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Abstract. Simplified climate models, such as energy balance models (EBMs) are useful conceptual tools, in part because

their reduced complexity often allows for studies using analytical methods. In this paper, we solve a North-type EBM using

a boundary integral method (BIM). The North-type EBM is a diffusive, one-dimensional EBM with a non-linear nonlinear

albedo feedback mechanism. We discuss this approach in light of existing analytical techniques for this type of equation.

Subsequently, we test the proposed method by solving multiple North-type EBMs with a zonally symmetric continent featuring5

an altered ice-albedo feedback dynamic. We demonstrate that the introduction of a continent results in new equilibrium states

characterized by multiple ice edges and ice belts. Furthermore, we show that the BIM serves as an efficient framework for

handling unconventional ice distributions and model configurations for North-type EBMs.

1 Introduction

Despite the advancement in computational power, conceptual climate models remain valuable tools in for understanding the10

Earth’s climate system. The complexity of realistic models has highlighted the need for a hierarchical model structure where

conceptual models provide a solid theoretical foundation as model complexity increases (Schneider and Dickinson, 1974;

Claussen et al., 2002; McGuffie and Henderson-Sellers, 2014). Energy balance models (EBMs) stand out as some of the

simplest climate models. Their simplicity allows for both analytical and numerical studies of climate responses to forcings. So-

called zero-dimensional EBMs describe the Earth’s global mean temperature and include no spatial variables. Zero-dimensional15

EBMs are readily examined using analytical tools (North, 1990; Ghil and Lucarini, 2020; Lohmann, 2020). One-dimensional

EBMs with a latitude dependence, coupled with a linear transport term and non-linear a nonlinear albedo feedback, often called

Budyko-type models, also lend themselves to analytical investigations (Budyko, 1969; Held and Suarez, 1974; Widiasih, 2013;

Walsh and Widiasih, 2014). A more physically motivated transport mechanism (Rose and Marshall, 2009) may be included in

the model by instead adding a diffusion term. One-dimensional EBMs with a meridional heat transport by diffusion, hereafter20

called North-type models, have attracted considerable interest (North et al., 1981; Ghil, 1976; Bódai et al., 2015; Del Sarto et al.,

2024). While the inclusion of the diffusion term complicates the models, mathematically speaking, in certain configurations

these models may be studied using analytical methods. Pioneering analytical investigations into these models has have been

conducted by North (North, 1975a, b; North et al., 1981). A general solution expressed through a Fourier-Legendre series

for the equilibrium temperature field was found using spectral methods for a step function albedo. Although this solution is25
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rapidly converging for standard model configurations such as the idealized aquaplanet, a geographical input with parameter

discontinuities across land-sea boundaries causes the spectral solution to converge slowly (Mengel et al., 1988; North and Kim,

2017).

In this paper, we solve the stationary form of an EBM with a meridonal meridional heat transport and a non-linear nonlinear

albedo feedback using an analytical method: the boundary integral method (BIM). This North-type EBM describes the zonal30

mean surface temperature with its key features being a linear heat diffusion across latitudes, an ice-albedo feedback mechanism,

as well as the stabilizing effect of the outgoing longwave radiation. The model may be formulated as

C
∂T

∂t
−D

1

sinθ

∂

∂θ

(
sinθ

∂T

∂θ

)
+BT =Qs(θ)(1− a(T ))−A (1)

using spherical coordinates, where the polar angle, θ, is the latitude. The latitude ranges from θ = 0, the North Pole, to θ = π,

the South Pole. Here C represents the heat capacity of the lower atmosphere and hydrosphere with an assigned average constant35

value, and D is the diffusion rate determining the strength of the meridional heat transport. The solar constant parameter Q

is defined as one-fourth of the incoming solar radiation mean total solar irradiance (TSI), as the disk silhouette capturing

solar radiation is one-forth one-fourth of the Earth’s total area. To address the solar radiation distribution across latitudes,

the model incorporates an average annual latitudinal energy distribution function, denoted as s(θ). Additionally, the model

assumes a constant lapse rate, establishing a linear relationship between surface temperature and outgoing energy, expressed40

as Eout =A+BT , where A and B are constants (Budyko, 1969). The ice-albedo feedback mechanism is included by allowing

for a temperature dependent albedo,

a(T ) =

a1, T >−Ts

a2, T <−Ts,
(2)

where −Ts is the critical temperature for ice formation at the surface. Latitudes with an annual mean temperature below −Ts

are deemed to have an ice cover. Consequently, there will be a critical latitude, at which the ice cover ends and begins. A major45

challenge arises in determining the location of the critical latitude under the given constrains constraints. We show that the

BIM offers a convenient way to address this, even for scenarios with several critical latitudes.

The proposed method is tested on a model configuration where the idealized aquaplanet is given a zonally symmetric

continent with an altered ice-albedo feedback mechanism. Equilibrium solutions to Eq. (1) are found and a bifurcation diagram

is drawn for three different systems with a zonally symmetric continent. Lin and North (1990) have previously studied similar50

zonal band continent configurations and a circular cap of land centered at one pole was studied by Mengel et al. (1988). In these

studies, land and sea were differentiated by a change in heat capacity, giving with no change in the stationary equation. Here,

we demonstrate that the BIM represents an analytical method that efficiently handles arbitrary parameter discontinuities at the

land-sea interface in North-type EBMs. Additionally, we show that the introduction of a continent with altered equilibrium

parameters gives rise to new equilibrium states, characterized by unconventional ice distributions featuring multiple ice edges55

and ice belts.
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2 Results

BIMs are a general approach for boundary value problems, where the problem is reduced to boundary integral equations

involving an associated Green’s function (Hsiao and Wendland, 2008; Morino and Piva, 2012). To showcase the application of

the BIM in the context of EBMs, we employ it to find the equilibrium solutions to the classical idealized aquaplanet. Using Ts60

as a scale for temperature, T = TsT̃ , where T̃ = T̃ (θ) is the non-dimensional temperature field at latitude θ, we may write the

stationary form of the energy balance equation (1) in non-dimensional form;

− 1

sinθ

∂

∂θ

(
sinθ

∂T̃

∂θ

)
+βT̃ = ηs(θ)(1− a(T̃ ))−α, (3)

where β = B
D , α= A

TsD
and η = Q

TsD
. Hereafter, the tilde notation on the non-dimensional temperatures will be omitted, as the

subsequent analysis will focus exclusively on non-dimensional temperatures. Defining65

L(·) =− 1

sinθ

∂

∂θ

(
sinθ

∂

∂θ
(·)

)
+β(·), (4)

it can be shown that, for two functions v and u on the domain [θ1,θ2], we have

θ2∫
θ1

dθ sinθ
{
vLu−uLv

}
=

{
usinθ

∂v

∂θ
− v sinθ

∂u

∂θ

}∣∣∣∣θ2
θ1

. (5)

Defining

h(T,θ) = ηs(θ)(1− a(T ))−α, (6)70

we may write Eq. (3) in the compact form

LT = h. (7)

Let K be a Green’s function for the operator (4). That is,

LK(θ,ξ) = δξ(θ), (8)

where δξ(θ) is the a Dirac-delta function along the curve θ ∈ [0,π] (see Appendix A, Eq. (A4)). Interchanging Inserting v = T75

and u=K in the identity (5) we have

θ2∫
θ1

dθ sinθ{TLK −KLT}=
{
K sinθ

∂T

∂θ
−T sinθ

∂K

∂θ

}∣∣∣∣θ2
θ1

. (9)

Applying Inserting Eq. (7) and Eq. (8) into Eq. (9) and rearranging for T , the solution to Eq. (7) may be described through the

relation any exact solution T (θ) to Eq. (3) must satisfy the identity

T (ξ) =

θ2∫
θ1

dθ sinθK(θ,ξ)h(T,θ)+

{
K sinθ

∂T

∂θ
−T sinθ

∂K

∂θ

}∣∣∣∣θ2
θ1

. (10)80
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A suitable Green’s function is found in Appendix A,

K(θ,ξ) =


Pλ(cosξ)(π cot(πλ)Pλ(cosθ)−2Qλ(cosθ))

2(1+λ)(Pλ(cosξ)Qλ+1(cosξ)−Pλ+1(cosξ)Qλ(cosξ))
, θ > ξ

Pλ(cosθ)(π cot(πλ)Pλ(cosξ)−2Qλ(cosξ))
2(1+λ)(Pλ(cosξ)Qλ+1(cosξ)−Pλ+1(cosξ)Qλ(cosξ))

, θ < ξ

. (11)

Here Pλ and Qλ are Legendre functions of order λ, where

λ=
1

2

(√
1− 4β− 1

)
. (12)

This Green’s function is continuous and bounded on the domain θ ∈ [0,π], and its derivative is also bounded at the boundaries85

θ = 0 and θ = π, for a given ξ ∈ [0,π].

2.1 No partial ice cover

The BIM relies on initially positing an ansatz regarding the distribution of ice and water, and then the domain is partitioned

into regions where the albedo function remains invariant with respect to temperature. Subsequently, the identity (10) is applied

within these regions to obtain explicit expressions for the solution to (3). Initially we analyze We start by analyzing solutions90

where the surface has no partial ice cover. This is the linear problem where the ice albedo feedback is inactive due to extreme

temperatures. The step function albedo (2) leads to

h(T,θ) =

ηs(θ)(1− a1)−α, T >−1

ηs(θ)(1− a2)−α, T <−1.
(13)

Note that h is a function of non-dimensional temperature; hence, the critical temperature for the presence of surface ice is

T =−1. For theses extreme cases, where T >−1 ∀ θ ∈ [0,π] and T <−1∀ θ ∈ [0,π], the surface is either 1) devoid of ice95

entirely or 2) entirely covered by ice. Consequently, the function h is constant on the domain [0,π] and we may apply the

relation (10) on the full domain: Letting θ1 → 0+ and θ2 → π− we get

T (ξ) =

π∫
0

dθ sinθK(θ,ξ)h(T,θ)+ lim
θ2→π−

K(θ2, ξ)sinθ2
∂T

∂θ
(θ2)

− lim
θ2→π−

T (θ2)sinθ2
∂K

∂θ
(θ2, ξ)− lim

θ1→0+
K(θ1, ξ)sinθ1

∂T

∂θ
(θ1)

+ lim
θ1→0+

T (θ1)sinθ1
∂K

∂θ
(θ1, ξ).

(14)

The Green’s function, K, and its derivative are bounded at the boundary (see Appendix A). The gradient must vanish at the

boundaries (North, 1975a) as we allow for no heat transport at the poles, leading to the boundary conditions,100

lim
θ→0

sinθ
∂T

∂θ
(θ) = 0 (15)
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and

lim
θ→π

sinθ
∂T

∂θ
(θ) = 0. (16)

This ensures that Eq. (14) takes the simpler form

T (ξ) =

π∫
0

dθ sinθK(θ,ξ)h(T,θ). (17)105

We Using this, we may express the solution to Eq. (3) as

T (ξ) =

π∫
0

dθ sinθK(θ,ξ)h1(θ) (18)

for case 1) and

T (ξ) =

π∫
0

dθ sinθK(θ,ξ)h2(θ) (19)

for case 2), where h1 = ηs(θ)(1− a1)−α and h2 = ηs(θ)(1− a2)−α.110

2.2 Partial ice cover

For solutions to Eq. (1) where the zonal mean temperature profile is not strictly above or below the critical temperature, Ts,

the surface will have a partial ice cover analogous to the Earth’s current climate state. Critical latitudes, denoted as θc1 and

θc2 , mark the transitions between ice and water coverage. Assuming that T remains continuous across the critical latitudes, the

non-dimensional temperature at these latitudes must necessarily be T (θc1) = T (θc2) =−1. Given that the radiation distribution115

s(θ) prescribes an incoming radiation maximum at the equator, the ice cover must be centered at the poles , as illustrated in

Fig. 1, and it is sensible to partitioning (as illustrated in Fig. 1, but without the continent), and it is sensible to partition the

domain into the subdomains:

θ ∈ (0,θc1), (20)

120

θ ∈ (θc1 ,θc2) (21)

and

θ ∈ (θc2 ,π), (22)
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θ = 0

θ = π

Ice edge

Ice edge

Continent
θ

θc1

θc2

θl1

θl2

Figure 1. Schematic of the domain θ ∈ [0,π] of Eq. (1) for a planet with a zonally symmetric continent and a partial ice cover. The extent

of the continent, i.e. θl1 and θl2 , is determined by Eq. (34). The ice caps extends extend from θ = 0 to the critical latitude θ = θc1 and from

θ = θc2 to θ = π.

such that

LT = h1. (23)125

in region (21) and

LT = h2 (24)

in region (20) and (22).

The relation (10) is applied in these regions, and we get

T (ξ) =

θc1∫
0

dθ sinθK(θ,ξ)h2(θ)+K(θc1 , ξ)sin(θc1)
∂T

∂θ
(θc1)+ sin(θc1) lim

θ→θ−
c1

∂K

∂θ
(θ,ξ), (25)130

T (ξ) =

θc2∫
θc1

dθ sinθK(θ,ξ)h1(θ)+K(θc2 , ξ)sin(θc2)
∂T

∂θ
(θc2)+ sin(θc2) lim

θ→θ−
c2

∂K

∂θ
(θ,ξ)

−K(θc1 , ξ)sin(θc1)
∂T

∂θ
(θc1)− sin(θc1) lim

θ→θ+
c1

∂K

∂θ
(θ,ξ),

(26)

and

T (ξ) =

π∫
θc2

dθ sinθK(θ,ξ)h2(θ)−K(θc2 , ξ)sin(θc2)
∂T

∂θ
(θc2)− sin(θc2) lim

θ→θ+
c2

∂K

∂θ
(θ,ξ) (27)
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in region (20), (21) and (22), respectively. The solution to Eq. (1) (3) within the three subdomains may be expressed through135

relation (25)–(27) given the points θc1 and θc2 , as well as the spatial derivative of T at these points. These unknown boundary

values are determined through by solving the following system of boundary integral equations, obtained by letting ξ approach

the boundaries of the three subdomains in Eq. (25)–(27):

T (0) =

θc1∫
0

dθ sinθK(θ,0)h2(θ)

+K(θc1 ,0)sin(θc1)
∂T

∂θ
(θc1)+ sin(θc1) lim

ξ→0+
lim

θ→θ−
c1

∂K

∂θ
(θ,ξ)

(28)

140

−1 =

θc1∫
0

dθ sinθK(θ,θc1)h2(θ)

+K(θc1 ,θc1)sin(θc1)
∂T

∂θ
(θc1)+ sin(θc1) lim

ξ→θ−
c1

lim
θ→θ−

c1

∂K

∂θ
(θ,ξ)

(29)

−1 =

θc2∫
θc1

dθ sinθK(θ,θc1)h1(θ)

+K(θc2 ,θc1)sin(θc2)
∂T

∂θ
(θc2)+ sin(θc2) lim

ξ→θ+
c1

lim
θ→θ−

c2

∂K

∂θ
(θ,ξ)

−K(θc1 ,θc1)sin(θc1)
∂T

∂θ
(θc1)− sin(θc1) lim

ξ→θ+
c1

lim
θ→θ+

c1

∂K

∂θ
(θ,ξ)

(30)

−1 =

θc2∫
θc1

dθ sinθK(θ,θc2)h1(θ)

+K(θc2 ,θc2)sin(θc2)
∂T

∂θ
(θc2)+ sin(θc2) lim

ξ→θ−
c2

lim
θ→θ−

c2

∂K

∂θ
(θ,ξ)

−K(θc1 ,θc2)sin(θc1)
∂T

∂θ
(θc1)− sin(θc1) lim

ξ→θ−
c2

lim
θ→θ+

c1

∂K

∂θ
(θ,ξ)

(31)145

−1 =

π∫
θc2

dθ sinθK(θ,θc2)h2(θ)

−K(θc2 ,θc2)sin(θc2)
∂T

∂θ
(θc2)− sin(θc2) lim

ξ→θ+
c2

lim
θ→θ+

c2

∂K

∂θ
(θ,ξ)

(32)
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T (π) =

π∫
θc2

dθ sinθK(θ,π)h2(θ)

−K(θc2 ,π)sin(θc2)
∂T

∂θ
(θc2)− sin(θc2) lim

ξ→π−
lim

θ→θ+
c2

∂K

∂θ
(θ,ξ)

(33)

The system of equations (28)–(33) can be solved for T (0), T (π), ∂T
∂θ (θc1),

∂T
∂θ (θc2), θc1 and θc2 through a combination of both150

analytical and numerical methods. Finding θc1 and θc2 ultimately requires a root search, as the integrals cannot be evaluated

analytically. However, these values may be approximated to a high precision. For the root search, we used a Broyden’s method,

as computing the Jacobian is expensive for solutions with multiple critical latitudes. Note that the system of equations (28)–(33)

can have more than one solution, indicating multiple equilibria.

2.3 With a continent155

The method presented may be extended to include one or more zonally symmetric continents. The following analysis includes

one such continent with a meridional extent of l = π
4 , stretching from latitude θl1 to latitude θl2 . Figure 1 illustrates a planet

with a continent of this kind. The analysis was repeated three times for three different continent configurations,

θl1 =
π

2
− l

2
− ε

θl2 =
π

2
+

l

2
− ε,

(34)

where ε= 0, ε= 0.1 and ε= 0.5. Parameter values on the continent may be altered to distinguish land from ocean and better160

capture the thermal response of the lithosphere. Here, the heat capacity C, the critical temperature for ice formation Ts and

the albedo a(T ) were altered on the part of the domain corresponding to the continent. This has the effect of changing the ice

dynamics, and subsequently the ice-albedo feedback, on the continent. The extent of the continent l is kept constant, and no

ice-ocean-land feedback is included in the model. Mathematical details on the application of the presented method to model

configurations with a continent are omitted for brevity. Instead, we provide some results of our analysis. Interested readers are165

referred to Samuelsberg and Jakobsen (2023) for a full derivation of these solutions. The multiple branch structure of the model

is displayed in Fig. 2 through bifurcation diagrams of the system with a continent configuration as in Eq. (34), where ε= 0,

ε= 0.1 and ε= 0.5. The control parameter is the scaled solar constant TSI Q. Stability properties of the stationary solutions

are assessed using the numerical perturbation scheme outlined in Appendix B.

3 Discussion170

The presented method was subsequently appliedWe have applied the BIM to solve the stationary form of a North-type EBM

with a zonally symmetric continent in three different configurations. The robustness of the method was tested by allowing for

parameter discontinuities at the land-sea boundaries, resulting The introduction of a continent resulted in the emergence of new
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(a) ε = 0 (b) ε = 0.1 (c) ε = 0.5

Figure 2. Bifurcation diagrams. Annual mean equilibrium surface temperatures plotted against the control parameter Q, for model config-

urations with a continent as in (34), where ε= 0, ε= 0.1 and ε= 0.5. Model parameters are those in Table 1. Solid lines indicate stable

solutions and dotted lines are unstable solutions. The upper, stable branches in the bifurcation diagrams contain ice-free solutions and the

lower, stable branches contain solutions with a full ice cover (Snowball Earth states). Intermediate branches contain solutions with a partial

ice cover.

equilibrium states. EMBs have a rich multiple solution structure (North, 1990). In zero-dimensional models that incorporate

the ice albedo feedback, three solutions exist, and as one extends to one-dimensional models the multiple branch structure175

becomes more complicated. North showed that there exist up to five solutions for a range of solar constant TSI values in the

globally-averagedglobally averaged model, one of which is the famously unstable small ice cap solution (North, 1984). From

Fig. 2 (a), it is evident that up to seven equilibria may exist for a range of Q values in model configurations with a continent. The

continent is initially placed in a North-South symmetrical configuration to investigate how the system is affected by symmetry.

The meridional symmetry is subsequently violated by increasing ε. Although the number of equilibria for any given Q is at most180

seven for ε= 0 and ε= 0.1, the range over which seven equilibria can exist is reduced as ε is increased and has disappeared

for ε= 0.5. Prescribing the system inherently symmetrical boundary conditions, i.e., ε= 0, evidently introduces a very fine

dynamic as seen in the looping branches in the bifurcation diagram Fig. 2 (a), which disappears for non-zero ε. Furthermore,

equilibria with a more complicated ice distribution, characterized by more than two critical latitudes, only appear for ε= 0.

Despite this, the range of TSI over which stable partial-ice-cover solutions can exist, that is, the intermediate branches in Fig. 2,185

is much shorter for ε= 0. The range of stable, intermediate branches is longest for ε= 0.5. Additionally, for ε= 0.5, there is a

large range of TSI values over which bi-stability occurs between the ice-free solution and the partial-ice-cover solution, as seen

in Fig. 2 (c). These observations are notable because, although it is well established that the climate has changed throughout

geological history, the role of land-sea distribution is not fully understood (Fluteau, 2003).

The robustness of the method was tested by allowing for parameter discontinuities at the land-sea boundaries. Mengel190

et al. (1988) and North and Kim (2017) have discussed the application of Fourier-Legendre series in EBMs with parameter

discontinuities at the continent edges: A discontinuity in the albedo and heat capacity parameter C causes a solution expressed

through Legendre modes to converge slowly. Presumably, similar discontinuities in other parameters will have the same effect.
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Moreover, North (1975a) discussed the potential for changing parameter values on finite zonal strips using spectral methods,

but did not address how this may result in several ice edges. The dynamics of EBMs are highly sensitive to model parameters195

(Soldatenko and Colman, 2019), and the introduction of a continent to the model can result in some unusual ice distributions.

Figure 3 shows an equilibrium solution with 6 six critical latitudes and 2 two ice belts on the continent. Studying several

critical latitudes is a natural extension of the BIM and follows the same general procedure. A similar ice belt has been observed

by changing the obliquity of the model using the spectral method (Rose et al., 2017). For high obliquities, the traditional ice

distribution of the 2 critical latitude two-critical-latitude solution is inverted, allowing for a similar analysis to the classical200

partial ice cover partial-ice-cover states, without additional ice edges. The ice belts overlaying the continent form a striped

pattern, a phenomenon also observed in the related one-dimensional Daisyworld model with diffusion (Adams et al., 2003;

Alberti et al., 2015). Adams et al. (2003) found that the daisies never coexisted; instead the equilibrium solution is characterized

by zonal bands of single-species colonies reminiscent of Fig. 3. A similar striped pattern of daisy coverage was reported by

Alberti et al. (2015) in a one-dimensional Daisyworld model with diffusion and a greenhouse effect.205

Although the BIM is an effective approach for solving North-type EBMs, it has certain limitations. Although a A step function

albedo is used here, and the method is easily extended to any latitude dependence for the albedo. However, this method,

like the spectral method, is limited to a step function-like temperature response at the ice edge. An arbitrary temperature

dependent temperature-dependent albedo on either side of the ice edge renders the energy balance equation unsolvable through

the presented method. An additional drawback of the presented method is that a root search is required to find the critical210

latitudes, θci . For solutions with a low number of critical latitudes, this poses no significant challenge. However, as the number

of critical latitudes increases, so does the complexity of the root search and the necessity for a good starting point in the iteration.

For solutions located in branches connected to the ice-free branch and the Snowball Earth branch in the bifurcation diagram,

this is generally not a problem. Since these extreme solutions always exist within certain parameter regimes, we identify the

bifurcation points and update the ansatz accordingly, repeating this process until the upper and lower branches connect. This215

approach ensures sufficient initial points for the root searches, allowing all co-existing states in connected branches to be

identified. Additionally, for solutions with one, two, or three critical latitudes, a graphical solution to the system of boundary

integral equations (Eq. (28)–(33)) is possible, ensuring that any isolated branches are also detected. However, to detect isolated

branches with multiple critical latitudes requires a more numerically expensive approach. Furthermore, the method can become

tedious for complicated geographies and a high number of critical latitudes.220

The BIM has a wide range of potential applications. While the model studied here only includes an ice-albedo feedback

mechanism, the BIM can be generalized to solve one-dimensional EBMs with additional albedo feedbacks. A vegetation

feedback has previously been introduced within an EBM framework for zero-dimensional models (Rombouts and Ghil, 2015;

Alberti et al., 2018) and related one-dimensional models (Wood et al., 2008; Adams et al., 2003; Alberti et al., 2015). The

method we have presented is applicable to North-type EBMs where the model is piecewise linear on subdomains, specifically225

if the explicit temperature dependence in the integrand of Eq. (10) can be eliminated through an appropriate partitioning of

the domain. For instance, a vegetation feedback mechanism can be implemented by adding vegetation on the continent for

temperatures within a certain growth regime, where the vegetation is modeled by altering the albedo. The BIM can be directly
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applied to North-type models with such simplified vegetation responses. Furthermore, including additional spatial dependence

in the albedo represents another natural application of the BIM. For example, in studies involving North-type EBMs related230

to Snowball Earth events, alternative albedo parameterizations (Abbot et al., 2011) or spatial dependence for other model

parameters can be easily implemented with the BIM. The ability to effectively handle spatially dependent model parameters

also makes the BIM an appropriate tool for studying fragmented tipping in North-type EBMs (Bastiaansen et al., 2022).

4 Conclusions

In this paper, we have presented an analytical method for solving North-type EBMs. Solutions are expressed through explicit235

expressions, readily obtainable from quadrature methods. The presented method has some notable advantages compared to

other analytical methods, e.g., (North, 1975a), for solving energy balance equations of this kind. It does not rely on truncating

series expansions. Furthermore, the method remains straightforward, and computationally speaking, very fast, even for prob-

lems with partial land-sea geographies and parameter discontinuities at the boundaries separating land and sea. In addition, the

BIM offers a formulaic framework for handling equilibrium solutions with several critical latitudes θci and unconventional ice240

distributions.

The development of new analytical methods of studying EBMs is motivated by the recognition of EBMs as useful tools for

researchers in a variety of fields. The inherent simplicity of EBMs, characterized by few parameters, renders them particularly

suitable for certain aspects of paleoclimatology (North and Kim, 2017; Abbot et al., 2011; Widiasih et al., 2024) and planetary

science (Rose et al., 2017), where poorly constrained parameters and a diverse set of planetary conditions are frequently245

encountered. The BIM represents a systematic approach to solving North-type EBMs and excels under unconventional models

configurations, particularly where emerging solutions describe climate states markedly different from the prevailing state of

Earth. Analytical investigations of conceptual models continues continue to provide a valuable testing ground for ideas in

climate science and insights into the complex dynamics involved as one ascends the climate model hierarchy.

Code availability. The codes for solving the stationary form of Eq. (1) and for producing the Fig. 2 and Fig. 3 in this manuscript are available250

on Zenodo (https://doi.org/10.5281/zenodo.11083624, Samuelsberg & Jakobsen, 2024).

Appendix A: Finding a Green’s function

In this section, we find a Green’s function, K(θ,ξ), for the operator (4). A Green’s function is any solution to the Eq. (8). The

two defining properties of the Dirac-delta function are:

1. for any surface of interest, S, we must have255 ∫
S

dA δξ = 1, (A1)
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Table 1. Model parameters used in the presented work. A, B, C, Cland and Ts are taken from North et al. (1981). D is taken from Kaper and

Engler (2013) and s(θ) is taken from McGehee and Lehman (2012).

Parameter Value

s(θ) s0 + s1 cos
2(θ− π

2
)

s0 0.523

s1 0.716

A 203W m−2

B 2.09W m−2(◦C)−1

D 0.208 ·B

C 4.7B t0

Cland 0.16B t0

t0 1 year

Ts 10 ◦C

Ts,land 1 ◦C

a1 0.06

a2 0.6

a1,land 0.3

a2,land 0.6

Figure 3. An equilibrium solution (unstable) to Eq. (1) with a continent as in (34), where ε= 0, Q= 294Wm−2 and other parameters are

those in Table 1. Green vertical lines mark the continent borders, and blue vertical lines mark critical latitudes. The red horizontal lines mark

the critical temperatures for ice formation.

2. for any function, f(x), defined on S we must have∫
S

dA δξf = f(ξ). (A2)
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For the line θ ∈ [0,π] along the surface of a sphere with radius R, it can be shown that

δξ(θ) =
δ(θ− ξ)

2πR2 sinθ
, (A3)260

where δ(θ− ξ) is the usual delayed Dirac-delta function on the line, will ensure that Eq. (A1) and Eq. (A2) are satisfied. It is

convenient to scale the Green’s function we are seeking by a factor such that the right-hand side of Eq. (A3) becomes unity

and Eq. (8) becomes

LK =
δ(θ− ξ)

sinθ
. (A4)

We will demand that the Green’s function is continuous across θ = ξ, therefore we must have265

lim
θ→ξ+

K(θ,ξ) = lim
θ→ξ−

K(θ,ξ). (A5)

Integrating Eq. (A4) over a small interval centered on θ = ξ we get

ξ+ε∫
ξ−ε

dθ sinθ

{
− 1

sinθ

∂

∂θ

(
sinθ

∂K

∂θ

)
+βK

}
=

ξ+ε∫
ξ−ε

dθ sinθ
δ(θ− ξ)

sinθ
(A6)

−
ξ+ε∫

ξ−ε

dθ
∂

∂θ

(
sinθ

∂

∂θ
K(θ,ξ)

)
+β

ξ+ε∫
ξ−ε

dθ sinθK(θ,ξ) = 1 (A7)

−sinθ
∂

∂θ
K(θ,ξ)

∣∣∣∣ξ+ε

ξ−ε

+β

ξ+ε∫
ξ−ε

dθ sinθK(θ,ξ) = 1. (A8)270

Letting ε→ 0 we must have

lim
θ→ξ+

∂

∂θ
K(θ,ξ)− lim

θ→ξ−

∂

∂θ
K(θ,ξ) =− 1

sinξ
. (A9)

At θ ̸= ξ we evidently have

LK(θ,ξ) = 0. (A10)

We can therefore conclude that K(θ,ξ) must satisfy the necessary conditions (A5), (A9) and (A10). In order to find a Green’s275

function that solves Eq. (A4) we need to find a basis of solutions for an equation on the form

− 1

sinθ

∂

∂θ

(
sinθ

∂

∂θ
y(θ)

)
+βy(θ) = 0. (A11)

Introducing a change of variables, x= cosθ, and a function, u, such that u(cosθ) = y(θ) it can be shown that Eq. (A11) can

be written on the form

(1−x2)
∂2

∂x2
u(x)+ 2x

∂

∂x
u(x)−βu(x) = 0. (A12)280
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Let λ be a number such that −β = λ(λ+1). We may now write Eq. (A12) as a Legendre equation,

(1−x2)
∂2

∂x2
u(x)+ 2x

∂

∂x
u(x)+λ(λ+1)u(x) = 0, (A13)

which for some arbitrary real or complex value λ, will have the known basis of solutions
{
Pλ, Qλ

}
. We can therefore use the

basis
{
Pλ(cosθ), Qλ(cosθ)

}
, where λ= 1

2

(√
1− 4β− 1

)
, to construct the general solution to Eq. (A10),

K(θ,ξ) =


a(ξ)Pλ(cosθ)+ b(ξ)Qλ(cosθ), θ > ξ

c(ξ)Pλ(cosθ)+ d(ξ)Qλ(cosθ), θ < ξ

. (A14)285

The coefficients a(ξ), b(ξ), c(ξ) and d(ξ) can be determined through the conditions (A5) and (A9). Any choice of these coeffi-

cients satisfying Eq. (A5) and Eq. (A9) will give a Green’s function for the operator (4). However, it makes sense for us to seek

a Green’s function that is non-singular in the domain θ ∈ [0,π]: We want to to develop a set of conditions on the coefficients

a(ξ), b(ξ), c(ξ) and d(ξ) to ensure that the Green’s function (A14) is non-singular when θ→ 0 and θ→ π. Let

K+(θ,ξ) = a(ξ)Pλ(cosθ)+ b(ξ)Qλ(cosθ)

K−(θ,ξ) = c(ξ)Pλ(cosθ)+ d(ξ)Qλ(cosθ)
(A15)290

such that

K(θ,ξ) =


K+(θ,ξ), θ > ξ

K−(θ,ξ), θ < ξ

. (A16)

Using a computer algebra system, we find a series expansion of K+ around θ = π, and recognize that there is a term in this

expansion containing log(π− θ) with a coefficient c+0(a(ξ), b(ξ)). We want to ensure that K+ is non-singular at θ = π and

therefore demand that295

c+0(a(ξ), b(ξ)) = 0 ∀ ξ ∈ [0,π]. (A17)

Similarly, we find a series expansion of K− around θ = 0. In this expansion there is a term containing log(θ) with a coefficient

c−0(c(ξ),d(ξ)), and we demand that

c−0(c(ξ),d(ξ)) = 0 ∀ ξ ∈ [0,π]. (A18)

Solving the system of equations (A5), (A9), (A17) and (A18) for a(ξ), b(ξ), c(ξ) and d(ξ), we find the following Green’s300

function;

K(θ,ξ) =


Pλ(cosξ)(π cot(πλ)Pλ(cosθ)−2Qλ(cosθ))

2(1+λ)(Pλ(cosξ)Qλ+1(cosξ)−Pλ+1(cosξ)Qλ(cosξ))
, θ > ξ

Pλ(cosθ)(π cot(πλ)Pλ(cosξ)−2Qλ(cosξ))
2(1+λ)(Pλ(cosξ)Qλ+1(cosξ)−Pλ+1(cosξ)Qλ(cosξ))

, θ < ξ

. (A19)

The Green’s function (A19) is non-singular and bounded at θ = 0 and θ = π. The derivative of the Green’s function (A19) is

also bounded at the boundary and tends to zero ∀ ξ ∈ [0,π].
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Appendix B: Stability analysis305

In this section, we are going to test the stability of the stationary solutions found using the BIM. Applying the notation from

section 2 we may write the time dependent form of Eq. (1) as

γ∂tT +LT = h(T,θ), (B1)

where γ = C
t0D

. Stationary solutions are denoted T0 = T (θ, t= 0), such that LT0 = h. We wish to investigate whether a small

perturbation, δ, away from the equilibrium, T0, will grow in time. The perturbed solution, T (θ, t) = T0(θ)+ δ(θ, t), inserted310

into Eq. (B1) yields

γ∂tδ+LT0 +Lδ = h(T0 + δ,θ). (B2)

A first order expansion around (T0,θ) of the right-hand side may be expressed as

h(T0 + δ,θ)≈ h(T0,θ)+hT (T0,θ)δ. (B3)

Here we let315

a(T ) = a1 +
a2 − a1

2
(1+ tanh(−σ(T +1))), (B4)

where the slope parameter σ = 50, be a smooth function replicating the behavior of the step function albedo such that the

derivative hT (T0,θ) =
∂h
∂T (T0,θ) may be found analytically for a given T0. By substituting Eq. (B3) into Eq. (B2) we get

∂tδ =Hδ, (B5)

where320

H(·) = 1

γ

[
hT (T0,θ)(·)−L(·)

]
. (B6)

Suppose that the perturbation δ has the form

δ(θ, t) = eλtδ0(θ). (B7)

This turns Eq. (B5) into the following eigenvalue problem

λδ0 =Hζ0. (B8)325

Real and positive λ will evidently cause the perturbation to grow exponentially, resulting in an unstable the stationary solution

T0. The eigenvalues were subsequently approximated using a numerical scheme that solves the associated eigenvalue problem

λδ0 =Hδ0, (B9)
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where the set of linear equations{
λδi0 =

1

γ

[
hT (T

i
0,θi)δ

i
0 −L̂δi0

]}N

i=0

(B10)330

gives rise to the coefficient matrix H . Here T i
0 is the stationary solution evaluated on a uniform spatial grid and L̂(·) is a finite

difference approximation of the differential operator L. It can be shown that a second-order centered difference approximation

for a smooth function δ0, evaluated on a uniform grid θi, where δi0 = δ0(θi), is

L̂δi0 = βδi0 −
2(δi−1

0 − 2δi0 + δi+1
0 )+ (δi−1

0 − 4δi0 +3δi+1
0 )dθ cotθi

2dθ2
. (B11)

At either end of the grid a forward and backward approximation is needed. These are335

L̂fδ
0
0 = βδ00 +

−2(δ00 − 2δ10 + δ20)+ (5δ00 − 8δ10 +3δ20)dθ cotθ0
2dθ2

(B12)

and

L̂bδ
N
0 = βδN0 +

−2(δN−2
0 − 2δN−1

0 + δN0 )+ (δN−2
0 − δN0 )dθ cotθN

2dθ2
. (B13)

for the forward and backward approximation, respectively. Furthermore, as t grows the perturbation (B7) must adhere to the

same constraints as the solution, i.e. the boundary conditions (15) and (16). A discrete formulation of these is δ00 = δ20 and340

δN0 = δN−2
0 , which we ensure is enforced. We build the matrix H and examine the associated eigenvalues for a large number

of points in the bifurcation diagram. Stability properties are subsequently inferred from the ensemble of stationary solutions

within the same branch. The presented stability analysis agrees with the slope-stability theorem put forth by Cahalan and North

(1979).
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