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Abstract. The phenomena of leader extinction and restrike during lightning events, such as multiple strokes in ground
flashes or recoil leaders in cloud flashes, present significant challenges. A key aspect of this issue involves the

discussion of the channel's negative differential resistance and its instability. From the perspective of bifurcation

resistance, channel instability, and the critical transition from insulation to conduction. This study examines the
differential resistance characteristics of the leader-streamer system in lightning development. We correlate the
differential resistance characteristics of the leader-streamer channel with the channel's state and instability transitions,
investigating the critical current and potential difference conditions required for the stable transition of the leader-
streamer channel.
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1 Introduction

Natural lightning exhibits distinct intermittent characteristics that differentiate it from

long-gap discharges observed in laboratory settings (Gou et al., 2010; Gou et al., 2018a; ludin et
al., 2022). This intermittency is jntrinsically linked to the fractal structure and critical
of the lightning process (Bulatov et al., 2020; Gou et al., 2018b,Sterpka et al., 2021; ludin &

Syssoev, 2022; Syssoev et al., 2022). Additionally, the inherent polarity asymmetry jn
bidirectional leader development introduces jnstability in the discharge process, leading to

destabilization and re-excitation phenomena in various lightning events (Van der Velde &
Montanya, 2013; Williams, 2006; Williams & Heckman, 2012; ludin, 2021; da Silva et al., 2023;
Scholten et al., 2023).

[ ME& T : Cheng®

channel’s

posits

channel’s

channel’s

: an intermittent nature

: 2018

: closely related

: characteristics

: between positive and negative polarities

< inherent

:of

: 2016

e J WA J L _J


mailto:1491168405@qq.com

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67

68

69
70
71
72
73
74

The intermittent nature of lightning is particularly evident in ground flashes, where

negative ground flash discharges are characteristically separated by extended periods of dim

Juminosity. These periods are marked by a distinctive sequence: when the downward negative

channel decays and eventually ferminates, the still-active intracloud positive component

intermittently creates conditions that facilitate the formation of dart or dart-stepped leaders (Van
der Velde & Montanya, 2013; Stock et al., 2014; Stock et al., 2023; Lapierre et al., 2017; Jensen

et al., 2023). A similar intermittent behavior is observed in cloud flashes, where the active

positive leader gxhibits marked temporal asymmetry compared to the negative leader, yesulting

in K-processes or recoil leaders within the cloud. These transient phenomena are generally

attributed to channel instability, which manifests primarily through negative differential

resistance characteristics of the channel (Williams & Heckman, 2012; Mazur, 2016b).

In gas discharge physics, negative differential resistance is fundamentally associated with

bistability, hysteresis, and critical transitions (Bosch & Merlino, 1986; Lozneanu et al., 2002;
Agop et al., 2012; Raizer & Mokrov, 2013). In lightning discharges, the leader and streamer

form a strongly coupled system with complex interactions: streamers supply the energy and

current essential for leader development, while the highly conductive leader channel maintains

the electric field and potential required for continuous streamer propagation. Given this intricate

coupling, this study expands the investigation of negative differential resistance properties fo

encompass the entire leader-streamer system, rather than focusing solely on the leader channel.

Our analysis specifically examines the stability characteristics during lightning development and

Jdentifies the critical conditions—in terms of current and potential difference—that govern
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MIF& T: contrasts sharply with the longer intervals of the
BB T : where

MIBR T = in

HHE& T similar to dart or dart-stepped leaders in

MHE T : ground flashes (Van der Velde & Montanya, 2013;
Stock et al., 2014; Lapierre et al., 2017
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M T: Recoil leaders are generally believed to arise from
instability in the bidirectional leader channel due to current
interruption (Williams & Heckman, 2012; Mazur, 2016).
Stepped leaders are thought to emerge from various
instabilities within the streamer channel at the leader's end
and their critical transitions (Malagén-Romero & Luque,
2019; Hare et al., 2021). These instabilities often manifest as
the negative differential resistance characteristics of the
channel.

M T : typically
B T = unstable

M T Since the interaction between the leader and
streamer .

M T is inseparable, this paper extends the study
MER T : from
B T : leader to the

channel stability.

2,Method
2.1 Negative differential resistance in lightning

Lightning, as a natural Jarge-scale arc discharge, exhibits negative differential resistance
characteristics in its channel (Heckman, 1992; da Silva et al., 2019). This pehavior manifests
when channel temperature and conductivity jncrease with current, leading to a decrease in the

internal electric field peeded to maintain the current, thus reducing the voltage across the channel

[(dV/dl < 0). This characteristic was identified by Krehbiel et al. (1979) as a potential mechanism

for channel attenuation.
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B T : the characteristic of
MIFR T : means that as the current increases, the

HHB& T : of the channel also increases

#HIB& T : further increase in current, while

& T : required

M T decreases, and

& 7 : decreases. In other words, an increase in current

MIF& T: pointed out that the instability of negative
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Heckman (1992) and Williams & Heckman (2012) jnvestigated how negative differential
resistance yelates to the multiplicity of negative ground flashes. They proposed that while a

channel with negative differential resistance connected to an extended streamer source js

inherently unstable, parallel channel resistance and capacitance could provide stabilization.

Specifically, channel stability occurs when the electrical response time constant (RC) exceeds
the thermal attenuation constant ¢, with a critical stability current of approximately 100 A
(Heckman, 1992; Williams, 2006; Williams & Heckman, 2012).

However, Mazur & Ruhnke (2014) and Mazur (20164, b) challenged the appropriateness

of modeling the leader channel as a parallel RC circuit. They argued that channel stability

depends primarily on the minimum potential difference jn the streamer zone at the channel tip,

rather than negative differential resistance characteristics (Bazelyan & Raizer, 2000; Mazur,

2016a). Given that leader development js guided by numerous streamers at the front, we suggest

BB T : conducted detailed studies on the relationship
between...

7 : and

MHIBR T 2 suggested
MF& T although the
HHBR T : channel
MR T : the

MM T : (which can be considered a current source)

MIBR T2 in the
MR T : itself (both in parallel) forms a stabilizing factor. If
MF& T2 for the channel resistance is greater than

ME& T of the channel, the channel is stable; otherwise, it is
unstable. The

MR T:is
HFR T : 100A

that differential resistance analysis should consider both the leader channel and its associated

streamers.

2.2 Negative differential resistance and bistability

To understand how negative differential resistance, leads to bistability jn lightning

1

channels, we use a normalized relationship between current ./ and voltage ¢ that captures the

essential nonlinear dynamics of the discharge process. This relationship emerges from the

fundamental physics of plasma channel formation and maintenance (Agop et al., 2012):

a
=J|1+
¢ ( 1+J2) )

vv

where a is a dimensionless control parameter that governs the system's nonlinear

characteristics

As illustrated in Figure 1, for parameter a =18, the ./ — @ characteristic curve exhibits

three distinct regions. There are two stable regions where @' (]) > 0 a low-conductivity state

(segment AB) and a high-conductivity state (segment CD), both characterized by a

monotonically increasing current with voltage. These stable regions are separated by an unstable

region where ¢’ (]) < 0, demonstrating negative differential resistance. The system displays

bistability, with critical transitions occurring between the two stable states: at point B, the system

\

#HB& T : pointed out that equating
WERT: to

#HIBR T : arc resistance and capacitance connection might not
be appropriate. As the characteristic of the negative effect of
channel resistance exists over the entire range of lightning
currents, channel stability is not necessarily related to its
negative differential resistance characteristics. What
determines the...
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[M‘Jl%?’: Since the initiation and
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ME& T: a large number of streamers originating from the
front, the high resistance of the streamer zone is important for
the channel's stability. We suggest that the differential
resistance properties of the lightning channel should not only
be determined by the leader channel but should also include
the...
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M T: Figure 1 shows the theoretical dependence of the
normalized current on the normalized voltage. It can be seen
that as the parameter a increases, the system changes from
stable to unstable. For example, when the parameter a =6,
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abruptly transitions from the low-conductivity state to the high-conductivity state, while at point

D, it reverts to the low-conductivity state. This results in hysteretic behavior, where the system

follows different paths during voltage increase (A—B—C) and decrease (C—D—A).

Fig. 1. Theoretical dependence of the normalized current on the normalized potential (adapted from Agop et

al., 2012, reprinted with permission from the Physical Society of Japan)
Jn nonlinear dynamics, negative differential resistance, bistability, and hysteresis,are

dJ
commonly observed. Considering the dynamic system T f(p,a,J), where J is the state

variable and ¢, a is a parameter. The equilibrium points are given by f(@,a,J)=0. Atan

equilibrium point, the system is unstable whenof /0] > 0 and stable when of /o] <0,

WEET:).

B T : When examining

M T : it is not uncommon to observe

MEET: . By

M T, conversely, the system achieves stability

Let's define:
f(¢,a,J):¢—J(1+1+aJ2j @
Then .
g2
of /83 =_1_a(11Jr~;]2)2, (3')
From equation (1), at equilibrium we have ¢ = J(1+ ﬁ ),and 01/0] = —¢' (J);

The stability condition d£/8/ > 0 is equivalent to¢’ (]) < 0, which corresponds to negative

differential resistance. This mathematical analysis provides insight into how the sign of channel

differential resistance determines the stability of lightning channel states and their transitions
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Similar bistability, hysteresis, and critical transitions are widely observed in biological,
atmospheric, ecological, and other systems, and_they can be described by similar dynamical
systems (Scheffer & Carpenter, 2003; Scheffer, 2009). The generation of instability and
bistability can be illustrated by the rolling ball model shown in Figure 2, where the peaks and
valleys represent unstable and stable points, respectively. Instability triggered by strong
nonlinearities (positive feedback) is an important factor causing the bistability (polymorphism)

of the system and the critical transition.

o

P

/

System state

Fig. 2. Schematic representation of the locus of stability as a function of external conditions (adapted from
Scheffer & Carpenter, 2003, reprinted with permission from Springer Nature)

2.3 The relationship between Lightning channel electric field and current.

The differential resistance characteristics of a gas discharge gap at a centimeter scale were

measured first by King (1961). However, due to the effect of electrode vaporization, as pointed
out by Mazur & Ruhnke (2014), King's results are only applicable to currents less than 10A with

short gaps. In larger-scale lightning channels, the relationship between current and electric field

js generally expressed in a power-law form. For example, Bazelyan et al. (2008) assumed that

the leader channel current is inversely proportional to the electric field, , E =340017",
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meanwhile, Larsson et al. (2005) proposed that the relationship between channel current and
electric field can be described as:
E =16001°* (4)

This is consistent with the observations of Tanaka et al. (2003) and aligns with the

suggestions of da Silva et al. (2019) , who suggested that the power law yvaries for different

segments within the range of 10%to 10* A.

To develop a comprehensive description of the channel's electrical characteristics across

different current regimes, we combined two complementary datasets:

1. King et al. (1961) data for | < 10 A, characterizing the initial breakdown phase where

electrode effects dominate.

2. Larsson et al. (2005) measurements for | > 10 A, representing the fully developed

leader channel. The combined dataset was then fitted using a double power-law model that

captures both regimes

E=al"+cl® (5)
Where a = 4278, 5 = —0.9788, ¢ = 1799, d = —0. 2006, The minimum current used for

fitting was approximately 0,1 A.

Figure 3 shows the relationship between the electric field and current, with squares
represent King's observations, ,circles yepresenting Tanaka's (2003) experiments, and the solid

green line yepresenting the fitted curve.

v

[ MR T : suggested

[ MR T : varies within the range of 102-10*A

(B T : differs

[ M T : each segment

BB T2 -10%A. To better describe this relationship, we
combined the data from King et al. (1961) and Larsson et al.

(20085)....

M T : For currents less than 10 A, we used

MER T : results of

ME& T2 ). For currents greater than 10 A, we applied the
formula provided by

B T : (Eq. 4).. Both sets of data were
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Fig. 3. Electric field versus current in arc channel

2.4 Differential resistance of the leader-streamer channel

The resistance of a streamer channel is determined by the potential difference AU, across

the streamer zone of the leader head and the channel current Z , which can be expressed as
(Bazelyan & Raizer, 2000):

I=q V. = 27gV AU, (6)

v v

where q_ represents the channel charge line density, and ¥, _is the channel development speed.

The relationship between v, and | follows a power-law form (Bazelyan & Raizer, 2000; Popov,

2009):

V, = kI )

v

Since the power exponent & varies significantly in different studies, such as a ~ 1/3,

(Hutzler & Hutzler, 1982; Bazelyan et al., 2007) and o = 0. 66 (Kekez & Savic, 1983), this

study adopts 4 = 1.88 x 10*, a = 0. 67 based on more recent works (Andreev et al., 2008;

Popov, 2009; Bazelyan et al., 2009).
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B T 2 studies
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From Equations (6) and (7), we derive the voltage drop across the streamer zone at the

leader head:

Y/ A (8)
" ome kI 2mek

v v

Considering the leader channel potential dropU . = LE , where L is the leader channel
length and E is the electric field of the channel as shown in Equation (4), and the streamer
channel potential drop AU _from Equation (8), the total potential drop U of the leader-

streamer system is;

l-a
U = L@&l” + 1) + A (9
2re k

\ v

Differentiating both sides with respect to /7 ,we obtain the total differential resistance:

%_L(b1“+ca’l“)+(l—a) 40)

3 Analysis results

Figure 4 jllustrates how the differential resistance varies with channel current for different
Jeader channel lengths, where the horizontal line represents zero differential resistance. The point
at which the curve intersects the horizontal line, marks a change in the sign of the differential

resistance, with the corresponding current at this intersection yepresenting the critical current.
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Fig. 4. Dependence of total differential resistance of channel on current with varying channel lengths, (km).
The horizontal line represents zero resistance,

Figure 5 shows that both the critical currents and the critical potential differences in the

streamer zone at the leader head increase with the channel length, which is consistent with

theoretical predictions. This trend aligns with Heckman's 1992 study, on critical currents, and

supports the threshold condition for the critical potential difference proposed by Bazelyan &
Raizer (2000) and Mazur (2016a).
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Fig. 5. Critical channel current and potential difference
of the streamer channel at the leader tip vary with channel length.

As the leader channel length increases, fhe ambient (stabilized) electric field decreases,

Between 0.1 km and 12 km, the stabilized leader-streamer field drops from 15.5 kV/m to 1.1
kV/m, This trend is consistent with the findings of Lalande et al. (2002) and Becerra & Vernon
(2006) who reported that the leader channel’s ambient glectric field decreases with channel

height. Similarly, the internal electric field of the leader channel decreases (Figure 6). At a length
of 0.1 km, the electric field is approximately 4.9 kV/m, while at 12 km, it drops to 0,65 k\V/m,

Syssoev & Shcherbakov (2001) found that stable thermal leader channels with long electric
fields (30-50 m) had electric fields around 3-10 kV/m, which js consistent with our results.
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for the streamer zone of the leader's head also increase with
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[M‘JI%T: of the leader's development ]

MHBR T : <object>

Figs

MHBR T2 1t can be observed that
B T : leader channel's

HHBR T : ambient electrical field of the
MERT:, this

IR T channel's

BB T: (stabilized)

B T : the channel's

MER T aboutd
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4 Discussion and conclusion

This paper extends the discussion on lightning discharge channel stability and differential

Electrical field (kV/m)

MR T:

leader (

MR T : of

MF& T2 channel

resistance from the leader channel to the leader-streamer system. Using bifurcation theory and
critical transition theory from nonlinear dynamics, we studied the extinction, re-excitation, and
critical transition of intermittent events (such as recoil leaders) in the lightning process, By
analyzing the sign changes in the differential resistance of the leader-streamer system, we
show that as the channel length increases, both the critical current and the critical potential

difference at the channel end jncrease. Meanwhile, the average ambient electric field and the,

MF& T : Based on the

M T: of

: were studied.

M T in the streamer zone

: were obtained. The

M T of the leader channel

MER T also

: channel

& T qualitatively

electric field required for stable transmission gradually decrease after an initial sharp drop. These
findings are consistent with existing research,

The gxact mechanism behind the sudden change in channel conductivity remains unclear,
but it is Jikely related to jnstability caused by positive feedback within the channel. The re-

excitation of a decayed leader channel is fypically due to the uneven distribution of current and

electric field, which becomes more pronounced with increasing channel Jength. This asymmetry

< results

HHBR T = specific

W 7= undoubtedly

MIBR T : the

HER Tz in

MER T2 usually

#HB& T2 . The development of a longer

ME& T : may exacerbate this inhomogeneity. Typically,

is particularly evident in the channel structure: the leader head maintains higher charge

concentration and conductivity, remaining active and pften merging with adjacent channels,

10

M T:hasa

M T : making it more

M T : persistent,

MIB& T2 . In contrast,
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while the rear part exhibits lower conductivity and greater susceptibility to disconnection and

splitting,

In the case of negative ground flashes, the electric field in the upper channel becomes
non-uniform due to the low current in the positive leader section, which is insufficient to

maintain conductivity jn the lower channel. Recent observations show that the low current in the

MIF& T of the channel has relatively weaker...xhibits lower
conductivity and is more prone...reater susceptibility to
disconnection and splitting. This interaction of strength and
weakness, merging, and splitting leads to the re-excitation of
recoil leaders. F

positive leader and poor conductivity in the rear section lead to negative charge deposition in the

center of the rear channel. This creates pegatively polarized needle structures,that trigger

nonlinear instability, (Williams & Montanya, 2019; Hare et al., 2019; Pu & Cummer, 2019; Hare

et al., 2021). The current in the rear positive leader decreases, Jeading to disconnection from the

negative leader. The increased potential difference at the paused negative leader causes re-

breakdown and reconnection, yesulting in multiple strokes, In contrast, positive ground flashes,

feature stronger current at the negative leader head, making the channel less prone to splitting,

which typically results in a single stroke.

The transition from a semiconductor to a conductive state in the leader channel may be

driven by ionization-thermal instability caused by positive feedback. As shown in previous

studies (Bazelyan & Raizer, 2000; Popov, 2009; da Silva et al,, 2019), the pulsed mechanism of

M 7 the ...onductivity of...n the lower channel. Recent

|| observations (Williams & Montanya, 2019; Hare et al., 2019;

Pu & Cummer, 2019; Hare et al., 2021) have found...how
the low current in the positive leader and the ...oor
conductivity of its corresponding ...n the rear leader result
in...ection lead to negative charge deposition in the center of
the rear channel. This creates a series of outwardly

directed ...egatively polarized needle structures,
triggering...that trigger nonlinear instability.
Consequently,...(Williams & Montanya, 2019; Hare et al.,
2019; Pu & Cummer, 2019; Hare et al., 2021). The current in
the rear part of the ...ositive leader decreases, causing
it...eading to disconnect...isconnection from the negative
leader. The increased potential difference at the end of

the ...aused negative leader results in its...auses re-
breakdown and reconnection, forming...esulting in multiple
strokes in the negative ground flash process.... In the case
of...ontrast, positive ground flashes, the upper part of the
channel is a negative leader. The...feature stronger current at
the negative leader head of the negative leader makes...
making the channel less prone to splitting, resulting F

the stepped leader is related to glectric field inhomogeneity among the streamers at the Jeader

head (Syssoev & ludin, 2023). This instability may exacerbate the electrical inhomogeneity in

the streamer zone, which is thought to be triggered by attachment instability (Douglas-Hamilton
& Mani, 1974; Sigmond, 1984; Luque et al., 2016; Malagéon-Romero & Luque, 2019). If the

mechanism jn positive stepped Jeaders is similar to that of negative stepped Jeaders, the

excitation of the leader should occur in the streamer zone at the leader head (Tran & Rakov,

2016; Kostinskiy et al., 2018; Huang et al., 2020; Wang et al., 2020).
Furthermore, the inhomogeneities, instabilities, and critical transitions observed in the
leader channel and streamer zone, whether during initiation or transmission, as well as the

emergence of pulse events of various scales and the interactions between leader channels,

& 7 conductor...onductive state in the leader channel
may be due to positive feedback caused by ...riven by
ionization-thermal instability in the channel....aused by
positive feedback. As shown in previous studies

by ...Bazelyan & Raizer (... 2000),... Popov (... 2009),
and... da Silva et al. (..., 2019), the pulsed mechanism of the
stepped leader is often ...elated to the ...lectric field
inhomogeneity among the numerous ...treamers at the head
of the negative ...eader head (Syssoev & ludin, 2023). The
triggering mechanism ...his instability may be...xacerbate the
electrical inhomogeneity in the streamer zone, which is
thought to be triggered by attachment instability (Douglas-
Hamilton & Mani, 1974), which exacerbates the
inhomogeneity of the electrical properties in the streamer
zone (... Sigmond, 1984; Luque et al., 2016; Malagon-

& Luque, 2019; Malagé Romero, 2021)..... If the
mechanism of the...n positive stepped leader...eaders is
similar to that of the ...egative stepped leader...eaders, the

stepped ... (..]

streamers, and pther streamers, all exhibit collective, fractal, and critical properties. These

phenomena may require more unified explanations based on fractal analysis and critical

dynamics.
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