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Abstract. Sea ice plays a crucial role in the climate system, particularly in the Marginal Ice Zone (MIZ), a transitional area

consisting of fragmented ice between the open ocean and consolidated pack ice. As the MIZ expands, understanding its dynam-

ics becomes essential for predicting climate change impacts. However, the role of clouds in these processes has been largely

overlooked. This paper addresses that gap by developing an idealized coupled atmosphere-ocean-ice model incorporating cloud

and precipitation effects, tackling both forward (simulation) and inverse (data assimilation) problems. Sea ice dynamics are5

modeled using the discrete element method, which simulates floes driven by atmospheric and oceanic forces. The ocean is

represented by a two-layer quasi-geostrophic (QG) model, capturing mesoscale eddies and ice-ocean drag. The atmosphere

is modeled using a two-layer saturated precipitating QG system, accounting for variable evaporation over sea surfaces and

ice. Cloud cover affects radiation, influencing ice melting. The idealized coupled modeling framework allows us to study the

interactions between atmosphere, ocean, and sea ice floes. Specifically, it focuses on how clouds and precipitation affect energy10

balance, melting, and freezing processes. It also serves as a testbed for data assimilation, which allows the recovery of unob-

served floe trajectories and ocean fields in cloud-induced uncertainties. Numerical results show that appropriate reduced-order

models help improve data assimilation efficiency with partial observations, allowing the skillful inference of missing floe tra-

jectories and lower atmospheric winds. These results imply the potential of integrating idealized models with data assimilation

to improve our understanding of Arctic dynamics and predictions.15

1 Introduction

Sea ice is a critical component of our climate system, serving both as a reflective shield that deflects solar radiation and as

an insulator that regulates oceanic heat (Thomas, 2017; Weeks, 2010). By controlling the exchange of heat, moisture, and

momentum between the ocean and atmosphere, sea ice plays a key role in shaping global weather patterns and broader climate

systems. Therefore, understanding the dynamics of sea ice is essential for improving climate models and making accurate20

predictions about future climate conditions (Bigg, 2003; Meier et al., 2014; Gildor and Tziperman, 2001; Bhatt et al., 2014;

Leppäranta, 2011; Maslowski et al., 2012; Thomson et al., 2018; Weeks and Ackley, 1986; Weiss, 2013).

The Marginal Ice Zone (MIZ), the transitional area between the open ocean and consolidated pack ice, is characterized by

fragmented ice floes that interact dynamically with oceanic and atmospheric forces, playing a critical role in energy exchange,
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ocean circulation, and climate regulation (Dumont, 2022; Thomson et al., 2018). As the climate warms, the MIZ is expanding,25

increasing the fragmentation of ice and intensifying ocean-atmosphere interactions. This growth contributes to shifts in ocean

currents, weather patterns, and the overall climate system. The expansion also accelerates the ice-albedo feedback, where more

open water absorbs solar radiation, driving further ice melt. Given its growing influence, understanding and modeling the

MIZ and its ice floe dynamics is essential for predicting climate change impacts and developing effective adaptation strategies

(Manucharyan and Thompson, 2017; Strong and Rigor, 2013; Timmermans et al., 2018; Squire, 2020).30

In Earth system models, sea ice is typically represented using continuum frameworks with viscous-plastic rheology (Hi-

bler III, 1979; Hunke and Dukowicz, 1997; Tremblay and Mysak, 1997; Toyoda et al., 2019), which effectively captures

large-scale dynamics but often has difficulties in accounting for brittle behavior and fine-scale fragmentation. These models

work well at basin scales. However, they lack the resolution needed to simulate individual ice floes and their interactions. In

contrast, the Discrete Element Method (DEM) focuses on individual ice floes in Lagrangian coordinates and allows to provide a35

more detailed representation of local interactions between ice, ocean, and atmosphere (Cundall, 1988, 1979; Hart et al., 1988).

DEM also reduces computational costs for simulating MIZ by eliminating the need for advective transport schemes required in

continuum models, while offering flexible spatial resolution, making it particularly useful for modeling the complex dynamics

of the MIZ (Lindsay and Stern, 2004; Manucharyan and Montemuro, 2022; Damsgaard et al., 2018; Bouillon and Rampal,

2015; Rampal et al., 2016; Deng et al., 2024).40

One aspect that has not received enough attention in previous studies is the effect of clouds on sea ice dynamics. On the

one hand, clouds influence the thermodynamics of the atmosphere-ice system by modulating radiative fluxes and precipitation,

which subsequently affect ice melting and growth processes (Shine et al., 1984; Huang et al., 2019; Liu et al., 2012; Huang et al.,

2017; Morrison et al., 2019; Kay and Gettelman, 2009). Understanding these interactions is crucial for accurately predicting sea

ice features under different climate scenarios. Including cloud-sea ice interactions in the modeling framework helps enhance45

our understanding of MIZ dynamics, particularly for studying the response of the DEM to atmospheric influences. On the

other hand, significant challenges appear when observing ice floes in the presence of clouds. In situ measurements are often

sparse (Brunette et al., 2022; Gabrielski et al., 2015; Hutchings et al., 2012; Itkin et al., 2017; Lei et al., 2020) and have limited

spatiotemporal resolution (Cámara-Mor et al., 2010; Kwok, 2018). As a result, satellite imagery is widely used to monitor ice

floe motion in the MIZ, which is then employed to infer ocean currents (Manucharyan et al., 2022; Lopez-Acosta et al., 2019;50

Chen et al., 2022b; Covington et al., 2022). However, ice floes can become obscured in satellite images due to intermittent

cloud cover. Understanding the accuracy of recovering floe trajectories and the ocean fields with cloud cover facilitates the

study of the MIZ. Recent advances in sea-ice data assimilation encompass a broad spectrum of approaches. For example,

(Lisæter et al., 2003; Massonnet et al., 2014) assimilated passive-microwave concentration and altimetry-derived thickness

into coupled ice–ocean models with an ensemble Kalman filter, substantially reducing drift and thickness errors. (Riedel and55

Anderson, 2024) accounted for the bounded, non-Gaussian statistics of sea-ice variables within the observation operator, which

refines the posterior analyses of both ice and snow states. At the fully coupled level, (Penny et al., 2019) introduced a strongly

coupled data-assimilation (SCDA) framework that puts sea-surface and ice increments directly into the atmospheric analysis,

further improving the short-term forecasts in the marginal-ice zone. With the traditional Eulerian approaches, (Chen et al.,
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2022a; Deng et al., 2025) developed an efficient Lagrangian scheme that reconstructs mesoscale currents and vorticity from a60

limited set of tracked floes, even if only partial trajectories are observed due to clouds. Nevertheless, current data-assimilation

frameworks for fully coupled atmosphere–ocean–ice models still lack a consistent treatment of cloud and precipitation effects.

This paper works toward filling these gaps by developing an idealized coupled atmosphere-ocean-ice model that incorporates

the effects of clouds and precipitation. This model serves several important purposes. It allows the study of the fundamental

physics governing interactions between the atmosphere, ocean, and ice floes, which gives a comprehensive understanding of65

how these components influence each other. It also provides an idealized modeling framework for analyzing the effect of clouds

on ice floes. It specifically examines how cloud cover and precipitation modify the energy balance and influence the processes

of ice melting and freezing. Moreover, it functions as a testbed for evaluating the accuracy of inferring missing observations

of ice floe trajectories and the underlying ocean fields in the presence of clouds through data assimilation (DA). The primary

goals of this study are thus twofold, addressing both forward (model simulation) and inverse problems (DA): to develop and70

analyze the idealized coupled atmosphere-ocean-ice model that incorporates the effects of clouds and offers insights into the

fundamental interactions within the MIZ and to develop and test an efficient DA scheme using reduced-order models aimed at

recovering unobserved variables and fields despite limited and uncertain observations.

The remainder of the paper is organized as follows: Section 2 presents the coupled atmosphere-ocean-ice model. Section 3

discusses the development of cheap surrogate forecast models for studying DA. Section 4 provides numerical simulation results75

that demonstrate the model dynamics while Section 5 shows the skill of the DA results. The paper is concluded in Section 6.

2 The Idealized Coupled Atmosphere-Ocean-Sea Ice Floe System

2.1 Overview

To incorporate the effects of clouds and precipitation, we develop a coupled atmosphere-ocean-ice system that provides a

understanding of the interactions among these components.80

In this framework, sea ice dynamics are modeled using the DEM, which represents individual ice floes as circular elements

with specific sizes and masses (Cundall, 1988; Hart et al., 1988). The DEM effectively captures the interactions and shape-

preserving behaviors of floes, with their motion driven by atmospheric and oceanic forces. These forces are quantified through

surface integrals over the floes.

Ocean dynamics are modeled using a two-layer quasi-geostrophic (QG) model, known as the Phillips model (Vallis, 2017;85

Salmon, 1998). This model effectively simulates eddies resulting from baroclinic instabilities, which are crucial for accurately

representing oceanic conditions. The model is configured to reflect an Arctic Ocean regime (Qi and Majda, 2016), capturing

key interactions between the ocean and the ice floes.

The atmospheric component employs a two-layer saturated precipitating quasi-geostrophic (PQG) model (Smith and Stech-

mann, 2017; Edwards et al., 2020a, b; Hu et al., 2021). This model addresses the atmospheric forces acting on the ice floes and90

incorporates the precipitation dynamics that contribute to their growth. The source of water vapor is represented by a parameter

quantifying evaporation within the saturated PQG framework (Edwards et al., 2020a, b), varying between the sea surface and
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the ice floe surface. This variation allows the model to simulate how changes in ice floe distribution inversely impact atmo-

spheric thermodynamics. In addition, radiation is incorporated to model the melting of ice floes, with the magnitude adjusted

based on cloud thickness within the saturated PQG model.95

In the following, Section 2.2 presents the DEM model; Section 2.3 outlines the two-layer QG model; Section 2.4 introduces

and discusses the saturated PQG model; and Section 2.5 explores the thermodynamic processes across the different models.

Figure 1a illustrates the coupled atmosphere-ice-ocean system along with its interacting components, while Figure 1b provides

a sectional overview of these components within the coupled atmosphere-ice-ocean system, illustrating their interactions.
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2.2 Ice floe dynamics: the DEM model100

2.2.1 Governing equations

The DEM is employed to model the motion of sea ice floes, which are simplified as rigid circular bodies (Cundall, 1979, 1988;

Hart et al., 1988; Chen et al., 2021). Each floe is defined by its position, xl = (xl,yl), and angular displacement, Ωl, where

l = 1,2, . . . ,L indexes the individual floes. The governing equations for the motion of each floe are as follows:

ml d
2xl

dt2
=

∫∫
A

Fl dA+ Flcontact, and I l
d2Ωl

dt2
=

∫∫
A

τ l dA+ τ lcontact, (1)105

where the position xl is defined at the center of mass of the l-th floe. The second-order time derivative d2xl

dt2 represents the

acceleration of the floe, influenced by the contact force with other floes Flcontact and the total external force Fl, integrated over

the floe’s area A. Similarly, the angular acceleration d2Ωl

dt2 results from the torque due to contacts with other floes τ lcontact and

the external torque τ l, also integrated over A. Here, t denotes time, ml is the mass of floe l, and I l is its moment of inertia.

Periodic boundary conditions are imposed in both the x and y directions to ensure continuity in the domain.110

By defining the velocity at the floe’s center of mass as ul = (ul,vl) and the angular velocity as ωl, the equations in (1) can

be reformulated into a set of first-order differential equations:

dxl = vldt, (2)

dΩl = ωldt, (3)

dvl =
1

ml


∑
j

(
f ljn + f ljt

)
︸ ︷︷ ︸

Contact forces

+Do
(
uo
(
xl
)
−vl

)︸ ︷︷ ︸
Ocean drag force

+Da
(
ua
(
xl
)
−vl

)︸ ︷︷ ︸
Atmosphere drag force

dt, (4)115

dωl =
1

I l


∑
j

(
rlnlj × f ljt

)
· ẑ︸ ︷︷ ︸

Contact torque

+To

(
∇×uo

(
xl
)

2
−ωlẑ

)
︸ ︷︷ ︸

Ocean drag torque

+Ta

(
∇×ua

(
xl
)

2
−ωlẑ

)
︸ ︷︷ ︸

Atmosphere drag torque

dt. (5)

The notations of variables and parameters in equations (2)–(5) are listed in Table 1. The details of the ocean drag force and

torque are covered in Section 2.2.2, while the atmospheric drag force and torque are detailed in Section 2.2.3. The details of

the contact forces are provided in Appendix A. While the current coupling model does not include the Coriolis force on ice

floe movement, it is still a valid assumption as this research focuses on short-term, localized ice floe dynamics where collision120

and drag forces are dominant (Thorndike and Colony, 1982; Steele et al., 1997; Thorndike, 1986).
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xl location Ωl toque

vl velocity ωl angular velocity

ml mass Il moment of inertial

f ljn normal contact force f ljt tangent contact force

To ocean drag torque function Ta atmosphere drag torque function

Do ocean drag force function Da atmosphere drag foce function

uo ocean surface velocity ua atmosphere surface velocity
Table 1. Notation in DEM model

2.2.2 Oceanic forcing

In this section, we present the mathematical formulations for the drag force and torque exerted on an ice floe by ocean currents.

These expressions are crucial for understanding how the ocean’s movement affects the floe’s velocity and angular velocity.

Drag Force. The velocity of the l-th ice floe, denoted as vl, is affected by the ocean’s drag force, which follows a quadratic125

drag law. The drag force exerted on the ice floe is expressed as:

Dlo
(
uo
(
xl
)
−vl

)
= α̃(uo−vl)

∣∣uo−vl
∣∣ , (6)

where uo(x
l) represents the sea surface current velocity at the centroid of the cylinder floe, i.e., xl. The coefficient α̃ is defined

as:

α̃= doρoπ(rl)2, (7)130

where do is the ocean drag coefficient, ρo is the density of ocean water, and rl is the radius of the ice floe.

Drag torque. The torque due to ocean drag, denoted as τo, influences the angular velocity ωl of the ice floe. Assuming a

quadratic drag law, the governing equation for the torque is expressed as:

To
(
∇×uo

2
−ωl

)
= β̃o

(
∇×uo

2
−ωl

)∣∣∣∣∇×uo
2

−ωl
∣∣∣∣ . (8)

Here, ∇×uo

2 represents half of the curl of the ocean surface velocity, corresponding to the angular velocity of the ocean. The135

coefficient β̃o is defined as follows:

β̃ = doρoπ(rl)4, (9)

where do is the ocean drag coefficient and ρo is the density of the ocean water, consistent with the parameters used in (7).

2.2.3 Atmospheric forcing

In this section, we present the mathematical formulations for the drag force and torque exerted on an ice floe by atmospheric140

wind. These expressions are crucial for understanding how the atmosphere’s movement affects the floe’s velocity and angular

velocity.
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Drag force. The velocity of the ice floe, denoted by vl, is influenced by the atmospheric drag force, which follows a quadratic

drag law. The equation governing this relationship is given by:

Dla
(
ua
(
xl
)
−vl

)
= α̃(ua−vl)

∣∣ua−vl
∣∣ , (10)145

where ua represents the atmosphere near-surface wind velocity. The coefficient α̃ is defined:

α̃a = daρaπ(rl)2, (11)

where da is the atmosphere drag coefficient, and ρais the density of the air.

Drag torque. The governing equation for the angular velocity perturbed by the atmosphere, Ta, is a quadratic function, which

yields:150

Ta
(
∇×ua

2
−ωl

)
= β̃

(
∇×ua

2
−ωl

)∣∣∣∣∇×ua
2

−ωl
∣∣∣∣ . (12)

where β̃a is the coefficient of drag, defined as follows:

β̃a = daρaπ(rl)4. (13)

Here, da is the atmosphere drag coefficient and ρa is the density of the air, consistent with the parameters used in (11).

2.3 Ocean dynamics: a two-layer quasi-geostrophic model155

The two-layer quasi-geostrophic (QG) model operates in a rotating reference frame, with two layers of equal depth bounded by

a rigid lid at the top and a flat bottom. The governing equations of this model are expressed in terms of barotropic and baroclinic

modes for potential vorticity (PV) anomalies, with periodic boundary conditions imposed in both the x and y directions (Qi

and Majda, 2016; Vallis, 2017; Salmon, 1998). The model is governed by the following equations:

∂qo1
∂t

+ J(ψo1, q1) +β
∂ψo1
∂x

+Uo
∂

∂x

(
∆ψo1 + (kod)

2ψo1
)

=−νo∆4qo1, (14)160

∂qo2
∂t

+ J(ψo2, q2) +β
∂ψo2
∂x
−Uo

∂

∂x

(
∆ψo2 + (kod)

2ψo2
)

= κo∆ψ
o
2 − νo∆4qo2, (15)

where the subscript (·)oi , i= 1,2, denotes the oceanic layers. The term qoi denotes the PV and ψoi denotes the streamfunc-

tion. The term kod represents the baroclinic deformation wavenumber corresponding to the Rossby radius of deformation Ld.

Additionally, J(A,B) =AxBy −AyBx denotes the Jacobian operator. A large-scale vertical shear (Uo,−Uo), with the same

strength but opposite directions, is assumed in the background to induce baroclinic instability. In the dissipation terms on the165

right-hand sides of the equations, besides hyperviscosity νo∆4qoi , only Ekman friction κo∆ψo2 is used, with κo indicating the

strength of the friction applied to the surface layer of the ocean flow. Additionally, the relationships between the PV and the

streamfunction are described by the following equations:

qo1 = ∆ψo1 −
(kod)

2

2
(ψo1 −ψo2), (16)

qo2 = ∆ψo2 +
(kod)

2

2
(ψo1 −ψo2). (17)170
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Here, q(·) denotes the potential vorticity at the (·) layer, following the notation used in (Qi and Majda, 2016; Chen et al.,

2021, 2022b). Its precise definition may vary slightly depending on the component (e.g., atmosphere or ocean) and is clarified

in the corresponding context.

2.4 Atmosphere dynamics: a two-layer saturated precipitating quasi-geostrophic model

The precipitating quasi-geostrophic (PQG) model, as detailed in (Smith and Stechmann, 2017; Edwards et al., 2020b; Hu et al.,175

2021), captures synoptic-scale dynamics, particularly in extratropical regions. This model extends traditional quasi-geostrophic

dynamics by incorporating moisture-related thermodynamic processes, such as water vapor dynamics, cloud formation, phase

transitions, and precipitation. This integration provides a more realistic representation of the large-scale meteorological patterns

commonly observed in these areas.

In this study, we focus on the structure and statistics of total water within fully saturated domains. By employing a fully180

saturated or convective setup, we simplify the analysis and simulation, avoiding the complexities introduced by phase changes

or convective thresholds that could complicate the coupling model. The two-layer fully saturated PQG model with periodic

boundary conditions imposed in both the x and y directions yields the following equations:

∂qa1
∂t

+ J(ψa1 , q
a
1 )+β

∂ψa1
∂x

+Ua
∂

∂x

(
∆ψa1 + (kad)2ψa1

)
= −νa∆4qa1 , (18)

∂qa2
∂t

+ J(ψa2 , q
a
2 )+β

∂ψa2
∂x
−Ua

∂

∂x

(
∆ψa2 + (kad)2ψa2

)
= κa∆ψa2 − νa∆4qa2 , (19)185

∂M

∂t
+ J(ψm,M) + vm

∂Mbg

∂y
=− Vp

∆z
qt,m +E− νa∆4M. (20)

In this model, the subscript (·)ai , i= 1,2, denotes the atmospheric layers. The term qai represents the PV, ψai the streamfunction,

andM the balanced moisture variable. Besides, Vp is the precipitation fall speed andE is the evaporation rate. The relationships

between vorticity, streamfunction, and PV follow as outlined in equations (16)–(17). The baroclinic deformation wavenumber

kad corresponds to the Rossby radius of deformation Ld. The total water mixing ratio, qt,m, is related to the equivalent potential190

temperature, θe,m, as follows:

qt,m =M −GMθe,m, (21)

where GM is the ratio of the background vertical gradients of total water mixing ratio and θe,m, the equivalent potential

temperature. The equation for θe,m is given by:

θe,m =
L̃

Lds

ψa2 −ψa1
∆z

. (22)195

The background PV, PVi,bg , and balanced moisture, Mbg , are defined as:

PVi,bg = (−1)i
(

1

∆z

)2
(

L̃

Lds

)2

(2Uay), (23)

Mbg =
1

∆z

L̃

Lds
(2Uay). (24)
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where the vertical shear (Ua,−Ua), with the same strength but opposite directions, is assumed in the background to induce

baroclinic instability in the atmosphere. Additionally, the characteristic lengthscale L̃ and the saturated deformation lengthscale200

Lds satisfy the following relationship:

(kad)2 = 8

(
L̃

Ldu

)2

=
8

1 +GM

(
L̃

Lds

)2

. (25)

Remark 2.1. The background zonal velocities Ua and Uo in the atmospheric and oceanic QG models are implicitly included

in the computation of drag forces and torques on the ice floes. These background zonal velocities affect the flow fields, thereby

influencing the ice floe dynamics and trajectories in the coupled system.205

2.5 Thermodynamic interactions between atmosphere, ocean, and sea ice components

2.5.1 Floe freezing and melting

In the atmospheric model, the magnitude of precipitation is primarily regulated by the variable qt, which is derived from

the balanced moisture variable M and the stream functions ψa1 and ψa2 . The evolution equation (20) governs the transport of

moisture, as well as the falling of precipitation, represented by − Vp

∆z qt,m, and evaporation, denoted by E.210

In the initial coupling between ice floes and the atmosphere, several factors are taken into account. First, the precipitation

fall speed Vp is assumed to be constant, with the amount of precipitation at each location determined by the variable qt,m.

Secondly, the evaporation rate E varies between oceanic and ice surfaces (Omstedt et al., 1997; Bintanja and Selten, 2014).

Specifically, evaporation is described by:

E(x,y) =

Ei if (x,y) ∈Q,

Eo if (x,y) ∈ R2 \Q,
(26)215

where Q represents regions covered by ice floes, and R2 denotes the double periodic domain of the ocean. In the ice-atmosphere

coupled model, the total water content qt is significantly influenced by spatial variations in the evaporation rate across ice-

covered and open ocean regions. Over the open ocean, evaporation typically occurs at a higher and more consistent rate

due to the relatively warm surface temperature and the absence of insulating ice cover. This facilitates a steady exchange of

moisture between the ocean surface and the atmosphere. In contrast, the evaporation rate over sea ice is markedly lower, as220

ice is a barrier that reduces direct contact between the water surface and the atmosphere. This difference in evaporation rates

is further complicated by the presence of ice floes, which introduce localized variations in the evaporation rate. Specifically,

larger ice floes can significantly suppress evaporation in their vicinity, while smaller floes may have a negligible impact.

Consequently, the model is required to account for the heterogeneous distribution of evaporation rates to accurately simulate

total water content and its dynamics within the coupled sea ice-atmosphere system. This difference is crucial for understanding225

the overall moisture balance, cloud formation, and precipitation patterns in polar regions. In particular, the evaporation rate can
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be parameterized as a function of floe size (radius rl) and the distance from the center of the floe:

E(x,y) = Eo−
L∑
l=1

Ẽice(x,y;xl,yl, rl), (27)

where

Ẽice(x,y;xl,yl, rl) = (rl− rthr)+ ·Eice(x,y;xl,yl, rl). (28)230

The influence of the l-th ice floe on the evaporation rate at a location (x,y) is modeled as

Eice(x,y;xl,yl, rl) = al ·
1√
2πr2

l

exp

(
− (x−xl)2 + (y− yl)2

2r2
l

)
, (29)

where al is a scaling parameter given by al = 1
Ldomain

rl−rthr

rthr
. Here, rl is the radius of the l-th ice floe, and (xl,yl) denotes its

location. The standard deviation of the Gaussian distribution, representing the spatial influence of the ice floe, is σ(rl) = rl. To

account for the negligible impact of small ice floes, we introduce the threshold rthr in the ramp function (rl− rthr)+, defined235

as:

(rl− rthr)+ =

rl− rthr if rl > rthr,

0 if rl ≤ rthr,
(30)

where rthr = 20km is the chosen threshold radius. Ice floes with a radius smaller than rthr are assumed to have a negligible

impact on the evaporation rate distribution. The term (rl−rthr)+ in equation (28) ensures that only the portion of the ice floe’s

radius exceeding this threshold contributes to the reduction in evaporation. As a result, the overall evaporation rate E(x,y)240

is determined by subtracting the cumulative effect of all significant ice floes from the constant base evaporation rate over the

ocean. The influence of each ice floe is represented by a Gaussian function centered at its location, with its effect scaled by the

floe’s radius beyond the threshold.

Additionally, precipitation/snow that falls onto the surface of an ice floe contributes to an increase in its height, depth, or

mass (Massom et al., 2001; Provost et al., 2017). This increase is uniformly distributed across each floe. The rate of increase245

in the depth of the floe l over time ∆t is given by:

dhl

dt
=

1

ρwπr2
j

∫∫
Ωj

Vp
∆z

qt,m(x,y)dxdy, (31)

where Ωl is the subdomain of the l-th ice floe and ρw is the density of water. It is important to note that with the assumption of

ice floes being circular in shape, the mass ml of each floe can be calculated using the formula:

ml = ρiceπ(rl)2hl, (32)250

where ρice represents the density of ice, and rl denotes the radius of the floe.

It is noted that the assumption that precipitation increases ice floe thickness is based on the idealization that all precipitation

is interpreted as snowfall. This assumption is most valid during colder months and in regions where snow predominates, and
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may not hold during summer or fall in the Marginal Ice Zone (MIZ), as highlighted in (Boisvert et al., 2023). As a first

step toward investigating the influence of precipitation on ice floes, we adopt this assumption to explore its impact within an255

idealized modeling framework.

2.5.2 Radiation and transfer of radiant energy

The term “insolation” refers to the amount of incoming solar energy (Berger, 1978). To calculate the energy absorbed by sea

ice from sunlight, the intercepted energy is multiplied by one minus the albedo value (Miller et al., 2010; Wang et al., 2016).

The albedo quantifies the fraction of light reflected away from the ice, so one minus the albedo represents the fraction of light260

energy absorbed. The total energy absorbed by the l-th sea ice over time ∆t is given by:

Eicel = ∆t

∫∫
Ωl

γ(x)Es(1−α)dxdy. (33)

Here, Es represents the solar insolation, known as the solar constant. While this value may differ in polar winter conditions,

it is treated as constant in this study as a simplification appropriate for the short simulation period. α is the albedo of the ice.

The variable γ represents the fraction of radiation that penetrates through the cloud layer, which varies inversely with the total265

water content; more total water results in a lower γ value.

To assess how radiation impacts the size of each ice floe, we assume that any change in the ice floe’s volume is uniformly

distributed across the floe. The formula for the reduction in the depth of the l-th floe over time ∆t can be expressed as:

dhl

dt
=− 1

ρiceπ(rl)2

Eicel
Cice

, (34)

where Cice represents the specific heat capacity of the ice.270

3 Data Assimilation (DA) of the Coupled System

The coupled model developed above can serve as a testbed for evaluating the accuracy of inferring missing observations of ice

floe trajectories and the underlying ocean fields in the presence of clouds through data assimilation (DA). This topic is crucial

not only for understanding dynamical coupling and inference capabilities but also as a prerequisite for effective forecasting.

In the presence of cloud cover, DA encounters the challenge of missing observations, raising the question: “How can we275

recover unobserved variables and fields when observations are absent?” However, due to the complexity of the coupled

model, using it directly as the forecast model in ensemble DA proves computationally expensive. For instance, the full coupled

atmosphere–ice–ocean model is implemented as a sequential MATLAB code without parallelization. A single forward simula-

tion over one model day (i.e., 86,400 seconds) requires approximately 3.70 CPU-hours, corresponding to a wall-clock time of

0.82 hours on an Apple M1 Max processor with 32 GB of RAM. It is therefore not feasible to use this full order model directly280

in data assimilation settings due to its high computational cost. To address this issue, we develop a low-cost surrogate model

for nonlinear DA with partial observations. The surrogate model simplifies the DEM system by replacing contact forces with

white noise and utilizing reduced-order models for the atmosphere and ocean in spectral space (Chen, 2023; Majda and Harlim,
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2012; Majda et al., 2019; Chen et al., 2022b). Such a strategy significantly reduces computational costs while preserving the

essential features of the original model.285

Despite the lack of adequate polar observations, satellite data on ice floes and wind conditions can assist in recovering

unobserved fields (Haugen, 2014). We employ the local ensemble transform Kalman filter ensemble (LETKF) (Hunt et al.,

2007; Bishop et al., 2001) to integrate model forecasts and partial observations through Bayesian updating (Evensen, 2003;

Houtekamer and Mitchell, 2005).

Remark 3.1. In the presence of sea ice floes, the direct coupling between the atmosphere and ocean is relatively weak com-290

pared to other components of the system, such as the atmosphere–ice floe interaction. Moreover, the atmospheric and oceanic

models have different time scales—specifically, the ocean evolves on a much slower time scale than the atmosphere—and the

current study focuses on short-term simulations. As a simplification, we choose to neglect the atmosphere–ocean coupling,

which remains a reasonable assumption within the scope of the present modeling framework.

3.1 Cheap surrogate forecast models for the coupled system295

DA involves two key steps: forecasting and analysis. The forecasting step utilizes a forecast model to obtain predicted statistics,

which does not necessarily need to be the true underlying dynamics. In practice, the actual system is never fully known, and

comprehensive models can be costly to run, particularly for ensemble forecasts. Consequently, using appropriate, inexpensive

surrogate or reduced-order models (ROMs) that capture the essential dynamical and statistical features of the original system

is often crucial for facilitating practical DA (Majda, 2016; Farrell and Ioannou, 1993; Berner et al., 2017; Branicki et al., 2018;300

Majda and Chen, 2018; Li and Stechmann, 2020; Harlim and Majda, 2008; Chen and Majda, 2018; Kang and Harlim, 2012).

In the coupled atmosphere-ocean-sea ice model developed above, the most computationally intensive components, such

as detailed floe-floe and ocean-atmosphere interactions, are replaced with suitable surrogates that approximate their behavior

with significantly lower complexity. The challenging task of modeling contact forces among sea ice floes is simplified by

representing these forces as white noise. By alleviating the computational burden, ROMs enable more frequent updates to the305

model state using new observational data, thereby enhancing the accuracy and reliability of predictions.

While it would be ideal to perform a baseline data assimilation experiment using the full coupled atmosphere–ocean–ice

model, such a setup is computationally prohibitive. A single 66-day forecast with the full model requires approximately 244

CPU-hours, and an ensemble of 50 members, which is a relatively small ensemble size, would require over 12,000 CPU-hours

per assimilation cycle. Furthermore, the full model operates on a much finer spatial grid than the reduced-order surrogate,310

resulting in a substantially higher-dimensional state variable and significantly more expensive computational costs.
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3.1.1 Surrogate forecast model for sea ice motions

The surrogate forecast model utilized in DA starts with a simplified DEM model for the sea ice motions:

dxl = vldt, (35)

dvl =
1

ml

Dlo (uo−vl
)︸ ︷︷ ︸

Ocean drag force

+ Dla
(
ua−vl

)︸ ︷︷ ︸
Atmosphere drag force

dt+σvdW
l
v(t), (36)315

where xl is the position of the ice floe, vl is the velocity of the ice floe contributed by the ocean drag force Dlo(uo−vl) and

the atmospheric drag force Dla(ua−vl), ml is the mass of the ice floe, σv represents the intensity of the stochastic term, and

Wl
v(t) is a Wiener process representing the stochastic component. The stochastic forcing is used to effectively approximate

the instantaneous floe-floe interactions in the forecast system, significantly reducing the computational cost while at the same

time, providing a physically motivated source of model-error variance that maintains adequate ensemble spread. Equation (35)320

describes the change in position over time, while Equation (36) describes the change in velocity, incorporating both ocean and

atmospheric drag forces, as well as a stochastic term to account for random contact forces.

3.1.2 Surrogate forecast model for the atmosphere dynamics

Recall that the atmospheric wind fields are modeled using the two-layer saturated PQG framework. However, directly applying

this two-layer PQG model in DA proves to be computationally expensive. To overcome this challenge, we propose constructing325

stochastic surrogate models for a limited number of spectral modes of the streamfunction. Given that the upper atmospheric

variable is observed, it is essential for the surrogate models to maintain the connection between the upper and lower layers.

To this end, we employ both barotropic and baroclinic formulations for the surrogate model that automatically couple the

dynamics of the two layers.

The spectral representation of the streamfunctions at two layers is given by:330

ψ1 =
∑
k

ψ̂1,k(t)eik·x, and ψ2 =
∑
k

ψ̂2,k(t)eik·x, (37)

where ψ1 and ψ2 are the streamfunctions at the first and second layers, respectively. The summation is over wavenumbers

k, ψ̂1,k(t) and ψ̂2,k(t) are the time-dependent spectral coefficients for the respective layers, i is the imaginary unit, and x

represents the spatial coordinates. On the other hand, the barotropic and baroclinic formulations for each Fourier wavenumber

yield the following:335

ψ̂bt,k =
ψ̂1,k + ψ̂2,k

2
, and ψ̂bc,k =

ψ̂1,k− ψ̂2,k

2
, (38)

where ψ̂bt,k and ψ̂bc,k are the barotropic and baroclinic streamfunctions for the wavenumber k, respectively. The subscript “bt”

therefore labels the barotropic mode, while “bc” labels the baroclinic component. Linear stochastic surrogate models can be
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constructed for the barotropic and baroclinic streamfunctions for each Fourier wavenumber (Chen, 2023; Majda and Harlim,

2012):340

dψ̂bt,k = (−γbt,k + iωbt,k)ψ̂bt,kdt+ fbt,kdt+σbt,kdWbt,k(t), (39)

dψ̂bc,k = (−γbc,k + iωbc,k)ψ̂bc,kdt+ fbc,kdt+σbc,kdWbc,k(t), (40)

where γbt,k,ωbt,k,fbt,k,σbt,k and γbc,k,ωbc,k,fbc,k,σbc,k are parameters obtained by calculating the statistical quantities of

the time series, while Wbt,k(t) and Wbt,k(t) are independent Wiener process. In particular, γbt,k and ωbt,k are estimated using

the cross-correlation function of the time series of ψ̂bt,k:345

XCbt,k(t) = sin(ωbt,kt)e
−γbt,kt, (41)

where XCbt,k(t) represents the cross-correlation function for the barotropic component at wavenumber k. The other two

parameters can be approximated using the following formulas:

Tbt,k =
γbt,k

ω2
bt,k + γ2

bt,k

, θbt,k =
ωbt,k

ω2
bt,k + γ2

bt,k

, (42)

fbt,k =
mbt,k(Tbt,k− iθbt,k)

T 2
bt,k + θ2

bt,k

, (43)350

σbt,k =

√
2Ebt,kTbt,k
T 2
bt,k + θ2

bt,k

, (44)

where mbt,k is the mean, Ebt,k is the variance, Tbt,k and θbt,k are the real and imaginary parts of the decorrelation time,

respectively. Concurrently, the streamfunctions in the two layers, ψ1 and ψ2, from the surrogate model can be recovered using

the following relations:

ψ̂1,k = ψ̂bt,k + ψ̂bc,k, ψ̂2,k = ψ̂bt,k− ψ̂bc,k. (45)355

The velocities in the two layers of the atmosphere are given by:

uaj = (uaj ,v
a
j ) =

(
∂ψ̃j
∂y

,−∂ψ̃j
∂x

)
, (46)

where j = 1,2 denotes the layer. Here, uaj represents the velocity vector, with uaj and vaj being the velocity components in the

x and y directions, respectively. The surrogate model streamfunction for layer j is given by:

ψ̃j =
∑
k∈Kr

ψ̂j,k(t)eik·x, (47)360

where k denotes the wavenumber vector, ψ̂j,k(t) is the time-dependent spectral coefficient for layer j, and Kr represents the

set of retained spectral modes.
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3.1.3 Surrogate forecast model for the ocean dynamics

Recall that the ocean fields are generated by the two-layer QG model. Only the surface layer of the ocean fields is used in

coupling the atmosphere and the ice floes. To simplify the model, a stochastic surrogate model is constructed solely for the365

near surface ocean streamfunction, represented as:

dψ̂o,k = (−γo,k + iωo,k)ψ̂o,k dt+ fo,k dt+σo,k dWo,k(t), (48)

where ψ̂o,k is the spectral coefficient of the ocean streamfunction at wavenumber k, γo,k is the damping coefficient, ωo,k is the

frequency, fo,k is the forcing term, σo,k is the noise amplitude, and Wo,k(t) represents the Wiener process.

The parameters γo, ωo, fo, and σ can be approximated similarly using the formulas provided in equations (41) and (44). The370

velocity of near surface ocean current can be obtained similarly in equations (46) and (47).

3.2 Uncertainty in observing ice floes

The presence of clouds poses a significant challenge in observing the location of sea ice floes, especially when using optical

and infrared satellite imagery (Reiser et al., 2020; Hyun and Kim, 2017; Wright and Polashenski, 2018). Clouds can obscure

the surface, which prevents sensors from capturing clear images of the underneath ice floes. Such an issue causes gaps in375

observational data, where the exact position and extent of the floes cannot be accurately determined. Note that even when

clouds are partially transparent, the scattering and absorption of light can distort observed images, leading to biases in the

inferred location and size of the floes. In addition, clouds can form and dissipate relatively rapidly, which complicates the

temporal consistency of observations. Consequently, cloud cover introduces a substantial source of uncertainty in observing

and monitoring sea ice floes, especially in regions with frequent or persistent cloudiness.380

The observability of ice floes varies significantly with their size. Due to their extensive surface area, large ice floes are gener-

ally easier to detect in satellite imagery, even in cloudy conditions. These large-size floes may still be partially visible through

breaks in the clouds or cloud-affected imagery, allowing for some degree of position and movement tracking. However, the

accuracy of this tracking can be affected since cloud-induced distortions may obscure edges or lead to errors in determining

the exact boundaries of floes. In contrast, small ice floes are more susceptible to being completely obscured by clouds. Due to385

their limited size, these floes can be entirely covered by clouds, resulting in missing data that complicates the assimilation of

accurate ice dynamics into models. Identifying small floes is also hampered by the limited spatial resolution of many satellite

sensors. Even minor cloud-induced distortions can make small floes undetectable or misclassified, significantly underestimat-

ing their presence and distribution. The difficulty in observing small floes gives a challenge for accurately modeling sea ice

behavior, as these smaller elements can play a critical role in the overall dynamics and thermodynamics of sea ice, particularly390

in processes such as melt pond formation and interactions with ocean and atmospheric conditions.

To summarize, while large floes can often be partially observed even in cloudy conditions, the observation of small floes

is much more challenging. This leads to large uncertainties in identifying their location, extent, and influence on the sea ice

system. This disparity emphasizes the need for developing advanced observational techniques and DA methods to bridge the

gaps and reduce the inaccuracies caused by cloud cover.395
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To represent observational uncertainty in DA, we use the total water content qt(x, t) as a controlling factor. Above each floe,

we calculate the mean total water content, [qt(x, t)] at time t:

[qt(x, t)] =
1

|Ωl|

∫
Ωl

qt(x, t)dx. (49)

This mean value, [qt(x, t)], encapsulates the spatial distribution of water content above each ice floe, serving as an approxima-

tion for the uncertainty in observations. Variations in [qt(x, t)] from one floe to another can indicate the degree of uncertainty400

inherent in the observational data, as it reflects the heterogeneity in the physical characteristics of the ice. In particular, we set

a threshold, q̃t, such that the observational uncertainty σobsl is given by the following: for l-th floe,

σobs
l

(
xl(t)

)
=


5× 102 m, if [qt(x, t)]< q̃t (small observation uncertainty),

2rl, if [qt(x, t)]≥ q̃t (large observation uncertainty).

(50)

where rl denotes the radius of the l-th floe and xl its trajectory. It is important to note that when the mean total water content

over the floe, [qt(x, t)], is high, which indicates significant cloud cover and can be classified as unobserved, its position can405

still be approximated. However, these estimates are often highly inaccurate. Consequently, in the data-assimilation setting, we

assign floes classified as unobserved a markedly inflated observational uncertainty, taken here as twice their radius.

In summary, the total water content qt interacts with ice floes in two different ways. First, the spatial coverage of an ice floe

over the ocean affects the local evaporation, which in turn modifies the distribution of qt over ice and ocean. Second, the mean

total water content [qt] above each floe is used to parameterize cloud-related observation uncertainty in floe localization, with410

higher [qt] indicating thicker clouds and thus higher uncertainty.

Remark 3.2. An ice floe is classified as “unobserved” whenever the mean total water content over the floe exceeds the

threshold, [qt]≥ q̃t (cf. Eq. (50)). In that case we inflate the observation–error standard deviation to σobs
l = 2rl, with rl

the floe radius. Because this value is of the same order as the floe’s diameter, the associated observation exerts negligible

influence on the analysis. Among all test cases the smallest floe radius is rmin
l = 8×103 m, so an unobserved floe takes at least415

2rl = 1.6× 104 m of uncertainty, clearly distinguished from the observed case with σobsl = 5× 102 m.

3.3 Local ensemble transform Kalman filter

The local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007; Bishop et al., 2001) functions similarly to standard

ensemble Kalman filters but implements filtering within localized domains. Specifically, the LETKF improves the process by

partitioning the global data set into smaller, overlapping regions. Each region is updated independently using local observations.420

It effectively reduces long-range error correlations and enhances computational efficiency. This localization is essential for

large-scale applications. It makes LETKF more scalable and accurate when dealing with spatially-extended systems.

LETKF applies filtering exclusively in physical space for both the trajectories of ice floes which are in the Lagrangian frame

of reference and the streamfunctions of the atmosphere and ocean that are in the Eulerian frame of reference. This unified
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approach maintains consistency across different types of geophysical data, potentially simplifying the assimilation process and425

directly addressing spatial correlations.

4 Numerical Simulation Results of the Coupled Atmosphere-Ocean-Sea Ice Model

4.1 Setup

The domain size considered here is 400 km× 400 km in the marginal ice zone. The size distribution of ice floes follows a

power law, represented as p(r) = aka/ra+1 (Stern et al., 2018), where the constants k and a are parameters of the model. The430

numerical integration time step, ∆t, is set to 58.2 seconds. Three different distributions of floe sizes are considered in this study

and each distribution comprises 48 floes, designed to simulate different ice coverage and collision frequency:

– Regime I: Large-size ice floes nearly cover the entire ocean domain, resulting in frequent collisions;

– Regime II: Medium-size ice floes cover approximately half of the ocean domain, leading to less frequent collisions; and

– Regime III: Small-size ice floes occupy only a small portion of the ocean domain, where collisions are rare.435

These different scenarios are designed to explore the dynamics of ice floes under different coverage conditions and assess their

impacts on the atmospheric model. The detailed parameters of the DEM model are listed in Table 2.

Parameter Value

Spatial domain, Ω 400km× 400km

Time Step, ∆t 1.2941 hours

Density of ice, ρi 103 kg/m3

Density of ocean, ρo 1.02× 103 kg/m3

Density of atmosphere, ρa 1.2 kg/m3

Initial Ice floe height, h0 1m

Young’s modulus, Elj 1.2725× 103 kg/s2

Shear modulus, Glj 1.3816× 104 kg/(m · s)
Ocean drag coefficient, do 5.5× 10−3× 10−4

Atmosphere drag coefficient, da 1.6× 10−3

Albedo of ice, α 0.8

Evaporation rate with ice, Ei 1.2× 10−6 kgkg−1 s−1

Evaporation rate without ice, Eo 2.4× 10−6 kgkg−1 s−1

Specific heat capacity of the ice, Cice 334J/(kg ·K)

Table 2. Parameters in ice floe model.
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The coupled atmosphere–ocean-ice model employs different numerical schemes for each component. The atmospheric

and oceanic equations are discretized in space using a spectral method and integrated in time with an adaptive third-order

Runge–Kutta scheme, following (Qi and Majda, 2016; Edwards et al., 2020a, b). The sea ice component is simulated using the440

discrete element method (DEM), with time integration using a forward Euler scheme to resolve floe dynamics dominated by

contact and drag forces.

The model parameters for the two-layer quasi-geostrophic (QG) model are summarized in Table 3. These parameters are

specifically tailored to represent conditions typical of the high-latitude ocean regime (Qi and Majda, 2016).

Parameter Value

Time Scale, 2.3295e+07s

Time Step ∆t, 1.2941 hours

Latitude, 72.8◦

Beta value, β 6.74× 10−12

Baroclinic deformation wavenumber,kod 3.14× 10−4

Background zonal flow, Uo 6.83× 10−4m/s

Strength of friction κo 9.66× 10−8

Hyperviscosity, νo 6.83× 10−4

Table 3. Parameters in QG equations for high latitude ocean regime.

The parameters relevant to the atmospheric regime within the framework of the saturated PQG equations are detailed in445

Table 4 (Edwards et al., 2020a, b; Smith and Stechmann, 2017; Hu et al., 2021). The atmospheric and oceanic systems exhibit

multiscale characteristics both temporally and spatially. Specifically, typical atmospheric wind velocities range from 8m/s

to 10m/s (equivalent to 800km/day). They are significantly faster than ocean current speeds, which are around 0.1m/s

(corresponding to 10km/day). In addition, atmospheric winds exhibit rapid temporal changes compared to the relatively

slower temporal variations observed in ocean currents. In addition, in this work, the terms “total water” and “total water mixing450

ratio” are used interchangeably, following the convention adopted in (Edwards et al., 2020a, b), to maintain consistency and

clarity. It is worth noting that the dimensional time steps for the atmospheric and ocean models are obtained by rescaling

their respective non-dimensional counterparts using their different characteristic scales appropriate to each component under

the Arctic regime; for example, the atmospheric model’s time step of 58.2s corresponds to a non-dimensional value of ∆t=

5× 10−4, based on the characteristic time scale T employed in the PQG model.455
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Parameter Value

Time Scale, 1.1647e+05 s

Time Step ∆t, 58.2 s

Latitude, 72.8◦

Beta value, β 6.74× 10−12

Baroclinic deformation wavenumber,kad 1.26× 10−4

Background zonal flow, Ua 1.37× 10−2m/s

Strength of friction κo 2.15× 10−7

Hyperviscosity, νo 6.83× 10−4

Specific heat, cp 103J kg−1K−1

Latent heat factor, Lv 2.5× 106J

Background vertical gradient of equivalent potential temperature, dθ̃edz 1.5Kkm−1

Background vertical gradient of total water, dq̃tdz −0.6× 10−3 kgkg−1 km−1

Background potential temperature, Θ0 3K

Domain height, H 10km

Precipitation fall speed, Vp 2m/s

Solar insolation, Es 1,361W/m2

Table 4. Parameters in Saturated PQG equations for high latitude atmosphere regime.

4.2 Simulated atmospheric and ocean fields

Figure 2 shows the time evolution of the PVs (PV1 and PV2) in the atmosphere from t= 404.4 hours to 808.8 hours and

1213.3 hours. These snapshots illustrate the development of the PV structures and their time evolution. They indicate the

dynamic interactions within the coupled atmosphere-ocean-sea ice system.
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Figure 2. PV1 and PV2 for atmosphere at different time instances.

Figure 3 shows the upper-layer PV field of the ocean. It reveals distinct patterns in the evolution of the PV structures460

with both large-scale and small-scale localized features. At time t= 404.4 hours, the PV field looks relatively uniform, with

moderate gradients indicating steady circulation. When the time arrives at t= 808.8 hours, the PV distribution becomes more

complicated, with sharper gradients and more eddies. The spatial patterns suggest an increased vorticity intensity with the

appearance of turbulent mixing and instabilities in certain regions. At t= 1213.3 hours, the PV field is further strengthened. It

is more concentrated, indicating a highly dynamic state with stronger interactions among different oceanic layers. The gradient465

patterns and isolated vortices highlight the nonlinear nature of the response in the ocean to external forcing and the internal

energy transfers occurring within the coupled atmosphere-ice-ocean system.
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Figure 3. PV2 field for the upper-layer ocean at different time instances.

4.3 Simulated floe trajectories

The trajectories presented in Figure 4 help understand the role of floe mass in modulating the sea ice motions. The floes have

decreasing mass from top to bottom. The results here illustrate the relationship between floe size, mass, and external forces,470

such as wind stress and ocean currents.

The largest floe is shown in the top panel. The floe has a higher inertia and exhibits a smoother and more streamlined

trajectory. The results in this panel suggest that, under similar forcing conditions, larger and heavier floes resist rapid changes

in motion and respond more gradually to external perturbations due to their momentum. These floes dominate ice dynamics

over longer time scales. They illustrate slower and more predictable moving patterns.475

In contrast, the medium-sized floe in the middle panel shows a more irregular motion, with noticeable deviations from a

linear path. This is because its reduced mass allows for more immediate responses to short-term variations in external forcing,

such as fluctuations in atmospheric wind or ocean currents. A balance between inertia and responsiveness appears in the motion

of this floe. It highlights that mid-sized floes can exhibit complex dynamics even under relatively steady forcing conditions.

The bottom panel shows the trajectory of a small-sized floe. Due to the low mass and inertia of the floe, it has the strongest480

irregular motion. Therefore, the motion of small-sized floe is highly susceptible to external forces. Such floes contribute to the

more chaotic aspects of sea ice movement, especially in regions with strong atmospheric or oceanic variability.
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Figure 4. Trajectories of the largest floe in three different regimes (I, II, and III, from top to bottom), all starting from the same initial

location, marked by a blue rectangle.
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4.4 Simulated precipitation in the sea-ice-atmosphere coupled model

From a modeling perspective, accurately capturing the differences in evaporation rates between ice-covered and open ocean

areas is essential for simulating the coupled atmosphere-sea ice system. The model must account for the spatial variability in-485

troduced by ice floes, including their size, distribution, and movement, as these factors significantly influence local evaporation

rates.

We calculate the spatially averaged total water content for each individual ice floe as follows:

[qt]l(t) =
1

|Ωl|

∫
Ωl

qt(x,y, t)dx. (51)

Here, [qt]l(t) represents the average total water content over the area of the l-th ice floe at time t. The integral is taken over the490

domain Ωl, which denotes the spatial extent of the l-th floe, with |Ωl| representing the area of this ice floe.
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Figure 5. Floe distribution at different times for three different regimes top to bottom: Regime I, Regime II and Regime III, with different

quantities: first column: floe distribution at t= 808.8 hours; second to third columns: total water at t= 808.8 and 1213.3 hours; fourth

column: averaged total water at t= 808.8 hours.

By integrating over the floe’s area, we obtain a representative measure of the total water content, which can be used to

analyze the floe’s contribution to the overall hydrological balance in the sea ice-atmosphere system.

The first three columns of Figure 5 display the ice floes and total water content across different regimes. In the last column

of Figure 5, the time-averaged spatially averaged total water content, [qt]l(t), is plotted as a function of different floe radii.495

The results demonstrate that [qt]l(t) decreases as the floe radius increases. This trend suggests that larger ice floes tend to have

lower average water content due to reduced moisture exchange.
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5 Numerical Results of DA

5.1 Setup

The floe locations and upper atmospheric data are the only observational inputs used in the DA process for the coupled system.500

The forecast time step, ∆t, is set to 58.2 seconds, allowing the model to resolve finer temporal details. Observations are

available every 1500 numerical integration time steps, which corresponds to approximately ∆tobs =24.2 hours. This frequency

aligns with the acquisition of satellite images, which occurs roughly every 24 hours. The observational uncertainty for the ice

floe locations, when there is no cloud cover, is set to 0.5 km. In contrast, the noise in the streamfunction is quantified as 20%

of the standard deviation of the streamfunction at a given grid point, denoted as std(ψx). The total duration of the DA spans505

1601.5 hours, or approximately 66.73 days. While the truth is computed from a high-resolution model with 128× 128 grids,

the reduced-order forecast model in spectral space contains 16×16 modes to enhance computational efficiency. The ensemble

size in the Local Ensemble Transform Kalman Filter (LETKF) is 300. The localization radius is set to 200 km, which limits

the influence of observations to a localized region, thereby reducing spurious correlations in the DA. The parameters used in

the DA are summarized in Table 5. It is worth noting that the atmospheric model uses a time step of ∆t= 58.2 seconds, while510

the DEM sea ice model is updated every 80 atmospheric steps, giving ∆t≈ 1.29 hours. Observations for data assimilation are

assumed to be available every 1500 atmospheric steps, or ∆tobs ≈ 24.2 hours.

Parameter Value

Observational time step ∆tobs 24.2hours

Forecast time step ∆t 58.2s

DA time T 1601.5hours ≈ 66.73days

Coarse grid points 16× 16

Ensemble size 300

Localization radius 200km

Observational noise in floe trajecotries Equation (50)

Observational noise in streamfunction 20% of std(ψ2(x))

Table 5. Parameters in the DA

In the numerical tests, we consider two different settings for the observations of ice floes: (1) plentiful observations and (2)

sparse observations. In case (1), most of the floes (≥70%)in the domain are observed during the observation period, whereas

in case (2), only a few floes (about 30%) are observed during the same period.515
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5.2 Recovered atmosphere and ocean fields

5.2.1 Recovered atmosphere fields

Figure 6 presents the performance of DA in recovering the streamfunctions of the atmosphere flow fields, which are crucial in

describing the large-scale circulation of the atmosphere, at two different layers: the upper-layer streamfunction, ψ2 (top panel),

and the near-surface layer streamfunction, ψ1 (bottom panel). The comparison is at t= 970.61 hours.520

Despite the noisy observations, the posterior mean of the upper-layer streamfunction, ψ2, closely matches the truth. The

recovered near-surface streamfunction, ψ1, shows slight deviations from the truth because ψ1 is not directly observed. Its

inference relies on a combination of observed floe trajectories and ψ2, which introduces some uncertainty into the recovery of

ψ1. Nevertheless, despite the slight increase in uncertainty, the spatiotemporal patterns and amplitudes are largely recovered in

the DA solution, demonstrating the effectiveness of DA in estimating unobserved states.525
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Figure 6. Recovered atmosphere streamfunction at the upper-layer, ψ2 (top panel), and near-surface layer, ψ1 (bottom panel) at t= 970.61

hours: comparison among the truth, and the posterior and prior means, and upper-layer observations.
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5.2.2 Recovered upper-layer ocean field

Figure 7 shows the performance of DA in recovering the upper-layer ocean streamfunction. The figure compares the true ocean

streamfunction (top panel) with the posterior mean (bottom panel) at several time instances.

The DA effectively restores the magnitude of the ocean fields and captures some of the large-scale patterns. The absence of

small-scale features in the DA results is expected, as floe movements are primarily driven by atmospheric forces, with ocean530

drag playing a relatively minor role. Consequently, the ocean field has limited observability, resulting in less accurate state

estimation.
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Figure 7. Recovered upper-layer ocean streamfunction: comparison among the truth (top panel), the posterior mean (middle panel) and the

posterior mean (bottom panel) at different time instances.
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5.3 Recovered floe trajectories

Figure 8 compares the true and estimated trajectories of three ice floes under sparse observational conditions in Regime II

over a period of 66.7 days. Similar results were observed in the other two regimes, so they are omitted here. In each panel,535

the posterior mean trajectory is shown in green, the observations in red, and the true trajectory in blue. The observational

uncertainty, introduced via (50), shows that when cloud cover, q̃t, remains below a certain threshold, the uncertainty stays

small (around 500 m), allowing for accurate floe location recovery. However, when cloud cover exceeds this threshold, the

observational uncertainty increases significantly, which can lead to substantial inaccuracies in the data assimilation of floe

trajectories.540

Panel (a) in Figure 8 shows the trajectory of an ice floe with a radius of 22.73 km, which is relatively large for this regime

(see Figure 5). The results demonstrate a reasonably close match between the posterior mean and the true trajectory, despite

sparse observational data. This is expected, as the value of [qt]l(t) is smaller for larger floes (as shown in the averaged total

water content in the second row of Figure 5), leading to lower observational uncertainty for floes with larger radii.

Panel (b) shows the trajectory of an ice floe with a radius of 22.03 km, slightly smaller than the one in Panel (a), which545

may lead to greater observational uncertainty at certain times. During these instances, the red observational points deviate

significantly from the true trajectory. Nonetheless, the data assimilation (DA) still successfully recovers the floe trajectory,

despite some highly inaccurate observations.

Finally, Panel (c) illustrates the trajectory of an ice floe with a radius of 12.23 km, significantly smaller than those in Panels

(a) and (b). In this case, q̃t remains relatively high throughout, indicating larger observational uncertainties. Consequently,550

the red observation points deviate significantly from the true locations at most observational time instances. Although the

data assimilation (DA) recovered trajectory is less accurate compared to the previous two cases, it still captures the general

trajectory pattern relative to the true path.
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Figure 8. DA results for the ice floe trajectories: Panels (a)–(c) depict the floes’ trajectories over time with the posterior mean (green),

observations (red), and the true trajectory (blue).
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5.4 Skill scores

Finally, we present the normalized root-mean-square error (RMSE) of the posterior mean estimate as a skill score for data555

assimilation (DA) across different regimes. The state variables in this DA study consist of: (1) the locations of the ice floes,

and (2) the streamfunctions of the upper and near-surface atmosphere, as well as the ocean. Since the ice floe positions are

Lagrangian quantities, while the streamfunctions are represented on Eulerian grids, the normalized RMSE skill scores are

defined differently for the floe trajectories x and the streamfunction ψ:

RMSEx =

√
1
M

∑M
k=1 |xtruth(tk)−xposterior(tk)|2√
1
M

∑M
k=1 |xtruth(tk)(tk)|2

RMSEψ =

√
1

NM

∑N
j=1

∑M
k=1 |ψtruth(xj , tk)−ψposterior(xj , tk)|2√

1
NM

∑N
j=1

∑M
k=1 |ψtruth(tk)(xj , tk)|2

(52)560

where N is the number of grid points and M is the number of observation, (·)truth
(tk) is the true position of the floes at time tk,

and (·)posterior
(tk) represents the model’s posterior mean estimate of the floe position at time tk.When the normalized RMSE

exceeds 1, it indicates a loss of skill in the estimation, as the error in the posterior mean reaches the level of the equilibrium

standard deviation.

The DA skill scores across the three regimes are shown in Tables 6–8. For the fully observed atmospheric state variable,565

ψa2 , and the unobserved variable, ψa1 , the DA demonstrates strong performance. This is expected, as ψa1 and ψa2 are closely

linked by barotropic and baroclinic dynamics, allowing for relatively accurate recovery of ψa1 even though it is not directly

observed. In contrast, the estimation of the ocean streamfunction, ψo, is less accurate. This is because in the coupled model,

the floe movements are primarily driven by atmospheric forces, while ocean drag has a relatively weak influence. As a result,

the ocean field has limited observability, leading to less accurate state estimation. On the other hand, the estimation of floe570

trajectories is generally accurate, with accuracy slightly decreasing from high-concentration (Regime I) to low-concentration

regimes (Regime III). This is due to the lower concentration regime experiencing more cloud cover (Figure 5), which amplifies

observational uncertainties.
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Observation level State Variable Posterior Prior

Plentiful Observation

ψa2 9.1702e− 02 1.0347e+ 00

ψa1 4.8378e− 01 1.4893e+ 00

ψo 1.8559e+ 00 1.9256e+ 00

xl 3.2733e− 02 1.6482e− 01

Sparse Observation

ψa2 7.9300e− 02 8.9496e− 01

ψa1 6.1109e− 01 1.8827e+ 00

ψo 1.8051e+ 00 1.8720e+ 00

xl 1.6376e− 01 8.2438e− 01

Table 6. Normalized RMSE of the posterior (third column) and prior (fourth column) DA results in Regimes I.

Observation level State Variable Posterior Prior

Plentiful Observation

ψa2 8.3388e−2 9.6090e− 01

ψa1 5.3918e−1 1.6300e+ 00

ψo 1.6619e0 1.7670e+ 00

xl 4.5736e−2 2.2390e− 01

Sparse Observation

ψa2 8.0821e−2 9.3380e− 01

ψa1 5.4577e−1 1.6530e+ 00

ψo 1.7079e0 1.7370e+ 00

xl 2.4368e−1 1.2500e+ 00

Table 7. Normalized RMSE of the posterior (third column) and prior (fourth column) DA results in Regimes II.

Observation level State Variable Posterior Prior

Plentiful Observation

ψa2 8.0383e−2 9.2360e−01

ψa1 5.2187e−1 1.5710e+00

ψo 1.8353e+0 1.9500e+00

xl 8.1702e−2 4.0110e−01

Sparse Observation

ψa2 7.5127e−2 8.8370e−01

ψa1 5.0754e−1 1.5030e+00

ψo 1.7287e+0 1.8810e+00

xl 5.4736e−1 2.6360e+00

Table 8. Normalized RMSE of the posterior (third column) and prior (fourth column) DA results in Regimes III.
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6 Conclusion

In this paper, we developed an idealized coupled atmosphere-ocean-ice model to investigate the effects of clouds on sea575

ice dynamics in the MIZ. Our model integrates the DEM to simulate the movement and interaction of individual ice floes,

combined with a two-layer QG ocean model and a two-layer PQG atmospheric model that includes saturated precipitation

processes. This framework facilitates studying the interactions between atmospheric, ocean, and sea ice floes. It specifically

focuses on cloud-induced radiative and precipitation effects on sea ice evolution. The paper addresses both forward (model

simulation) and inverse (DA) problems. For the former, we study the interactions between different model components; for the580

latter, we focus on recovering unobserved floe trajectories obscured by cloud cover and inferring ocean and atmospheric fields

using limited observations.

The results from this study show the significant influence of clouds on sea ice dynamics. They also help understand the

non-trivial interactions within the coupled atmosphere-ocean-ice system. Integrating idealized modeling with advanced DA

techniques forms a powerful tool for enhancing the prediction of Arctic climate processes, particularly in the MIZ, where585

small-scale interactions are critical.

There are several future research works. One is about further refining the model to incorporate more sophisticated thermody-

namic processes, and the other is to test its performance under varying climate scenarios. Moreover, the continued development

of DA schemes that can handle more comprehensive observational datasets (Curry et al., 1996) will be essential for advancing

our understanding of sea ice dynamics and for improving the accuracy of Earth system models. In addition, it would also be590

worthwhile to explore how the statistical properties of ice floe trajectories vary with floe size. The current model does not

include the Coriolis force, as it focuses on short-term, localized ice floe dynamics where collision and drag forces are domi-

nant. As a future direction, we plan to incorporate the Coriolis effect to evaluate its impact on larger-scale and longer-term ice

floe motion. As a future direction, we aim to extend the current framework by incorporating two-way coupling between the

ocean and ice components, as well as a fully coupled atmosphere–ocean interaction, to better capture feedback mechanisms595

and improve the accuracy of ocean state estimation in data assimilation settings. Because existing in-situ and remote sensors

sample only limited portions of the stratified upper ocean, its full three-dimensional state remains only partially observable in

the present experiments; a quantitative assessment of this limitation is left for future study.
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Appendix A: Contact forces in the coupling model780

A0.1 Normal contact force

In the mathematical framework described in equations (36) and (5), the normal contact force between the l-th and j-th ice floes

is governed by Hooke’s law of linear elasticity. Specifically, the force f ljn is expressed as:

f ljn = cljEljδnljnlj , (A1)
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where nlj denotes the normal vector originating from the center of floe l and pointing towards the center of floe j. The function785

δljn , representing a Delta function, ensures that the contact force between the j-th and the l-th floes is nonzero only when they

are in contact:

δljn =

1 if |dlj | − (rl + rj)< 0,

0 otherwise.
(A2)

Here, rl and rj are the radii of the respective floes, and dlj is the distance between their centers. The chord length clj , oriented

transversely across the cross-sectional area, is calculated as:790

clj =
1

dlj

√
4(dlj)2(rmax)2− ((dlj)2− (rmin)2 + (rmax)2)

2 (A3)

where Elj represents the Young’s modulus of elasticity. The parameters clj and dlj , crucial for understanding the mechanical

interactions, are illustrated in Figure A1.

rl
rj

dlj

clj

Circle l

Circle j

Figure A1. Illustration of geometrical quantities for computing the tangential force and the normal force.

A0.2 Tangent contact force

The tangential force at the contact interface between two ice floes is proportional to their relative tangential velocities. The795

direction of this force, denoted by tlj , is perpendicular to the normal direction. This force, f ljt , is defined by the following

expression:

f ljt = cljGlj∆vljt tlj , (A4)

where clj refers to the chord length previously defined in (A3), Glj is the shear modulus, and ∆vljt is the difference in velocity

along the tangential direction between the l-th and j-th ice floes.800
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