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 11 
Abstract. The phenomena of leader extinction and restrike during lightning events, such as multiple strokes in ground 12 

flashes or recoil leaders in cloud flashes, present significant challenges. A key aspect of this issue involves the 13 

discussion of the channel’s negative differential resistance and its instability. From the perspective of bifurcation 14 

theory in nonlinear dynamics, this paper posits an inherent consistency among the channel’s negative differential 15 

resistance, channel instability, and the critical transition from insulation to conduction. This study examines the 16 

differential resistance characteristics of the leader-streamer system in lightning development. We correlate the 17 

differential resistance characteristics of the leader-streamer channel with the channel’s state and instability transitions, 18 

investigating the critical current and potential difference conditions required for the stable transition of the leader-19 

streamer channel. 20 
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1 Introduction 23 

Natural lightning exhibits an intermittent nature distinct from long-gap discharges 24 

observed in laboratory settings (Gou et al., 2010; Gou et al., 2018; Iudin et al., 2022). This 25 

intermittency is closely related to the fractal and critical characteristics of the lightning process 26 

(Bulatov et al., 2020; Sterpka et al., 2021; Iudin & Syssoev, 2022; Syssoev et al., 2022). 27 

Additionally, the asymmetry between positive and negative polarities introduces inherent 28 

instability in the discharge process, leading to destabilization and re-excitation of lightning 29 

events (Van der Velde & Montanya, 2013; Williams, 2016; Williams & Heckman, 2012; Iudin, 30 

2021; da Silva et al., 2023; Scholten et al., 2023). 31 
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In ground flashes, negative ground flash discharges are typically separated by long 32 

intervals of dim light. When the downward negative channel decays and eventually stops, the 33 

active intracloud positive part intermittently generates conditions for the formation of dart or 34 

dart-stepped leaders (Van der Velde & Montanya, 2013; Stock et al., 2014; Stock et al., 2023; 35 

Lapierre et al., 2017; Jensen et al., 2023). In cloud flashes, the active positive leader contrasts 36 

sharply with the longer intervals of the negative leader, where K-processes or recoil leaders in 37 

the cloud are similar to dart or dart-stepped leaders in negative ground flashes (Van der Velde & 38 

Montanya, 2013; Stock et al., 2014; Lapierre et al., 2017). 39 

Recoil leaders are generally believed to arise from instability in the bidirectional leader 40 

channel due to current interruption (Williams & Heckman, 2012; Mazur, 2016). Stepped leaders 41 

are thought to emerge from various instabilities within the streamer channel at the leader's end 42 

and their critical transitions (Malagón-Romero & Luque, 2019; Hare et al., 2021). These 43 

instabilities often manifest as the negative differential resistance characteristics of the channel. 44 

In gas discharge physics, negative differential resistance is typically associated with 45 

bistability, hysteresis, and unstable transitions (Bosch & Merlino, 1986; Lozneanu et al., 2002; 46 

Agop et al., 2012; Raizer & Mokrov, 2013). Since the interaction between the leader and 47 

streamer in lightning discharges is inseparable, this paper extends the study of negative 48 

differential resistance properties from the leader to the leader-streamer system in lightning. It 49 

investigates the stability and instability of the channel during lightning development and the 50 

current and potential differences required to maintain channel stability. 51 

2. Method 52 

2.1 Negative differential resistance in lightning 53 

Lightning, as a natural phenomenon of large-scale arc discharge, exhibits the 54 

characteristic of negative differential resistance in its channel (Heckman, 1992; da Silva et al., 55 

2019). This means that as the current increases, the temperature and conductivity of the channel 56 

also increases, leading to a further increase in current, while the internal electric field required to 57 

maintain the current decreases, and the voltage across the channel decreases. In other words, an 58 

increase in current leads to a decrease in voltage, and vice versa (dV/dI < 0). Krehbiel et al. 59 

(1979) pointed out that the instability of negative differential resistance in the channel might be 60 

the main reason for channel attenuation. 61 
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Heckman (1992) and Williams & Heckman (2012) conducted detailed studies on the 62 

relationship between negative differential resistance and the multiplicity of negative ground 63 

flashes. They suggested that although the negative differential resistance channel connected to 64 

the extended streamer source (which can be considered a current source) is unstable, the 65 

existence of resistance and capacitance in the channel itself (both in parallel) forms a stabilizing 66 

factor. If the electrical response time constant RC for the channel resistance is greater than the 67 

thermal attenuation constant τ of the channel, the channel is stable; otherwise, it is unstable. The 68 

critical stability current is approximately 100A (Heckman, 1992; Williams, 2006; Williams & 69 

Heckman, 2012). 70 

Mazur & Ruhnke (2014) and Mazur (2016a, b) pointed out that equating the leader 71 

channel to a parallel arc resistance and capacitance connection might not be appropriate. As the 72 

characteristic of the negative effect of channel resistance exists over the entire range of lightning 73 

currents, channel stability is not necessarily related to its negative differential resistance 74 

characteristics. What determines the stability of the channel is the minimum potential difference 75 

condition of the streamer zone at the channel tip (Bazelyan & Raizer, 2000; Mazur, 2016a). 76 

Since the initiation and development are guided by a large number of streamers originating from 77 

the front, the high resistance of the streamer zone is important for the channel's stability. We 78 

suggest that the differential resistance properties of the lightning channel should not only be 79 

determined by the leader channel but should also include the streamers at the ends of the leader 80 

channel. 81 

2.2 Negative differential resistance and bistability 82 

Theoretical exploration of negative differential resistance, hysteresis, and bistability led to 83 

the derivation of a normalized relationship between current J and voltage φ  in the discharge 84 

channel (Agop et al., 2012): 85 

 21
1

aJ
J

ϕ  = + + 
      （1） 86 

Figure 1 shows the theoretical dependence of the normalized current on the normalized 87 

voltage. It can be seen that as the parameter a increases, the system changes from stable to 88 

unstable. For example, when the parameter a = 6, the current monotonically increases with the 89 

voltage, and the system is monostable. When the parameter a = 18, the system exhibits obvious 90 
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instability and bistability. Initially, the current increases slowly with the voltage and maintains a 91 

certain state (section AB), but when the voltage reaches a certain limit (point B), the current 92 

suddenly jumps, and the system transitions to a completely different state (point C). When the 93 

voltage begins to decrease in this state, the current decreases with it but maintains a steady state 94 

(section CD). When the voltage decreases to a certain value (point D), the current drops 95 

suddenly, and the system returns to its original state (point A). As the voltage varies, the system 96 

jumps back and forth between two different stable states, thus showing hysteresis, demonstrating 97 

the system's stability,instability and their critical transition under different parameter conditions. 98 

 99 

Fig. 1. Theoretical dependence of the normalized current on the normalized potential (adapted from Agop et 100 

al., 2012, reprinted with permission from the Physical Society of Japan). 101 

When examining nonlinear dynamics, it is not uncommon to observe negative differential 102 

resistance, bistability, and hysteresis. By considering the dynamic system φ= ( , , )
dJ

f a J
dt

, 103 

where J  is the state variable and , aφ  is a parameter, we can discern that the system is unstable 104 

when ( , , )=0f a Jφ and ( , , ) 0
J

f a Jφ′ > ，conversely, the system achieves stability when 105 

( , , )=0f a Jφ and ( , , ) 0
J

f a Jφ′ < .if we let 106 

2( , , ) 1
1

af a J J
J

ϕ ϕ  = − + + 
   （2） 107 

then 108 

2

2 2
1( , , ) 1

(1 )J
Jf a J a
J

ϕ −′ = − −
+

 （3） 109 
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Considering equation (1), we have φ φ′ ′= −( , , ) （J）
J
f a J , then the system is unstable 110 

under the condition φ =
+ 2

(1+ )
1

a
J

J
 and φ′（J）<0 , in agreement with the previous result on 111 

the instability of the negative differential resistance. The sign of channel differential resistance 112 

provides insight into the stability of channel states and transitions of lightning.  113 

Similar bistability, hysteresis, and critical transitions are widely observed in biological, 114 

atmospheric, ecological, and other systems and can be described by similar dynamical systems 115 

(Scheffer & Carpenter, 2003; Scheffer, 2009). The generation of instability and bistability can be 116 

illustrated by the rolling ball model shown in Figure 2, where the peaks and valleys represent 117 

unstable and stable points, respectively. Instability triggered by strong nonlinearities (positive 118 

feedback) is an important factor causing the bistability (polymorphism) of the system and the 119 

critical transition. 120 

 121 

Fig. 2. Schematic representation of the locus of stability as a function of external conditions (adapted from 122 

Scheffer & Carpenter, 2003, reprinted with permission from Springer Nature). 123 

2.3 The relationship between Lightning channel electric field and current. 124 

The measurements of the differential resistance characteristics of a gas discharge gap on a 125 

centimeter scale was conducted early by King (1961). However, due to the effect of electrode 126 

vaporization as pointed out by Mazur & Ruhnke (2014), King's results can only be applied to 127 

currents less than 10A with short gaps. In larger-scale lightning channels, the current and electric 128 

field are usually expressed in a power-law form. For instance, Bazelyan et al. (2008) assumed 129 

that the leader channel current is inversely proportional to the electric field -13400E I= , while 130 
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Larsson et al. (2005) suggested that the relationship between channel current and electric field 131 

varies within the range of 102-104A 132 

0.181600E I −=  (4) 133 

This is consistent with the observations of Tanaka et al. (2003) and aligns with the 134 

suggestions of da Silva et al. (2019) that the power law differs for each segment within the range 135 

of 102-104A. To better describe this relationship, we combined the data from King et al. (1961) 136 

and Larsson et al. (2005).  137 

For currents less than 10 A, we used the results of King et al. (1961). For currents greater 138 

than 10 A, we applied the formula provided by Larsson et al. (Eq. 4).. Both sets of data were 139 

fitted with a formula. 140 

b dE aI cI= +  (5) 141 

Where 4278, 0.9788, 1799, 0.2006,a b c d= = − = = − the minimum current for 142 

fitting is taken to be approximately 0.1A.  Figure 3 shows the relationship between the electric 143 

field and current, where the squares represent King's observations, the circles represent Tanaka's 144 

(2003) experiments, and the solid green line represents the fit. 145 

 146 

 Fig3. electric field versus current in arc channel 147 

2.4 Differential resistance of the leader-streamer channel 148 

A streamer channel's resistance is determined by the potential difference 
T

U∆ of the 149 

streamer zone of the leader head and the channel currentI , which can be expressed as (Bazelyan 150 

& Raizer, 2000) 151 

c L 0 L
=q V 2 V

T
I Uπε= ∆     （6） 152 
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where
c

q denotes the channel charge line density and L
V denotes channel development speed, LV  153 

and I  follow a power-law relationship (Bazelyan & Raizer, 2000; Popov, 2009) 154 

α=
L

V kI      （7） 155 

As power exponents vary substantially among studies, for example 1/3α ≈ (Hutzler & 156 

Hutzler, 1982, Bazelyan et al., 2007), and 0.66α ≈  (Kekez & Savic, 1983), in this paper, we 157 

adopt α= × =41.88 10 , 0.67k  based on more recent studies (Andreev et al., 2008, Popov, 158 

2009, Bazelyan et al., 2009). 159 

From Eqs. (6) and (7), we obtain the voltage drop in the streamer zone at the leader head 160 

α

α πεπε

−

∆ =
1

00

=
22

T

I I
U

kkI
   （8） 161 

Considering the leader channel potential drop CU LE= , where L is the leader channel 162 

length and E is the electric field of the channel as shown in Eq. (4), and the streamer channel 163 

potential drop TU∆  as shown in Eq. (8), the total potential drop U of the leader-streamer system 164 

is as follows: 165 

 166 
α

πε

−

= + +
1

0

(aI I )
2

b d I
U L c

k
  （9） 167 

Derive both sides with respect to I  gives the total differential resistance 168 

α

α
πε

−
− −= + + −1 1

0

(abI I ) (1 )
2

b ddU I
L cd

dI k
 （10） 169 

3 Analysis results 170 

Figure 4 shows how the differential resistance changes as the channel current increases for 171 

different lengths of the leader channel, where the horizontal line represents zero differential 172 

resistance. When the curve intersects the horizontal line, the differential resistance changes its 173 

sign and the horizontal coordinate of the intersection indicates the critical current 174 

 175 

https://doi.org/10.5194/npg-2024-15
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



8 
 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

Fig4. Dependence of total differential resistance of channel on current with varying channel lengths. The 184 

horizontal line represents zero resistance. 185 

Figure 5 shows that critical currents increase with channel length, which is consistent with 186 

Heckman's 1992 study. It is also shown that the critical potential difference for the streamer zone 187 

of the leader's head also increase with leader length, which aligns with the threshold condition 188 

for the critical potential difference of the leader's development proposed by Bazelyan & Raizer 189 

(2000) and Mazur (2016a).  190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

Fig5. Critical channel current and potential difference of the streamer channel at the leader tip vary with 203 

channel length. 204 

It can be observed that as the leader channel length increases, leader channel's ambient  205 

(stabilized) electric field decreases, between 0.1 km and 12 km, the ambient electrical field of the 206 

stabilized leader-streamer drops from 15.5 kV/m to 1.1 kV/m,  this is consistent with  Lalande et 207 
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al. (2002) and Becerra & Vernon (2006) that the leader channel's ambient  (stabilized) electric 208 

field decreases with the channel's height. Similarly, the internal electric field of the leader 209 

channel decreases(Figure 6). At a length of 0.1km, the electric field is about4.9 kV/m, while at 210 

12km, it drops to 0.65kV/m, Syssoev & Shcherbakov (2001) determined that stable thermal 211 

leader channels with long electric fields (30–50 m) were about 3–10 kV/m from laboratory 212 

discharges, which are also similar to our results.  213 

 214 
Fig 6. variations of ambient electric field of the leader-streamer system and electric field of the leader 215 

channels with length 216 

4 Discussion and conclusion 217 

This paper extends the discussion of lightning discharge channel stability and channel 218 

differential resistance from the leader channel to the leader-streamer system. Based on the 219 

bifurcation theory and critical transition theory of nonlinear dynamics, the extinction, re-220 

excitation, and critical transition of intermittent events (such as recoil leaders) in the lightning 221 

process were studied. By analyzing the sign changes in the differential resistance of the leader-222 

streamer system, the critical current and the critical potential difference in the streamer zone at 223 

the channel end were obtained. The results show that as the channel length increases, the critical 224 

current of the leader channel and the critical potential difference at the channel end also increase. 225 

Meanwhile, the average ambient electric field and the channel electric field required for stable 226 

transmission gradually decrease after an initial sharp drop. These findings are qualitatively 227 

consistent with existing research results. 228 
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The specific mechanism behind the sudden change in channel conductivity remains 229 

unclear but is undoubtedly related to the instability caused by positive feedback in the channel. 230 

The re-excitation of a decayed leader channel is usually due to uneven distribution of current and 231 

electric field. The development of a longer channel may exacerbate this inhomogeneity. 232 

Typically, the leader head has a higher charge concentration and conductivity, making it more 233 

active and persistent, often merging with adjacent channels. In contrast, the rear part of the 234 

channel has relatively weaker conductivity and is more prone to disconnection and splitting. This 235 

interaction of strength and weakness, merging, and splitting leads to the re-excitation of recoil 236 

leaders. 237 

In the case of negative ground flashes, the electric field in the upper channel becomes 238 

non-uniform due to the low current in the positive leader section, which is insufficient to 239 

maintain the conductivity of the lower channel. Recent observations (Williams & Montanya, 240 

2019; Hare et al., 2019; Pu & Cummer, 2019; Hare et al., 2021) have found that the low current 241 

in the positive leader and the poor conductivity of its corresponding rear leader result in negative 242 

charge deposition in the center of the rear channel. This creates a series of outwardly directed 243 

negatively polarized needle structures, triggering nonlinear instability. Consequently, the current 244 

in the rear part of the positive leader decreases, causing it to disconnect from the negative leader. 245 

The increased potential difference at the end of the paused negative leader results in its re-246 

breakdown and reconnection, forming multiple strokes in the negative ground flash process. In 247 

the case of positive ground flashes, the upper part of the channel is a negative leader. The 248 

stronger current at the head of the negative leader makes the channel less prone to splitting, 249 

resulting in a single stroke. 250 

The transition from a semiconductor to a conductor state in the leader channel may be due 251 

to positive feedback caused by ionization-thermal instability in the channel. As shown in studies 252 

by Bazelyan & Raizer (2000), Popov (2009), and da Silva et al. (2019), the pulsed mechanism of 253 

the stepped leader is often related to the electric field inhomogeneity among the numerous 254 

streamers at the head of the negative leader (Syssoev & Iudin, 2023). The triggering mechanism 255 

may be attachment instability (Douglas-Hamilton & Mani, 1974), which exacerbates the 256 

inhomogeneity of the electrical properties in the streamer zone (Sigmond, 1984; Luque et al., 257 

2016; Malagón‐Romero & Luque, 2019; Malagón Romero, 2021). If the mechanism of the 258 

positive stepped leader is similar to that of the negative stepped leader, the stepped excitation 259 
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should occur in the streamer zone at the leader head (Tran & Rakov, 2016; Kostinskiy et al., 260 

2018; Huang et al., 2020; Wang et al., 2020). 261 

Furthermore, whether in the initiation or transmission process, the various 262 

inhomogeneities, instabilities, and critical transitions in the leader channel and streamer zone, as 263 

well as the emergence of pulse events of different scales and interactions between leader 264 

channels, streamers, and various streamers, all exhibit collective, fractal, and critical properties. 265 

This may require more unified explanations based on fractal analysis and critical dynamics. 266 
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