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1 General Comments

The manuscript is well written, model equations are documented well. I found Section 3 a bit hard
to follow since the majority of it describes surrogate models not DA. But it is fine since those are
used only in the ensemble DA experiments. However, the DA system description is left limited;
this may make the manuscript hard to follow for non-expert readers on DA while looking at the
experiments in Section 5.

Furthermore, the validation of the experiments can be done in a more quantitative way. The
skill of the posterior mean is documented in Tables 6-8 but they can be extended to prior mean to
see how much the DA improves with respect to the forecast. Another way of doing it is using the
non-assimilative experiments in Section 4 as a baseline to see how the sparse and plenty observation
cases improve when observations are incorporated. Another interesting diagnostic can be to look
at the spread of the prior and posterior ensemble to see the uncertainty before and after the
assimilation.

Finally, conclusions can be extended considering my specific comments below. Overall, I would
expect a more quantitative assessment of the results. I would be happy to see a revised version.

Response: We sincerely thank the reviewer for the detailed comments and very helpful sugges-
tions. We have carefully addressed each comment and made the changes accordingly throughout
the revised manuscript. The details are as follows.

2 Specific Comments

Introduction: The data assimilation literature related to the work should be extended to give
the reader a view of which studies have been done in line with the investigation presented in Section
5.

We thank the reviewer’s comment and we agree that we need to add the literature review of data
assimilation in the related area. In the revised manuscript, we have added the following additional
literature overview in the section of introduction:

“ Recent advances in sea-ice data assimilation encompass a broad spectrum of ap-
proaches. For example, [Lisæter et al., 2003, Massonnet et al., 2014] assimilated passive-
microwave concentration and altimetry-derived thickness into coupled ice–ocean mod-
els with an ensemble Kalman filter, substantially reducing drift and thickness errors.
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[Riedel and Anderson, 2024] accounted for the bounded, non-Gaussian statistics of sea-
ice variables within the observation operator, which refines the posterior analyses of both
ice and snow states. At the fully coupled level, [Penny et al., 2019] introduced a strongly
coupled data-assimilation (SCDA) framework that puts sea-surface and ice increments
directly into the atmospheric analysis, further improving the short-term forecasts in
the marginal-ice zone. With the traditional Eulerian approaches, [Chen et al., 2022b,
Deng et al., 2025] developed an efficient Lagrangian scheme that reconstructs mesoscale
currents and vorticity from a limited set of tracked floes, even if only partial trajecto-
ries are observed due to clouds. Nevertheless, current data-assimilation frameworks for
fully coupled atmosphere–ocean–ice models still lack a consistent treatment of cloud and
precipitation effects. ”

Section 2: Sections 2.2.4 and 2.2.4 can be subsections of 2.2.2. Similarly, 2.2.6 and 2.27 can be
subsections of 2.2.5.

Response: We thank the reviewer for the helpful suggestion. We have combined Subsections
2.2.2–2.2.4 into one subsection titled “Oceanic forcing”, and Subsections 2.2.5–2.2.7 into “Atmo-
spheric forcing”.

Section 3: how costly is the coupled system? Can you be a bit precise in terms of cpu time? Is
the code parallelized? What is the gain with the reduced-order models in this case?

Response: We thank the reviewer for the question. We have revised Section 3 to clarify the
computational cost of the coupled model and the role of the reduced-order model (ROM).

The full coupled atmosphere–ice–ocean model is implemented in a sequential Matlab code
and is not parallelized. A single forward run over one simulated day (i.e., 86,400 seconds) requires
approximately 3.70 CPU-hours, corresponding to a wall-clock time of 0.82 hours on an Apple M1
Max CPU with 32 GB of RAM. This computational cost makes ensemble-based data assimilation
prohibitively expensive for even with a small ensemble size. While a parallelized implementation
could mitigate this computational burden, it would require substantial effort in restructuring the
code and managing inter-process communication, which is beyond the scope of this study.

By contrast, the proposed reduced-order models (ROMs) for the coupled system are several
orders of magnitude faster and enable efficient ensemble forecasting. In addition, we aim to demon-
strate the effectiveness of data assimilation using standard ROMs that preserve the essential system
dynamics under observation scenarios where ice floes are irregularly obscured by cloud cover.

In line 265 of the revised manuscript, we have added the following:

For instance, the full coupled atmosphere–ice–ocean model is implemented as a sequen-
tial Matlab code without parallelization. A single forward simulation over one model
day (i.e., 86,400 seconds) requires approximately 3.70 CPU-hours, corresponding to a
wall-clock time of 0.82 hours on an Apple M1 Max processor with 32 GB of RAM. It is
therefore not feasible to use this full order model directly in data assimilation settings
due to its high computational cost.
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Section 3.2 it is not clear to me how the total water content is linked to the ice floe area?

Response: We thank the reviewer for the careful reading. The link between ice-floe area and the
total water content qt operates in two ways. First, qt is a prognostic variable in the atmospheric
model that does not directly relate to the sea-ice area. However, the ice floe area has a different
evaporation rate, which contributes to different water transport from the ocean surface, and this
can contribute to the different distribution of the total water over the ice floe and the ocean. Some
numerical results are discussed in Section 4.4. Second, the mean total water content [qt] over the
lth ice floe is used as a quantitative indicator for cloud cover: larger [qt] indicates thicker or more
extensive clouds, which obscure ice-floe edges and therefore is represented by larger observation
uncertainties in floe position. Section 3.2 details how this uncertainty is incorporated.

In the end of Section 3.2, we have added the following to better illustrate the link:

In summary, the total water content qt interacts with ice floes in two different ways.
First, the spatial coverage of an ice floe over the ocean affects the local evaporation,
which in turn modifies the distribution of qt over ice and ocean. Second, the mean
total water content [qt] above each floe is used to parameterize cloud-related observation
uncertainty in floe localization, with higher [qt] indicating thicker clouds and thus higher
uncertainty.

Using “q” in the equations for both the PV and water content is confusing from time to time.
Section 3.3.2 describes directly the data assimilation scheme (LETKF) not the localizations. This
can be the introduction to Section 3.3. You don’t detail the scheme, no KF equations for example,
but you allocate a dedicated section to localization. What is the reason that you prefer to discuss
localization explicitly for your application? How does your analysis benefit from it?

Response: We thank the reviewer for pointing out the potential confusion arising from using
the symbol q. We have chosen to retain this notation in order to be consistent with prior work,
particularly the formulation in [Qi and Majda, 2016, Chen et al., 2021, Chen et al., 2022a], which
uses q for both quantities for potential vorticity. To clarify the meaning in our manuscript, we have
added one sentence in the line 160 of section 2.3 where this notation first appears to remind the
reader of the specific interpretation of q based on the context:

Here, q(·) denotes the potential vorticity at the (·) layer, following the notation used in
[Qi and Majda, 2016, Chen et al., 2021, Chen et al., 2022a]. Its precise definition may
vary slightly depending on the component (e.g., atmosphere or ocean) and is clarified in
the corresponding context.

For the second point, we thank the reviewer for this thoughtful question. While the ensemble
Kalman filter (EnKF) and its variants such as LETKF are well-established in the data assimila-
tion (DA) literature such as [Evensen, 2009, Asch et al., 2016], we chose to put a dedicated section
to localization due to its central importance in our application. Specifically, our coupled model
features both Eulerian state variables (e.g., atmospheric and oceanic streamfunctions on a grid)
and Lagrangian variables (i.e., individual ice floe trajectories), which evolve on different spatial
frameworks and display different spreads of uncertainties. Therefore, localization plays a critical
role in assimilating sparse observations in systems with mixed Eulerian–Lagrangian information.
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By explicitly detailing our approach to localization, we aim to give the audience a clear presen-
tation about how these different kinds of state variables are combined in the localization in data
assimilation. Thus, while the LETKF algorithm is standard and well-known, the localization for
different state variables in this work is both non-trivial and essential to the effectiveness of the
assimilation procedure. For this reason, we believe it merits a focused discussion.

To make it clear, we have revised line 432 in the draft:

LETKF applies filtering exclusively in physical space for both the trajectories of ice
floes which are in the Lagrangian frame of reference and the streamfunctions of the
atmosphere and ocean that are in the Eulerian frame of reference.

Section 4.1 Is the time step equal for all the components? If so, what are the implications for
resolved scales for the supposedly fast evolving atmosphere and relatively slow ocean and sea ice?
By the way, is there a specific reason that you choose the timestep as a decimal number in seconds?
It is 58.2 seconds in line 399 while 1.2941 hours in Table 1. Not clear to me why they are different.

Response: We thank the reviewer for pointing this out. In our simulation, three distinct time
steps are employed:

• Atmospheric model: ∆t = 58.2 s

• Ocean model: ∆t = 1.2941 hours

• Ice floe model: ∆t = 1.2941 hours

These dimensional time steps are derived by rescaling from their non-dimensional counterparts
based on characteristic scales appropriate for the Arctic regime used in our study. For example,
the atmospheric model’s dimensional time step of 58.2 s corresponds to the non-dimensional value
∆t = 5× 10−4, given the Arctic characteristic time scale T used in the QG model.

In addition, we have intentionally chosen different time steps for the three models to significantly
reduce the computational cost. The primary computational burden in the coupled model arises
from the ice floe component, which must resolve collisions as well as contact forces and torques
among floes at every time step. If the ice floe model were computed using the atmospheric model’s
smaller time step, the computational expense would increase by approximately 80 times. Therefore,
employing different time steps for each model is an effective strategy to balance computational
efficiency and model accuracy.

To make this clearer, we have updated the time scale and time step information in Tables 2, 3,
and 4, as well as added the following to the Section 4.1 of the manuscript:

It is worth noting that the dimensional time steps for the atmospheric and ocean models
are obtained by rescaling their respective non-dimensional counterparts using their dif-
ferent characteristic scales appropriate to each component under the Arctic regime; for
example, the atmospheric model’s time step of 58.2 s corresponds to a non-dimensional
value of ∆t = 5× 10−4, based on the characteristic time scale T employed in the PQG
model.
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Section 4.3 The trajectory of the large floes seems to me more unpredictable including returns
and changing directions. Is there a way to quantify this behavior?

Response: We thank the reviewer for highlighting this insightful observation. Indeed, large ice
floes exhibit more complex trajectories characterized by frequent directional changes and occasional
reversals. A quantitative assessment of this intricate behavior could involve analyzing metrics such
as path curvature, directional persistence, or employing methods from stochastic trajectory analysis.
However, a detailed quantification of these aspects lies beyond the scope of the current study and
will be investigated systematically in our future work. In the revised manuscript, we have added
one sentence:

In addition, it would also be worthwhile to explore how the statistical properties of ice
floe trajectories vary with floe size—while some aspects of this behavior, particularly
for smaller floes, are illustrated through case studies in this work, a more systematic
quantification is left for future investigation.

Section 5.1 Returning back to my comment on Section 3, did you try running an experiment
with smaller ensemble size (instead of 300) using the full models (instead of surrogates)?

Response. We appreciate the reviewer’s interest in a baseline test that would employ the
full coupled model rather than the surrogate emulator. Unfortunately, even with a much smaller
ensemble, such an experiment is prohibitively expensive:

• A single 66-day forecast with the full atmosphere–ocean–ice model costs approximately 244
CPU-hours. Running an ensemble of 50 members—the minimum size that still yields a well-
conditioned sample covariance for this state dimension—would therefore require about 12200
CPU-hours per analysis cycle.

• The full coupled model is discretized on a much finer spatial grid than the surrogate (ROM),
yielding a state vector whose dimension is orders of magnitude larger. Assimilating such
high-dimensional state variables would take a substantial computational cost for each anal-
ysis cycle; even a minimum setup would be infeasible for a few data assimilation cycles in
Section 5.1.

For these reasons we opted to use surrogate dynamics in combination with a larger ensemble
(300 members) to preserve covariance accuracy at manageable cost. A systematic comparison
between a ROM based ensemble and an FOM based ensemble in data assimilation is an important
topic for future work once additional computational resources become available.

To make it clear about the computational cost for DA with the full order model, we have added
the following statement at the beginning of Section 3 in the revised manuscript:

While it would be ideal to perform a baseline data assimilation experiment using the
full coupled atmosphere–ocean–ice model, such a setup is computationally prohibitive. A
single 66-day forecast with the full model requires approximately 244 CPU-hours, and
an ensemble of 50 members, which is a relatively small ensemble size, would require
over 12,000 CPU-hours per assimilation cycle. Furthermore, the full model operates on
a much finer spatial grid than the reduced-order surrogate, resulting in a substantially
higher-dimensional state variable and significantly more expensive computational costs.
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What are the state variables, all model variables? Section 5.2 It would be useful to provide the
prior mean and spread of both the analysis and forecast to assess the improvements via DA. The
posterior mean compared to truth is fine but doesn’t show how much the state and the trajectory
improved.

Response. We thank the reviewer for the helpful suggestion.
The state variables in our coupled atmosphere–ocean–sea ice model include:

• the streamfunctions for the upper and lower atmosphere layers, denoted by ψa
1 and ψa

2 ,

• the streamfunction for the surface ocean, ψo
2, and

• the two-dimensional positions of each individual ice floe at time t, represented by (xl(t), yl(t))
for floe index l.

In response to the second point, we have revised Section 5.2, along with Figures 6–8 and Tables
6–8, to include both the prior (forecast) and posterior (analysis) means for the atmospheric and
oceanic state variables, as well as the ice floe trajectories.

3 Technical corrections

Format of the citations are not adequate and should be corrected all over the text. e.g. Cámara-
Mor et al. (2010); Kwok (2018) →(Cámara-Mor et al. 2010; Kwok 2018)

Response: We thank the reviewer for pointing this out. We have revised and corrected the citation
format in the manuscript.
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