
We will provide a clearer explanation of why nonlinearities play a more
significant role in the supercritical regime compared to the subcritical
regime in the “Zebiak and Cane” model section on page 2. Additionally,
in the “Reservoir Computer” section on page 4, we will explain why
the Reservoir Computing model is better suited for solving problems
involving nonlinear relationships between input variables, compared to
a simple Linear Regressor.

5. Around line 248, do the authors use values of the CNOP objective func-
tion to assess whether the model is susceptible?

Author’s reply:

For both the RC and the ZC model, we used the Cobyla optimization
algorithm to maximize the CNOP objective function and estimate the
optimal initial perturbations. The resulting maximal error growth, cal-
culated for a specific lead time, was then taken as our measure of the
model’s sensitivity to initial perturbations.

Changes in manuscript:
We will better clarify this point in the ”CNOPs Analysis” section on
page 12.

6. For figure 5, why the CNOP results for ZC model is quite symmetrical
while the CNOP results for RC models are usually biased?

Author’s reply:
The ZC model’s optimal initial perturbations exhibit a notably sym-
metrical distribution, evident in both SST perturbations at shorter lead
times (3 months) and thermocline depth perturbations at longer lead
times (6 and 9 months). This symmetry suggests that the model is
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sensitive to both negative and positive initial perturbations, depending
on the specific event.

In contrast, the RC generally demonstrates greater sensitivity to ini-
tial SST perturbations across both shorter and longer lead times, and
the distribution of these optimal initial SST perturbations consistently
shows a clear preference for either positive or negative values.

To better understand these differences in behavior, we plan to identify
the specific initial conditions and times of year when the ZC model
shows a preference for negative or positive perturbations. We will then
compare the behavior of the RC for the same types of events, focusing
on how the optimal perturbations evolve for both models. This addi-
tional analysis will provide valuable insights into why the ZC model’s
optimal initial perturbations exhibit a more symmetrical distribution.

Changes in manuscript:
We will add and discuss the results of this additional analysis in the
”CNOP analysis” section of the revised manuscript on page 11.

7. Around line 297, the authors mention that the inclusion or exclusion
of wind speed anomalies has a large effect on the different variables of
CNOP in the RC models for the subcritical regime. I am wondering
why this is not obvious in the RC models for the supercritical regime?

Author’s reply:

In the subcritical regime, ENSO variability is primarily sustained by
atmospheric noise, introduced as stochastic wind stress forcing. This
noise influences the thermocline slope, activating mechanisms that lead
to the development of perturbations. When the variable τc is included
during training, the RC explicitly learns the relationship between wind
anomalies and thermocline adjustments, and the state of the surface
winds is provided as an initial condition. Consequently, smaller ther-
mocline perturbations can be amplified by wind anomalies, leading to
larger deviations from the reference trajectory. In contrast, when τc is
not included, the RC only learns the direct relationship between SST
and thermocline depth anomalies without explicit knowledge of how
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wind anomalies influence thermocline slope adjustments. As a result,
in the absence of wind-forcing information, a larger initial thermocline
perturbation is required to generate significant error propagation over
time.

In the supercritical regime, thermocline depth perturbations are not
purely activated by atmospheric noise but also emerge due to the in-
ternal instability of the system. The influence of stochastic atmospheric
noise is weaker than in the subcritical case. This means that even if
the model does not explicitly account for the effect of wind forcing on
the thermocline slope, strong initial thermocline depth anomalies are
not needed to maximize error propagation.

However, even in the supercritical regime, when τc is not included,
the RC remains more sensitive to initial thermocline perturbations at
longer lead times than when τc is included, but the difference is much
less pronounced than in the subcritical regime.

In every case, the Reservoir Computer is consistently less sensitive to
thermocline depth perturbations at longer lead times compared to the
Zebiak and Cane model. This suggests that the RC effectively miti-
gates error propagation from thermocline perturbations.

Changes in manuscript:

We will provide a clearer explanation in the ”CNOPs Analysis” section
on page 11 of why the inclusion of τc has a greater impact on the RC’s
optimal initial perturbations in the subcritical regime than in the su-
percritical regime.

8. I have noticed there is another similar study that revealing the initial
perturbations of SST for ENSO predictions in AI model
(https://doi.org/10.1002/qj.4882). Maybe this is a more comprehensive
way to detecting the detailed patterns and physical variables of initial
perturbations related to SPB from index models (such as RC models
used in this study) to spatial models.
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Author’s reply:

We thank the reviewer for bringing to our attention a study similar to
ours that was not cited in our manuscript. Although the analysis by
Qin et al. [2] bears similarities to our experiments, there are substantial
differences that make both studies valuable:

(a) In [2], the GFDL CM2p1 dynamical numerical model is used solely
to validate the optimal initial perturbations computed for the
Deep Learning model employed in their study. However, they
do not compute the optimal initial perturbations for the GFDL
CM2p1 model itself. As a result, their analysis does not explore
whether the GFDL CM2p1 and Deep Learning models exhibit
similar optimal initial perturbations or how optimal initial errors
propagate in both models. This comparison is a central aspect of
our study.

(b) In [2], the CNOP objective function for the deep-learning model
is optimized using automatic differentiation, a feature available
in most modern deep-learning frameworks, such as PyTorch and
TensorFlow. However, this approach does not apply to dynamical
numerical models since these models are not implemented using
modern deep-learning frameworks. Moreover, for these models,
computing or approximating gradients with respect to their out-
puts is often highly complex or practically infeasible, making it
challenging to apply gradient-based optimization techniques. To
enable a meaningful comparison of how optimal initial perturba-
tions evolve in both machine learning and numerical models, a
gradient-free optimization method, like the Cobyla algorithm em-
ployed in our study, is essential.

These differences in the analysis performed and the methods adopted
underscore the complementary contributions of our study and that in
[2].

Changes in manuscript:

In the “Summary and Discussion” section, we will reference [2], discuss
their interesting results and underline the key differences between their
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study and ours.

9. The AI model appears to be less sensitive to the initial perturbations,
or the initial perturbations do not grow as fast as those in numerical
models, which is the reason for the higher skill of the AI model. Similar
conclusions are also obtained in another similar study
(https://doi.org/10.1029/2023GL105747). Can the authors discuss the
pros and cons of this characteristics? I think this will be significantly
valuable for the future modelling, as well as further understanding, of
earth system.

Author’s reply:
We agree with the referee that discussing the pros and cons of this char-
acteristic of AI models compared to dynamical models will be highly
valuable.

Changes in manuscript:
In the “Summary and Discussion” section, we will discuss the pros and
cons of this characteristic of AI models, referring to the interesting
results presented by Selz et al. in [3].
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