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Abstract. A novel method for the inference of spatiotemporal decomposition of oceanic
::::::
surface

::::
flow variability is presented

and its performance assessed in a synthetic idealized configuration
::::
with

::::::::::
horizontally

::::::::::
divergentless

:::::
flow.

::::::::
Inference

:::::::::::
methodology

:
is
::::::::
designed

:::
for

:::::::::::
observations

::
of

::::::
surface

:::::::
velocity. The method is designed here to ingest velocityobservation. The abilities

:::
The

:::::
ability

:
of networks of reduced number of surface drifters and moorings at inferring

:
to
:::::
infer

:::
the spatiotemporal scales of ocean

variability are quantifiedand contrasted. The sensitivities of inference performances
:::::
surface

:::::
ocean

::::
flow

:::::::::
variability

::
is

:::::::::
quantified.5

:::
The

:::::::::
sensitivity

::
of

::::::::
inference

:::::::::::
performance

:
for both types of platforms to the number of observation

::::::::::
observations, geometrical

configurations,
:::
and

:
flow regimes are presented. Because they

:::
As

::::::
drifters simultaneously sample spatial and temporal variability,

drifters
:::
they

:
are shown to be able to capture both spatial and temporal flow properties even when deployed in isolation.

Moorings are particularly adequate
:::::
adept for the characterization of the flow

::
’s temporal variability, and may also capture spatial

scales provided they are multiplied and the financial and environmental costs of associated deployments can be assumed. We10

show in particularthat the
:::::::
deployed

:::
as

::::::
arrays.

::
In

:::::::::
particular,

:::
we

::::
show

::::
that

:::
our

:
method correctly identifies whether drifters are

sampling preferentially
:::::::::::
preferentially

::::::::
sampling spatial vs temporal variability. This

:::::::
Pending

::::::
further

::::::::::::
developments,

:::
this

:
method

opens novel avenues for the analysis of existing datasets as well as the design of future experimental campaigns targeting the

characterization of small scale (e.g. <100 km) Ocean
:::::
ocean variability.

1 Introduction15

Characterizing oceanic surface motions in terms of their spatial and temporal scales is a recognized pathway toward the iden-

tification of the numerous processes that occur in the Ocean
:::::
ocean as well as toward an improved understanding of their oc-

currences, life cycle, interactions and impact on other components of the Ocean
:::::
ocean variability (Ferrari and Wunsch, 2009).

Arbic et al. (2014) critically
:::
For

::::::::
example,

::::::::::::::::
Arbic et al. (2014) relied on horizontal wavenumber-frequency decompositions in

order to quantify and rationalize the impact of ocean mesoscale turbulence on longer
:::
term

:
ocean variability in idealized, real-20

istic numerical simulations and altimetric observations. At higher frequencies, wavenumber-frequency decompositions enable

::::::::::::
decomposition

::::::
enables

:
the separation of internal gravity waves and balanced motions which share similar spatial scales and

are therefore entangled in instantaneous two-dimensional data sources (Torres et al., 2019; Jones et al., 2023). Thanks to
:::
sets
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:::::::::::::::::::::::::::::::
(Torres et al., 2019; Jones et al., 2023).

:::
For

::::::::
example,

:::::
using

:
a
:
wavenumber-frequency decompositions

:::::::::::
decomposition, Qiu et al.

(2018) were able to quantify the so-called ‘transition scale‘ above which altimetric observations are dominated by balanced tur-25

bulence and below which smaller scales are dominated by internal gravity waves. These decompositions are easily performed

with numerical simulations outputs
::::::::
simulation

::::::
output which are provided on a

::::::::
complete

:::
and

:
regular spatial and temporal grid

and complete
::::
grids. But

:::::::
However,

:
the lack of observational knowledge of the high frequency and small scale distribution of

energy is a recognized limitation for the validation of tide resolving
:::::::::::
tide-resolving

:
kilometer resolution global or bassin

::::
basin

scale numerical models of the ocean circulation (Arbic et al., 2018; Yu et al., 2019b; Arbic et al., 2022).30

The characterization of ocean variability in terms of spatial and temporal scales is also relevant for operational perspectives
:::
from

::
an

::::::::::
operational

::::::::::
perspective. The description one

::
of

:::
an

:::::
ocean

:
variable’s autocorrelation properties is indeed a prerequisite

information for the mapping of
:::::::
required

::
to

::::
map sparse observations via optimal interpolation (Bretherton et al., 1976; Brether-

ton and McWilliams, 1980). Ocean surface currents estimations heavily rely for instance
::
For

::::::::
instance,

:::::::::
estimation

::
of

:::::::
surface

::::::
currents

:::::::
heavily

:::::
relies

:
on the accurate mapping of altimetric observations which consists in

:::::
consist

:::
of narrow (order 5 to35

10 km) geographically and temporally distant tracks (Pujol et al., 2016). The upcoming
::::::
advent of wide swath altimetric

(Morrow et al., 2019) and
::::::::::::::::::::::::::::::
(Morrow et al., 2019; Fu et al., 2024)

:::
and

:::::::::
upcoming current measuring satellite missions introduced

::::::::
introduces

:
novel challenges regarding the mapping of the variables observed

::::::::
observed

:::::::
variables

:
and the separation of slower

balanced motions and faster internal gravity wavesand .
::::
This

::::
has motivated the development of novel strategies for the sep-

aration of the signatures associated to both class of motions
:::
with

:::::
both

::::::
classes

::
of

:::::::
motion. These strategies rely on a-priori40

knowledge of the motions’ spatial and temporal scales (Barth et al., 2014, 2021; Ubelmann et al., 2021, 2022).

The in situ characterization of ocean variability at small mesoscales and submesoscales
:::::::::
mesoscale

::
to

:::::::::::
submesoscale

:
(e.g.

<100 km, <10 days) has been a central objective for a number of ambitious experimental efforts over the last decade: LatMIX

(Shcherbina et al., 2015); Carthe Consortium (Poje et al., 2014; D’Asaro et al., 2018); OSMOSIS (Buckingham et al., 2016; Yu

et al., 2019a); SMODE (Farrar et al., 2020). Dense dedicated mooring deployments of OSMOSIS have for instance shed light45

on
::::::::
Estimation

::
of
:

the time-space decomposition of upper ocean variability and highlighted in particular
::
has

:::::::
resulted

:::::
from

:::
the

:::::
dense

::::::::
dedicated

:::::::
mooring

:::::::::::
deployments

::
of

:::::::::
OSMOSIS

:::
and

::::::
further

::::::::::
highlighted difficulties associated with the Doppler shifting of

small-scale structures when observed from fixed platforms (Callies et al., 2020). These experiments represent important
::::
Such

::::::::::
experiments

::::
incur

:::::::::
significant

:
financial and environmental efforts however

::::
costs,

::::::::
therefore

:
any optimization in the experimental

design and/or improved data analysis strategies should be welcome. The present study intends to highlight the fact that drifters50

represent
::
are

::::::::::::
advantageous.

:::::::
Drifters

:::
are cheap and experimentally light platforms for the space-time scale

:::::
spatial

:::
and

::::::::
temporal

characterization of ocean variabilityprovided adequate methodological progresses are obtained. The ,
:::
but

:::::::
require

::::::::
adequate

:::::::
inference

:::::::::::::
methodologies.

::::
This

:
study presents one such methodological development.

The characterization of oceanic motions in terms of horizontal spatial scales and temporal scales
::::::::
horizontal

::::
and

::::::::
temporal

::::::::
variability

::
of

:::::::
oceanic

::::::
surface

:::::::
motions

:
from observations represents a challenge in general that depends on the class of motions55

of interest, the quantity and nature of observations available, and , the lack of generic metholodology
:
a
:::::::::::
methodology

::::
that

::
is

::::
both

:::::::::
sufficiently

:::::::
versatile

:::
to

:::
the

:::::::
differing

::::::::::
observation

::::::::
platforms

::::
and

:::::::::::::
mathematically

:::::::
coherent. Fixed point platforms provide

information that is horizontally localized over a potentially extended time periods and with temporal fine
:::
with

::::
fine

::::::::
temporal
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resolution. Such data are naturally adapted to a decomposition in terms of temporal scales
::::::::
conducive

::
to

::::::::
temporal

::::::::::::
decomposition

(Polzin and Lvov, 2011). The tracking of surface and subsurface drifting platforms provide ocean current observations which60

are also amenable to temporal decompositions (Lumpkin et al., 2017). At multi-daily
::::::::::::
decomposition

:::::::::::::::::::
(Lumpkin et al., 2017)

:
,
:::::
albeit

::::::::::
representing

:::
the

::::::::::
Lagrangian

:::::::
particle

::::::
thereby

:::::::
aliasing

::::::
certain

::::::
spatial

:::::::::::::
characteristics.

::
At

:::::
daily

:
to monthly time scales,

drifters have enabled characterizations
:::::::::::::
characterization of mesoscale eddy variability via inspection of surface current autocor-

relation or spectral properties (Zhang et al., 2001; Lumpkin et al., 2002; Veneziani et al., 2004; Sykulski et al., 2016) or rotary

wavelet decompositions
:::::::::::
decomposition

:
(Lilly and Gascard, 2006; Lilly et al., 2011). The Global Drifter Program has over ∼3065

years enabled the collection of
:::::::
collected surface current information worldwide

:::
for

::::
∼30

::::
years. Recently, the advent of GPS and

wider bandwidth satellite communications opened the door to
::
has

:::::::
enabled high frequency sampling of surface drifter positions

and the
:
a
:
generation of surface drifter velocity datasets with global hourly coverage (Elipot et al., 2016). Over the last decade,

global descriptions of the Ocean
:::::
ocean surface high frequency variability have emerged (Elipot et al., 2010, 2016; Yu et al.,

2019b; Arbic et al., 2022). These descriptions are timely to validate
:::::
recent kilometer scale tide-resolving basin scale numerical70

simulations that have also emerged over the last decade (Arbic et al., 2018).

Satellite observations are in general well designed
::::
well

:::::
posed

:
to characterize surface

::::
ocean

:
spatial variability. The con-

stellation of conventional nadir altimeters provide maps of sea level and surface currents which resolve larger mesoscale

motions (Ballarotta et al., 2019). Spatial
:::::::
However,

::::::
spatial

:
and temporal gaps between nadir altimeters presumably impose the

effective
:::::
impose

::::::::::
limitations

:::
on

:::
the

:::::::::
resolvable

:
spatial and temporal resolutions of the product which are weakly sensitive75

to the combination with drifter data or more advance methodology (Ballarotta et al., 2022). Amongst the same range of

scales
::::::::::::::::::
(Ballarotta et al., 2022)

:
.
::::::::::::
Consequently, there are , as a consequence, multiple

:::::::
multiple

::::::
spatial

:::
and

::::::::
temporal

:
character-

izations of ocean variability in terms of its spatial and temporal scales which in general
:::::
which combine altimetry with other

in situ datasets, e.g. moorings, XBTs, tomography (Zang and Wunsch, 2001; Wunsch, 2010; Wortham and Wunsch, 2014). At

:::
For smaller spatial scales, ship based

:::::::::
ship-based measurement of tracers and currents have informed about the

:::
the

:::::::::
estimation80

::
of spatial scales of ocean variability (Callies and Ferrari, 2013) but such measurements potentially entangle spatial and tem-

poral contributions to an unclear extent. Drifters are thought to offer promising perspectives
:::
data

:
for the description of smaller

mesoscale and submesoscale variability (Balwada et al., 2016, 2021). Dedicated experiments with deployments of
:
a
:
large

number of surface drifters such as that conducted by the Carthe Consortium have provided useful datasets to demonstrate this

::::
small

:::::
scale

:::::
ocean

:::::::::
variability despite also highlighting potential biases associated the horizontal

::::
with

:::
the

::::::::::
horizontally divergent85

character of the flow at these scales (Poje et al., 2017; Pearson et al., 2019, 2020; Wang and Bühler, 2021).

This work considers
::::
Here

:::
we

::::::
present

::
a
::::
new

:::::::
method

::
for

::::
the

:::::
spatial

::::
and

::::::::
temporal

:::::::::::::
characterization

::
of

:::::::
oceanic

:::::::
surface

::::
flow

:::::::::
variability.

::
To

::::
test

:::
the

:::::::
method

:::
we

::::::::
consider an idealized configuration of ocean variability whose properties and synthetic

generation are described in Section 2.1. A
::::
The novel method for the inference of the flow properties are then

:
is
:

described

in Section 2.3. The inference is then applied in
::
to

:
several scenarios of observations in order to explore the performance of90

inferences
::
the

::::::::
inference

:::::::
relative to the number of observations (Section 3.2), to platform spatial separation (Section 3.1), and,

to flow regime (Section 3.4). The results are discussed and conclusions drawn in Section 4.
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2 Method

2.1 Flow
::::::::
Idealized

:::::
ocean

:::::::
surface

::::
flow

:
design

The bidimensional95

:::
We

:::::::
consider

:
a
::::::::::::::
two-dimensional

:
and time variable flowis

:
, described by the sum of rotational and divergent contributionsand

is described as
:
:

u=−∂yψ+ ∂xϕ, (1)

v = ∂xψ+ ∂yϕ. (2)

where u and v are the zonal
:::::::
(toward

:::::::
positive

::
x)

::::
and

:::::::::
meridional

:::::::
(toward

:::::::
positive

::
y)

:::::::::
velocities

::
in

:::
the

:::::::::
respective

:::::::::
directions100

:
x
:
and meridional velocities

::
y, ψ is the streamfunction, ϕ is the velocity potential and ∂x and ∂y are the partial derivatives

in x and y, respectively. .
:

We can describe the second-order behaviour
:::::::
behavior of ψ and ϕ, equivalently, by either their

covariance functions or spectral densities. For general random fields a and b, defined over x, we define the stationary covariance

function as Cab(x) = ⟨a(x0), b(x0 + x)⟩
:::::::::::::::::::::::
Cab(τ ) = ⟨a(x0), b(x0 + τ )⟩

:
where the inner product is given as the covariance inner

product ⟨a,b⟩= E[(a−E[a])(b−E[b])]. Here, the boldface
::
x0::::

and
::
τ

::::::
denote

:
a
:::::::
location

::::
and

:::::::
distance

::
in

:
xdenotes a location105

in
:
,
::::::::::
respectively,

::
in
:

space and time.
:::
As

:::::::::
stationarity

::
is
::::::::
assumed,

:::::::::
covariance

::
is
:::::::
defined

::::
only

::
as

::
a
:::::::
function

::
of

:::
τ .

:
We define the

:::::::::::
corresponding

:
spectral density as Sab(ω), where the boldface ω represents a location in wave-number and frequency space. The

::
As

::::::
shown

::
by

::::::::::::::::
Wiener–Khinchin’s

:::::::::
Theorem,

::
the

:
covariance function and the spectral density are related via Wiener–Khinchin’s

Theorem so that
::::::
Fourier

:::::
pairs,

:::
so

:::
that

:

Cab(xτ ) =
1

2π

∞∫
−∞

Sab(ω)exp(2π
::
iωxτ ) dω, and Sab(ω) =

∞∫
−∞

Cab(xτ )exp(−i−2πi
::::

ωxτ ) dxτ . (3)110

Given an assumed parameterisation of Cψψ , Cϕϕ and Cψϕ,
:
the horizontal velocity auto- and cross-covariances are thus

Cuu =−∂yyCψψ − ∂xxCϕϕ+ ∂xyCϕψ + ∂xyCψϕ, (4)

Cvv =−∂xxCψψ − ∂yyCϕϕ− ∂xyCϕψ − ∂xyCψϕ, (5)

Cuv = ∂xyCψψ − ∂xyCϕϕ+ ∂yyCψϕ− ∂xxCϕψ. (6)

Similarly, given the spectral densities Sψψ, Sϕϕ and Sψϕ, we define the power and cross-power spectral densities of the115

horizontal velocities as

Suu = l2Sψψ + k2Sϕϕ− kl(Sψϕ+Sϕψ), (7)

Svv = k2Sψψ + l2Sϕϕ+ kl(Sψϕ+Sϕψ), (8)

Suv = kl(Sϕϕ−Sψψ)− k2Sψϕ+ l2Sϕψ., (9)
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:::::
where

::
k

:::
and

:
l
:::
are

:::::::::
horizontal

::::::::::::
wavenumbers. For our numerical experiment, we derive a purely rotational flow by setting ϕ= 0120

and so, simply, u=−∂yψ and v = ∂xψ. This leads to the covariance functions Cuu =−∂yyCψψ, Cvv =−∂xxCψψ and Cuv =

∂xyCψψ , and spectral densities Suu = l2Sψψ , Svv = k2Sψψ and Suv =−klSψψ.

To parameterise
::::::::::
parameterize

:
the flow we seek either a covariance function or spectral density that satisfies

::
the

:
physical

requirements of the streamfunction ψ; namely, we require a log-linear decay in the high-frequency/wavenumber of the spectral

density. A good candidate for this is the
:::::::
isotropic

:
Matérn covariance function (Lilly et al., 2017)

:::::::::::::::::::::::::::
(Rasmussen and Williams, 2005)125

with auto-covariance function and power spectral density

C(xτ ) =
21−νη2

Γ(ν)
|2

1−ν

Γ(ν)
(

:::::

λx|∥τ∥2 )
νK|ν|ν(|λx|∥τ∥2), and S(ωω) =

cνη
2

(ω2 +λ2)ν+1/2

cν(
∥ω∥22 +λ2

)ν+D/2

::::::::::::::::

, where cν =
2πλ2νΓ(ν+1/2)

Γ(1/2)Γ(ν)

2DπD/2λ2νΓ(ν+D/2)

Γ(ν)
:::::::::::::::::::

,

::::
|| · ||2:::::::

denotes
:::
the

:::::::::
Euclidean

::::::::::::
norm/distance,

::
D
::

is
:::

the
:::::::::

dimension
:::

of
::
τ

:::
and

:::
ω, Γ(·) denotes the Gamma function and K|ν| :::

Kν
is the modified Bessel function of the second kind of order ν

::::
ν ≥ 0. For positive integer values minus 1/2

::::::::::
half-integers

:
of ν,

i.e. ν = p− 1/2 where p ∈ N+, K|ν| ::
Kν:has an analytical expression, otherwise it must be numerically calculated. We assume130

ψ to follow a separable Matérn process in space and time
::::::
(D= 2)

::::
and

::::
time

:::::::
(D= 1), so that Cψψ(x) = Css(d) ·Ctt(t) where

x = [d,t], d represents isotropic distance, and with parameters ν = νs = 2 and λs for
:::::::::::::::::::::::::
Cψψ(τ ) = Ψ2Css(τd) ·Ctt(τt)::::::

where
::
Ψ

:
is
:::
the

:::::::
standard

::::::::
deviation

::
of

:::
the

:::::::::::::
streamfunction,

::::::::::
τ = [τd, τt] :::::

where
::
τd:::::::::

represents
:::
the

:::::::
isotropic

:::::::
distance

::
in

:::::
space

:::
and

::
τt:::::::::

represents

::
the

::::::::
time-lag,

::::
and

::::
both

:::::::
Css(τd) :::

and
:::::::
Ctt(τt) :::

are
:::::::
specified

::
as

::::::::::
correlation

::::::::
functions,

::::
that

::
is,

::::::::::::::::::
Css(0) = Ctt(0) = 1.

:::
For

:
the kernel

defined over space (Css(d)), and ν = νt = 1 and λt for
:::::::
Css(τd) ::

we
::::::

define
:::
the

:::::
slope

:::
and

:::::::::::
decorrelation

::::::::::
parameters

::
νs::::

and
:::
λs,135

::::::::::
respectively.

:::
For

:
the kernel defined over time (Ctt(t)). ::::::

Ctt(τt).:::
we

::::::
define

:::
the

:::::
slope

:::
and

:::::::::::
decorrelation

::::::::::
parameters

::
νt::::

and
:::
λt,

::::::::::
respectively.

:
This separability assumption is a concession on realism which enables to substantially ease

::::::::::
substantially

:::::
eases

the computational cost of the flow generation step and is not expected to affect our evaluation of the inference performance

(Wortham and Wunsch, 2014; De Marez et al., 2023). The covariance functions with respect to u and v are thus

Cuu(xτ ) =−ηΨ
:

2Ctt(tτt
:
) · y

2C ′′
ss(d)+x2d−1C ′

ss(d)

d2
y2C ′′

ss(τd)+x2τ−1
d C ′

ss(τd)

τ2d
::::::::::::::::::::::

, (10)140

Cvv(xτ ) =−ηΨ
:

2Ctt(tτt
:
) · x

2C ′′
ss(d)+ y2d−1C ′

ss(d)

d2
x2C ′′

ss(τd)+ y2τ−1
d C ′

ss(τd)

τ2d
::::::::::::::::::::::

, (11)

Cuv(xτ ) = ηΨ
:

2Ctt(tτt
:
) ·
xy

(
C ′′
ss(d)− d−1C ′

ss(d)
)

d2
xy

(
C ′′
ss(τd)− τ−1

d C ′
ss(τd)

)
τ2d

:::::::::::::::::::::::

, (12)

where primes denote derivatives with respect to horizontal distance d.
:::
the

::::::::
horizontal

:::::::
distance

:::
τd.

:

2.2 Flow
::::::::
Synthetic

::::
flow

:
data generation

The streamfunction is generated over a 1000 km by 1000 km domain with 2 km grid spacing and over 100 days with hourly145

resolution (Fig 1). The amplitude of the streamfunction Ψ is set such as to lead to
:::::
related

:::
to

:::
the

:
flow standard deviation

U , according to: Ψ= Uλ
√
(νs− 1)/νs ::

via
::::::::::::::::::::
Ψ= Uλs

√
(νs− 1)/νs. The reference flow simulation is defined by U=0.1

::::
such

5



::
as

::
to

:::
be

:::::::::::
representative

:::
of

::::::::::
moderately

::::::::
energetic

:::::::::
mesoscale

:::::::::
turbulence

::::
with

:::::::
U = 0.1 m/s, λs = 100 km, λt = 5 days (Fig 1)

.
::::::::::::::::::::::
(Ferrari and Wunsch, 2009)

:
.
::::::
Matérn

:::::
slope

::::::::::
parameters

:::
are

::::::
chosen

:::
to

::
be

::::::::
νt = 1/2

::::
and

::::::::
νs = 3/2

:::::::
leading

::
to

::
a

:::
−2

::::::::
temporal

:::::::
spectrum

:::::
slope

::::
and

:
a
::::::

spatial
::::::::

isotropic
:::::::
spectral

:::::
slope

::
of

::::
−6.

::::::
While

:::
the

::::::::
temporal

::::::
spectral

:::::
slope

:::
fits

::::::::::::
expectations,

:::
the

::::::
spatial150

::::::
spectral

:::::
slope

::
is

::::::
steeper

::
by

:
a
:::::
value

::
of

:::
one

::::::
(25%)

::::::::
compared

::
to

:::
the

::::
value

::::::
typical

::
of

:::::::::::::::
quasi-geostrophic

:::::::::
turbulence

:::::::::::::::::::::::::::::::::::::::::::::
(Callies and Ferrari, 2013; Wortham and Wunsch, 2014)

:
.
::::
This

:::::::::
concession

::
to

::::::
realism

::::
was

:::::
made

::::::
because

::
it
:::::
yields

:::
an

::::::::
analytical

::::
form

:::
for

:::
the

::::::
Matérn

:::::::::
covariance

:::::::
function

::::::
which

::::::::
alleviates

::
the

::::::::::::
computational

::::
cost

::
of

:::
the

::::::::
inference

:::::::::::
substantially.

:
We reparameterize the covariance functions by η = γλs :::::::

Ψ= γλs, where

γ has the interpretation of being the amplitude parameter on
:
is
:::::::::
interpreted

:::
as

::
the

:::::::::
amplitude

::::::::
parameter

::
of

:
the horizontal velocity

process; as well as interpretability, this has some computational benefits.155

::::
With

:::
the

:::::::
previous

::::::
choice

::
of

::::::::::
parameters,

:::
the

::::::::::::
streamfunction

::
is

::::::::
generated

::::
over

:
a
::::::::
1000 km

::
by

::::::::
1000 km

::::::
domain

::::
with

:::::
2 km

::::
grid

::::::
spacing

::::
and

::::
over

:::
100

::::
days

:::::
with

:::::
hourly

:::::::::
resolution

::::
(Fig

:::
1).

::::
This

::::::::
resolution

::
is
::
a

:::::
factor

::
of

::::
∼50

:::::
times

:::::::
smaller

::::
than

:::::::::::
decorrelation

:::::
which

::
is

:::::::::
considered

:::::::
enough

::
to

::::::
resolve

:::
the

::::::::::
synthesized

:::::::::
variability

::::
and

:::::::
mitigate

:::::::::
numerical

::::::::::
interpolation

::::::
errors

::
in

::::::::::
Lagrangian

::::::::
numerical

::::::::::
simulations.

:::::
Sizes

::
of

:::
the

::::::
spatial

::::::
domain

::::
and

:::
the

::::
time

:::::
series

:::
are

::::
∼10

:::
and

::::
∼20

:::::
times

:::::
larger

::::
than

:::::::::::
decorrelation

::::::
scales

:::::
which

::::::
ensures

:::
we

:::
are

::::::::
capturing

::::::::
multiple,

:::::::::
effectively

:::::::::::
independent,

:::::::::
realizations

::
of

:::
the

:::::::
process.

:
160

The hourly synthetic flow is fed to the Parcels python library configured with
:::::
fourth

:::::
order Runge-Kutta 4 time-stepping and

the default A-grid interpolation scheme in order to produce synthetic drifter trajectories (Delandmeter and van Sebille, 2019).

Drifters are released initially at all flow grid points albeit in
::::
with

:::
the

::::::::
exception

:::
of a 20 km strip around boundaries which

amounts to
::
all

::::::::::
boundaries,

:::::::::
amounting

::
to

::
a

::::
total

::
of 9216 drifters total for each drifter

:::
for

::::
each simulation. Trajectories reaching

domain boundaries are de-activated and not advected further in time and discarded from the list of observations that will be165

used for inference. The fraction of trajectories discarded amount to
:::
was 52% in the reference configuration. Drifter positions

are stored at hourly resolution and velocities estimated from drifter positions with a second order finite differences. Example

of such trajectories are shown on
::::::::::
second-order

:::::
finite

:::::::::::
differencing.

:::
An

:::::::
example

::
of

:::::
drifter

::::::::::
trajectories

::
is

:::::
shown

::
in
:
Figure 1. The

flow amplitude averaged over time and space is about 1.8% larger than that computed from drifters
:::::
drifter trajectories which

reveals small turbophoresis,
::::
i.e.,

:::::::::::
concentration

::
of

:::::::
drifters

::
in

::::
areas

::
of

:::::
lower

::::::
energy

:
(Freeland et al., 1975).170

A non-dimensional parameter characterizing the
::::
used

::
to

::::::::::
characterize

:
flow is α= Uλt/λs. This parameters

::::::::
parameter is ex-

pected to control how the relative importance of spatial vs temporal variability projection on
::
in

:::
the

::::::::
projection

::::
onto

:
Lagrangian

time series (Middleton, 1985). In the reference scenario, the value of the parameter is about
:
α

::
is 0.4 which is in the range of

values relevant for the Ocean
:::::::
observed

:::::
ocean

::::::
values (Lumpkin et al., 2002). In order to obtain mooring and drifters

:::::
drifter

time series with different α values, the synthetic flow is simply rescaled and new Lagrangian trajectories are simulated with175

the rescaled flow.

2.3 Inference

Observed data y is composed of flow time series collected over time by Np drifters or moorings to which a white noise n of

standard deviation σ is added. The critical difference between drifter and mooring observations is that they are collected along

drifter trajectories in the former case, i.e. u[x(t)] +n(t) where x(t) is a drifter trajectory, while they are collected at a fixed180

location in the latter one, i.e. u[x, t] +n(t) where x is a mooring location.
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Figure 1. Overview of the inference input data for the reference case
::::::
scenario: (a) streamfunction snapshot in color overlaid with drifters

::::
eight

:::::
drifter tracks and moorings used for the inference; (b) x velocity time series of

::
the drifter identified by the black track on

::
in (a); (c) x

velocity time series at the mooring indicated by the black star on
:
in

:
(a). On (b) and (c), black dots indicate the 2 days

::
of sub-sampled data

used in the inference.

We treat the collection of parameters Θ= {γ,λs,λt,σ2}, as uncertain and unknown and probabilistically quantify this

uncertainty. We treat Θ as a random variable and so naturally adopt the Bayesian paradigm of probability. Bayes’ Theorem

states p(Θ | y)∝ p(y |Θ)p(Θ), where p(Θ | y) is the posterior distribution, p(y |Θ) is the likelihood and p(Θ) is the prior

distribution. The posterior is our target quantity and describes the probability distribution of Θ conditioned on the observed185

data. The likelihood is a probability distribution that asses
::::::
assesses

:
the probability of the data being generated, conditioned on

some value of Θ. Finally, the prior represents our knowledge of Θ before we observe the data y; in this term we may include the

results from previous analyses, bounds on values that Θ may take or any physically derived structure between the constituent

parameters inside of Θ.
::::
Prior

:::::::::::
distributions

:::
are

::::
here

::::::
chosen

::
to

::
be

:::::::
uniform

:::::::
between

::
0

:::
and

:::
10

::::
times

::::
true

:::::::::
parameter

::::::
values.

Exact computation of p(Θ | y) is analytically achievable for a small class of model problems; however, this is typically190

not so and so p(Θ | y) is computed numerically using Markov chain Monte Carlo (MCMC). MCMC can be computationally

demanding, and so there are many methodologies for approximating p(Θ | y) without MCMC; such methodologies are designed

either to improve computational speed (at the cost of accuracy and exactness in quantifying the probability distribution) or to

target a particular aspect of the posterior distribution. For instance, maximum-a-posteriori (MAP) calculates argmaxΘ{p(Θ | y)},

variational Bayesian methods calculate the posterior from an known analytical family that best minimises the Kullback–Leibler195

divergence, generalised Bayesian inference is a generalisation of this to other divergences, and information theory maximises a

metric placed over p(Θ | y), such as entropy. Here, we prefer MCMC so that we may guarantee the accuracy of our results, and

note that alternative inference methods may be more suitable in an operational context where larger computational expediency

is warranted.
:
,
::
as

::::
this

::
is

:::
the

::::
gold

:::::::
standard

:::
in

::::::::
statistical

::::::::::
computing. MCMC generates a dependent chain of draws from the

posterior p(Θ | y) such that subsets of Θ are visited proportionally to the posterior probability of the subsets. MCMC sampling200

algorithms are designed so that the sampled draws result in an irreducible Markov chain Θ[1], . . . ,Θ[n] that converges on

p(Θ | y) as its stationary distribution. The Markovian property implies that a sample Θ[i] only depends on its previous sample

7



Figure 2.
::::
Trace

::::
plots

::
of
:::::::

MCMC
:::::::
sampling

::
for

::::
each

::::
flow

::::::::
parameters

::::
(left)

:::
and

::::::::
associated

:::::::::
histograms

:::::
(right)

::
for

::
a
:::::
single

:::::::
inference

::::
based

:::
on

:
8
:::::
drifter

::::::::
trajectories

:::
for

:::
the

:::::::
reference

:::::::
scenario.

::::
True

::::::::
parameter

:::::
values

::
are

::::::::
indicated

::
by

:::
the

::::
black

::::
lines,

:::::
while

::::
MAP

:::::::
location

:::
and

:::::
values

:::
are

:::::::
indicated

::
by

::::
thick

::::
gray

::::
lines.

Θ[i−1]; the method by which Θ[i] is generated from Θ[i−1] distinguishes the various MCMC algorithms. All MCMC algorithms

propose some Θ[∗] from Θ[i−1] and with probability α either accept Θ[∗], in which case Θ[i] =Θ[∗], or reject Θ[∗], in which

case Θ[i] =Θ[i−1].
::
We

:::::
show

:::
an

:::::::
example

::
of

:::
this

:::
in

:::::
Figure

::
2
:::
for

:::
the

:::::::
moored

::::
data

::::::::
reference

:::::::
scenario.

::::
The

::::::::
traceplots

:::::::
consist

::
of205

::::::
20,000

::::::::
dependent

:::::::
samples

:::::
from

:::::
which

:::
we

::::
may

::::::
derive

:::::::::
summaries

:::
of

:::
the

:::::::
posterior

:::::::::::
distribution,

:::::::
p(Θ | y),

:::
via

::::::::
standard

::::::
Monte

::::
Carlo

::::::::
methods.

::::
For

:::::::
example,

:::
the

::::::::
marginal

::::::::::
distributions

:::
of

::::
each

::::::::
parameter

:::
are

::::::::::
represented

:::
by

::
the

::::::::::
histograms

::
in

:::
the

:::::::::
right-hand

::::::
column

::
of

::::::
Figure

:::
2.

:::::::
MCMC

::
is

::::::::::::
asymptotically

:::::
exact

::
in

:::
that

:::
the

::::::::
sampled

:::::
draws

::::::::
converge

::
to
::::

the
::::
exact

::::::::
posterior

::::::::::
probability

::::::::::
distribution. We generate samples using Metropolis-Hastings (MH), a well-known and accessible MCMC algorithm. Descrip-

tion and particulars are provided in the appendix.210

::
As

::::::::
discussed

::::::
above,

:::
we

::::::::::
parameterise

:::
our

::::::
model

:::::
using

:::
the

::::::
Matérn

:::::::::
covariance

:::::::
function

::
as

::
it

:::::::::
exemplifies

:
a
:::::::
number

::
of

::::::::
desirable

:::::::
physical

::::::::::::
characteristics.

::::::::
However,

:::
the

::::::::
derivative

::
of

:::
the

::::::
Matérn

:::::::::
covariance

::::::::
function

:
is
:::::::
difficult

::
to

::::::
obtain

:::
due

::
to

::::::
Kν(·): ::::::::

analytical

:::::::::
derivatives

::
are

::::
only

::::::::
available

::
at

::::::
integer

:::::
values

::
of

::::::::
ν− 1/2,

:::
and

::::::::
numerical

::::::::::
calculations

::
of

:::::
Kν(·):::

are
:::
not

::::::::
available

::
in

:::
any

::::::::
symbolic

::::::::
toolboxes

:::
that

:::
we

:::
are

::::::
aware

:::
of.

::
To

:::::::
mitigate

:::
the

:::::::::::::
computational

::::::
burden

:::
and

::::::
enable

:::
the

:::::::::::
performance

::
of

::::::::
ensemble

:::
of

::::::::
statistical

::::::::::
experiments,

:::
we

:::::::
decided

:::
to

::
fix

::::
the

:::::
slope

:::::::::
parameters

:::
νs :::

and
:::
νt ::

to
::::::::::
half-integer

::::::
values

::::::::
described

:::
in

::::::
section

:::
2.2

::::
and

:::::::
exclude215

::::
these

:::::::::
parameters

:::::
from

:::::
those

:::::::
inferred.

::::
This

::::::
choice

::
is

::::::
relaxed

::
in
:::::::

section
:::
3.5

::
in

:::::
order

::
to

::::::::::
demonstrate

::::
that

:::
the

::::::::
inference

::
of

:::::
these

:::::::::
parameters

::
is

:::::::
possible

::
as

:::::::
achieved

::
in
:::
the

::::::
purely

::::::::
temporal

::::::
domain

:::
by

:::::::::::::::::
Sykulski et al. (2016)

:
.
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Figure 3. Distribution of parameters MAP values for the reference flow and reference observation scenario (scenario REF). True parameters

:::::::
parameter

:
values are represented by vertical black lines. First and third quartiles are grey

:::
gray dashed vertical lines and provide insight into

::
the

::::::::::
inter-quartile

:::::
width

:
(IQW

:
).

2.4 Validation of the Inference Methodology

As the mooring and drifter data are simulated, we know the ground truth, and so may validate the MCMC sampling method-

ology. We show this for two cases: first, we show the probabilistic parameter estimates from the reference flow (section 2.1);220

and second, we compare the MAP
::::::::::::::::::
maximum-a-posteriori

::::::
(MAP) estimates, i.e. Θ̂ := argmaxΘ{p(Θ | y)}, of an 100-member

ensemble with their true values. Examining a single scenario demonstrates the inherent uncertainty associated with a single

experiment; whereas, inference across an ensemble looks at the variability that arises between data-samples. In all cases, the

data comprise a bivariate u, v time-series collected either along 8 trajectories (drifters), or at 8 stationary locations (moorings),

with 2 days temporal sampling over 100 days, amounting to 400 data points. The ensemble data are generated from the sin-225

gle spatio-temporal field with randomly sampled drifter tracks and mooring locations. Figure 2 shows the marginal posterior

probability distributions of the single-member reference case
::::::
scenario. For all parameters, the true values lie well within the

probability mass
:::::::::
distribution. Note, σ2 is not well resolved, this is due to

::
as the roughness of the Matern processconfounding

:
,
::
at

::
the

:::
set

::::::::
sampling

:::::::
interval

:::
(see

::::::
Figure

:::
1),

:::::::::
confounds with the noise signal over the sampling interval, and is not alarming. More

::
so

:::
that

::::
both

:::::::::
processes

::::
may

::
be

:::::
viable

:::
in

::::::::
explaining

:::
the

::::::::
observed

:::::
data.

::::
This

:
is
:::::::::

somewhat
::::::::
expected

:::
and

:::::
more detailed statistical230

diagnostics accompany the code in the supplementary material. Figure 3 plots a histogram of the MAP values calculated from

each ensemble member’s MCMC chain against the true value. This shows the variability of the distributions about the true

value over the ensemble. Again, all distributions are centered on the true values, and there exists some difficulty in observing

σ2 with precision. The precision of the inference will next
:::
also

:
be quantified by the difference between the third and first

quartiles which will be referred to as the inter-quartile width (IQW).235

Histogram of MCMC samples of single inferences based on 8 drifter trajectories (orange) and 8 mooring locations (blue)

observations in the reference case.

2.5 Inference scenarios

This study reports on the performance of the inference method under several scenarios (summarized in Table 1):
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Table 1. Inference scenarios. All other parameters are held constant across
::
the

:
scenarios.

scenario γ [m/s] Np drifters moorings

REF 7.7× 10−2 8 random draw random draw

SEP[dx] 7.7× 10−2 2 random with initial separation dx random with separation dx

IND[Np] 7.7× 10−2 [1-16] random draw and independent observations random draw independent observations

::::
OPT[

:::
Np]

::::::::
7.7× 10−2

:
[
:::
1-16]

::::
spiral

:::::::::
deployment

: ::::
spiral

:::::::::
deployment

REG[α] [1.6× 10−3 − 4× 10−1] 1 random draw random draw

:::
NU

::::::::
7.7× 10−2

: :
8

::::
spiral

:::::::::
deployment,

::::::
(νs,νt)::::::

inferred
: ::::

spiral
::::::::::
deployment,

::::::
(νs,νt) ::::::

inferred

– REF corresponds to the nominal configuration described in Section 2.4 with 8 simultaneously deployed platforms240

– SEP[dx] - When multiple platforms are simultaneously sampling the flow, the separation between platforms and more

generally their geometrical distribution are expected to modulate the performance of the inference. To simplify the

analysis, we restrict the configuration to two simultaneous observing platforms (e.g. two drifters or two moorings)

and investigate the sensitivity of the inference performance to their separation (with 10% tolerance). For drifters, the

separation is the initial one between the two drifters.245

– IND - inference is performed by assuming time series from different platforms are independent from each other. Such a

situation would occur if individual moorings/drifters were deployed the same location but at times sufficiently far apart,

no correlation is expected across the velocity time series recorded by each platform. In effect this amounts to quantifying

the ability of one platform at capturing flow parameters and investigating the sensitivity to the length of the time series.

– OPT[Np] - platforms are deployed in a spiral configuration that leads to separations that span the flow spatial decorrela-250

tion scale (see section 5.2). The purpose of this experiment is to perform a simple experimental design optimization of

the number of platforms deployed and of the choice between moorings and drifters.

– REG[α] - the amplitude of the flow is rescaled in order to explore different values of the flow regime parameter α=

Uλt/λs. The amplitude of the noise is linearly scaled as a function of α in order to maintain a fixed signal to noise ratio.

Inference are performed with a single platform.255

– NU - This scenario is similar to OPT[Np] with Np = 8, with the exception the spectral slope parameters νs and νt are

also inferred.
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3 Results

3.1 Platform separation sensitivity

Under scenario SEP[dx], estimations of the flow amplitude are comparable for moorings and drifters observations
::::::::::
observations260

::::
from

:::
two

:::::::::
moorings

::
or

:::
two

:::::::
drifters and precise with IQWs lower than 13% of true amplitudes and no sensitivity to separation

(Figure 4a). We argue this follows from the fact that inferences are provided with velocity observations as inputs. Drifter

inferences of the flow amplitude exhibit a 1% to 3% low bias which is comparable to that associated with turbophoresis

(Section 2.2).

Mooring spatial scale estimates are on the other hand sensitive to separation (Figure 4b). After a modest decrease in perfor-265

mance of the inference
:::
with

:::::::::
separation

:
as measured by IQWs, best inferences are

::
the

::::
best

::::::::
inference

::
is obtained for separation

in the range of 20 and 120
::
40

::
to

:::
80 km. For larger separations, the inference precision decreases with IQW reaching values of

about 50
:
0% of true values at 300 km, i.e. 3 times the flow spatial scale. This loss of performance with separation reflects the loss

::
of correlation between the flow measured by both

::::
each mooring and thus the lack of information about spatial structure in the

dataset. Drifters exhibit no clear sensitivity relatively which may
::
to

:::::::::
separation

:::
for

:::
the

:::::
spatial

:::::
scale

::::::::
estimate.

::::
This

::::
may

:::
first

:
be270

explained by the substantial displacements of
::
the

:
drifters compared to separations considered (864

:::
the

:::::::::
separations

::::::::::
considered.

:
A
::::
flow

::::::::::::
exponentially

::::::::::::
autocorrelated

::::
over

::::::
10 days

::::
with

::
a
:::::::
standard

::::::::
deviation

::
of

:::
10 km over 100 days at U = 10 cm/s in straight

line)as well as by the natural ability at
::::
leads

::
to

::
an

:::::::
absolute

:::::::::
dispersion

::
of

:::::::::
(250 km)2

::::::::::::::::::
(Gurarie et al., 2017).

::::
The

::::::
natural

::::::
ability

::
of drifters to explore space and time and therefore constrain spatial scales (see section 3.2)

:::::::
provides

:
a
::::::
second

::::::::::
explanation.

At separations lower than about 100 km,
:::::::
Mooring

::::
and

::::::
drifter inferences of the flow temporal scale perform equally for275

mooring and drifter observations with no bias and IQW of about 37
:::
both

:::::::
exhibit

:
a
::::::
modest

:::::
high

:::
bias

:::
of

:
5
::
to
:::
10% (Figure 4c).

For larger separations, moderate bias emerges and precision decreases with increased IQW(up to about 50%) for both platform

types.
:::
As

::::::::
expected,

::::::
drifters

:::
are

::::::
overall

::::
less

::::::::
effective

::::
than

::::::::
moorings

::
at

:::::::::
estimating

:::
the

::::
flow

::::::::
temporal

:::::
scale

:::::::::
parameter.

::::::
IQW’s

::::::::
associated

::::
with

::::::
drifter

:::::::::
inferences

:::
are

::::::::::::
systematically

:::::
larger

::::
than

:::::
those

:::::::::
associated

::::
with

::::::::
moorings

::::::
which

:::::::
fluctuate

::::::
around

:::::
30%

::
for

::::::::
moorings

:::::::::
compared

::::
with

::::::
drifters

:::::
which

::::::::
increase

::::
with

::::::::
separation

:::
up

::
to

:::::
60%.280

3.2 Sensitivity of the pseudo single platform inference to time series length
:::
the

:::::::
number

:::
of

:::::::::::
independent

::::::::
platforms

Under scenario IND[Np], single moorings
:::
(i.e.

:::::::
Np = 1) provide estimates of the flow amplitude, γ, and time

::::::::
temporal

:::::::::::
decorrelation

scale, λt, parameters that are precise
:
,
:
with IQW starting at about 17% and 46

::::
16%

::::
and

::
45% of true valuesrespectively for

one platform, and that ,
:::::::::::
respectively.

:::::::::
Parameters

::
γ
::::
and

::
λt:converge to true values as the number of independent time series

::::::::
moorings is increased (Figure 5). For the maximum number of platforms considered, IQW of

::
the

:::::
IQW

::
of

:::
the

:
flow amplitude285

and timescale estimates have
:::::::
temporal

:::::::::::
decorrelation

:::
has

:
decreased to 4% and 12%

::::
11%,

:
respectively. As expected from their

inability to explore the spatial dimension, single moorings are however globally unable to capture the flow spatial scale with

IQW comparable to the half the width of the parameter space allowed to be explore
:::::::
explored, i.e. [0,1000 km], which amounts

to the prior uncertainty (that is, there is no resolution of uncertainty).
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Figure 4. Sensitivity of parameters
:::::::
parameter

:
MAP estimates to platform separation (in km) in

::
for

:
the 2 platforms configuration

::::::
platform

::::::::::
configurations

:
(scenario SEP[dx]). Lines represent the median, while shaded areas are bounded by first and third quartiles. Truth

::::
True values

are in black. Grey
:::::
When

:::::
visible,

::::
gray shadings represent the no-go zone of the prior and inference parameter exploration.

In comparison, drifters provide
:::::::::
reasonable

:
estimates of all three flow parameters (γ, λs, λt) that are precise with IQW290

starting at about 15%, 86%, 86
:::::
14%,

::::
92%,

:::
95% for one platformand

:
.
:::::
These

::::::::
estimates

:
converge toward truth as the number

of platforms is increased with IQW smaller than 17
::
16% for all three parameters for

::::
with

:
16 platforms

::::::
drifters. The ability of

drifters to capture both spatial and temporal scales is explained by their natural ability at sampling
:::::
ability

::
to

:::::::
sample space

and time simultaneously. MAP medians indicate mild biases with an underestimation of amplitude and overestimation of time

scales
:::::::
temporal

::::::::::::
decorrelation

::::
scale

:
which decrease as the number of platform

::::::
drifters is increased. The amplitude low bias if295

about 6
:
is
:::::
about

::
7% with a single drifter and reduces to about 1.4%

::::
with

::
16

:::::::
drifters,

:
which is comparable to the turbophoresis

bias (Section 2.2).
::::
The

:::::::
temporal

:::::::::::
decorrelation

:::::
scale

::
λt:::

of
::::::
drifters

:::
are

::::::
always

::::
less

:::::::
accurate

::::
than

::::
that

:::::::
obtained

:::::
with

::::::::
moorings

:::::
which

:::
we

:::::::
interpret

::
as

:::
the

:::::
price

::
to

:::
pay

:::
for

:::
the

:::::::::::
simultaneous

::::::::
sampling

::
of

::::::
spatial

:::
and

::::::::
temporal

:::::::::
variability.

Sensitivity of parameters MAP estimates to the number of platforms (scenario INDNp). Platforms are assumed independent

from each other. Same representation as Figure (4).300

3.3
:::::::::::

Experimental
::::::
design

:::::::::::
optimization

Figure 5.
::::::::
Sensitivity

::
of

:::::::
parameter

:::::
MAP

:::::::
estimates

::
to

::
the

::::::
number

::
of

::::::::
platforms

:::::::
(scenario

:::
IND[

::
Np]

:
).
:::::::
Platforms

:::
are

:::::::
assumed

:::::::::
independent

::::
from

:::
each

:::::
other.

::::
Same

:::::::::::
representation

::
as

:::::
Figure

:::
(4).
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:::::::::
Optimizing

::
an

:::::::::::
experimental

::::::
design

:
is
::
a
:::::::
complex

::::
task

:::
that

::::::
results

::::
from

:
a
::::::::::
compromise

:::::::
between

::::::::
scientific

:::::
goals,

:
a
:::::
priori

:::::::::
knowledge

::
of

:::
the

:::::::
variables

::
to

::
be

:::::::::
measured,

:::::::
financial

::::
and

:::::::
logistical

::::::::::
constraints,

:::
and

:::
the

::::
need

:::
for

::::::::::
redundancy,

::::::
among

:::::
other

::::::
aspects.

::::::::
Scenario

::::
OPT[

:::
Np]

::::::::
illustrates

::::
how

:::
one

:::::
could

:::::::
identify

::::
what

::
is

:::
the

::::::::
minimum

:::::::::::
experimental

::::::
design,

:::::::
enabling

:::
an

:::::::
accurate

:::::::::
estimation

::
of

::::
flow

::::::::
properties.

:
305

::::::::
Consistent

:::::
with

:::
the

:::::
results

::
of
:::

the
::::::::
previous

::::::::
scenarios,

:::
no

:::::::::
substantial

::::
bias

::
is

::::::::
observed.

::::
IQW

::
is
::::
used

::
to
::::::::

quantify
:::::::
accuracy

::::
and

:::::::
therefore

::
is
:::
the

:::::
target

:::::::
variable

::
to
:::::::::

minimize
::
to

:::::::
identify

::::::
optimal

::::::
design

:::::::
(Figure

::
6).

:::::
Apart

:::::
from

:::
the

:::
one

::::::::
platform

::::::::::::
configuration,

:::::
where

:::
the

:::::::
mooring

::
is

::::::
unable

::
to

:::::::
estimate

:::
the

::::::
spatial

::::
scale

:::
of

:::::::::
variability,

::::::::
moorings

:::
and

:::::::
drifters

::::::
present

::::::::::
comparable

::::::::::
sensitivities

::
as

:
a
:::::::
function

::
of

:::
the

:::::::
number

::
of

:::::::::
platforms.

:::
The

:::::::
number

::
of

::::::::
platforms

:::::::
required

::
to
:::::
reach

::
a

:::::
target

::::
IQW

::
of

::::
20%

:::
of

:::
the

:::
true

:::::
value

:::
for

::
all

:::::::::
parameters

::::::
except

:::
for

::
σ,

::
is

:
4
:::
for

::::
both

::::::::
platforms

:::::::
(Figure

::
6).

:
310

::
In

::::
light

:::
of

:::
the

::::
low

::::
cost

:::
of

::::::
drifters

:::::::::
compared

::
to

:::::::::
moorings

::::::
(factor

::
of
::::::

about
::::
100

:::
for

:::::
deep

:::
sea

::::::::::::
applications),

:::
this

::::::
result

:
is
::::::::::

particularly
::::::::

striking.
::::::::
However,

:::
we

:::::
note

:::
the

:::::::::
simplicity

::
of

::::
the

::::::
present

:::::::
exercise

:::::::::
(idealized

:::::
flow,

::::::::::
constrained

::::::::
geometry

:::
of

::::::::::
deployment,

:::
see

::::::
section

::::
5.2)

::
in

::::
light

::
of

:::
past

::::::
efforts

::
on

:::
the

::::::
matter

::::::::::::::::::::::::::::::::::::::::::::::::::
(Bretherton and McWilliams, 1980; Barth and Wunsch, 1990)

:
.
::
As

:::::
stated

:::
in

:::
the

::::::::
preamble,

:::::::::
optimizing

:::
for

::::::::::::::
characterization

::
of

::::
flow

::::::::
properties

:::::::::
constitutes

::::
one

:::::::::::
consideration

::::::
among

:::::
many

::::
that

:::
may

:::
be

:::::
taken

::
in

:::
an

:::::::::::
experimental

::::::
design

:::::::::::
optimization.

:::::::::
Scientific

:::::
goals

::::
may

::
in

:::::::
general

::
go

::::
well

:::::::
beyond

:::
the

::::::::::::::
characterization315

::
of

::::
flow

:::::::::
properties.

::
If

::::
flow

:::::::::
properties

:::
are

::::::::
suspected

::
to

::::::
evolve

::::::::::
temporally,

:::
the

:::
use

::
of

:::::::
drifters

:::::
which

:::
are

::::::::
expected

::
to

:::::::::
eventually

:::::::
disperse

:::
will

::::::
require

:::::::
multiple

:::::::::::
deployments

::
in

:::
the

::::
area

::
of

:::::::
interest

:::::
unlike

::::
with

:::::::::
moorings.

3.4 Flow regime sensitivity

We turn now to an investigation of the sensitivity of inferences to the flow parameter α (scenario REG[α]). We revert to the

single platform configuration in order to limit the exchange of information across platforms and the resulting constraint it brings320

for inference which may mask the α sensitivity. For comparison purposes we also perform a "time-only" inference of drifters

:::::
drifter

:
velocity time series which estimate flow amplitudeand temporal

::::::::
estimates

::::
flow

:::::::::
amplitude,

:::::::
temporal

:::::::::::
decorrelation

:
scale

and noise , thereby ignoring spatial field decorrelations
::::
only

:::
and

:::
not

:::
the

::::::
spatial

:::::::::::
decorrelation

::::
scale

:::
λs.

Figure 6.
::::::::
Sensitivity

:::
of

::::::::
parameter

:::::
MAP

::::::::
estimates

:::
to

::::
the

:::::::
number

::
of
:::::::::

platforms
::::::::

(scenario
::::

OPT[
::
Np]

:
).
:

Same but alternative

vizualization
::::::::::
representation

::
as
::::::
Figure

:::
(4).
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As anticipated from section 3.2, inferences of flow amplitude and time
:::::::
temporal

:::::::::::
decorrelation scale from mooring observation

::::::::::
observations

:
are relatively accurate with IQW of about 15% and 50% of true valuesrelatively

:
,
::::::::::
respectively (Figure 7a-

:
a
::::
and325

7c). The amplitude inference reflects the linear sensitivity to α. Spatial scales remain undetermined no matter
:::
for

::
all

:
α values

(Figure 7b). This lack of sensitivity is expected as the nature of mooring observations, that their
:::
due

::
to exclusive sampling of

the temporal variability , is not affected by variations of α
:::::::
temporal

:::::::::
variability

:::
by

:
a
:::::
single

::::::::
mooring.

Inferences of flow amplitude from drifter observations are comparable to mooring inferences in terms of IQW albeit for

::::
with a low bias of about 2 to 7%

:::
5%

::::::::::
(Figure 7a). A comparable bias is observed on time-only inferences for small α values330

but is exacerbated for α larger than unity and reach
:::::
where

::
it

::::::
reaches

:
about 35% of the true amplitude

:::::::::
(Figure 7c). For large α,

distortions of the temporal spectrum shape is likely affecting the overall performance of the time-only inferences which relies

:::
rely

:
on the spectral distribution following that of a Matérn 1

:::
1/2 process.

At

:::
For small α values (< 0.2), inferences

:::::::
inference

:
of the flow spatial

::::::::::
decorrelation

:
scale from drifter observations are worst335

and
:::
the

:::::
worst

:::
and

:::
the

::::
IQW

::
is nearly comparable to those from mooring observations

:::::::::
(Figure 7b). Drifters indeed merely moves

::::
move

:
over a flow timescale compared

::::
time

::::
scale

::::::::::
comparable

:
to the spatial decorrelation scale in this flow regime,

:
which has

been historically coined
:
a
:
"fixed-float" and can be effectively considered as a mooring (Middleton, 1985; Lumpkin et al.,

2002). Flow temporal estimates from drifter observations are therefore of comparable performance to estimates from mooring

observations
::::::::::
Accordingly,

:::::
when

:::::::
α < 0.2

::::::::
estimates

::
of

:::
the

::::
flow

:::::::::
amplitude

:
γ
::::
and

:::::::
temporal

:::::::::::
decorrelation

:::::
scale

::
λt:::

are
::::::::::
comparable340

::
for

::::::::
moorings

::::
and

:::
for

::::::
drifters

:::::::
whether

::::
with

:::
the

:::::::
standard

::::::::
inference

::
or

:::
the

::::::::::
"time-only"

::::::::
inference.

At
:::
For

:
larger values of α (e.g.> 0.2), the precision of the flow spatial

::::::::::
decorrelation

:
scale inference from drifter observations

improves substantially with decreasing IQW (down to 50% at α∼ 1). Estimates
::
In

:::::::
contrast,

::::::::
estimates

:
of the temporal scale

deteriorate on the other hand with
:::::::::::
decorrelation

::::
scale

::::::::::
deteriorate

::::
with

:
a
:
bias high of about 40

::
25% and IQW width of about

100
:::
120%. At these values

:
of

::
α, the flow is in the so called "frozen turbulence" regime and drifters are in effect experiencing345

the spatial variability of the flow field (Middleton, 1985; Lumpkin et al., 2002). This is directly reflected in the estimate of

the temporal scale obtained from the "time-only" inference which monotonically decreases with α. The fact that the temporal

scale from the space-time inference does not follow a similar trend is a testimony to the relevance of the latter method which

Figure 7.
:::::::
Sensitivity

::
of
::::::::

parameter
:::::
MAP

:::::::
estimates

::
to

::::
flow

:::::
regime

::
α
:::
for

:::
the

:::::
single

::::::
platform

:::::::::::
configuration

:::::::
(scenario

::::
REG[

:
α]

:
).

::::
Time

::::
only

::::
drifter

::::::::
inference

:
is
::
in

:::
red

::
on

:::
(a)

::::::
(median

::::
MAP

::::::
dashed)

:::
and

:::
(c)

:::::::
(quartiles

:::
and

:::::::
median).

::::
Same

:::::::::::
representation

::
as

:::::
Figure

:::
(4)

::::::::
otherwise.
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is able to identify that observations reflect a predominance of spatial variability and attribute reasonable space and time scale

estimates, albeit with moderate error and bias.350

Sensitivity of parameters MAP estimates to flow regime α in the single platform configuration (scenario REGα). Time only

drifter inference is in red on (b) (median MAP dashed) and (d) (quartiles and median). Same representation as Figure (4)

otherwise.

3.5
:::::::

Spectral
::::
slope

::::::::::
estimation

:::
For

:::
the

::::
final

:::::::::
experiment

:::::
(NU),

:::
the

::::::::::
assumption

:::
that

:::::::
spectral

:::::
slopes

:::
are

::::::
known

::
is

::::::
relaxed

::::
and

::::::
Matérn

:::::
slope

:::::::::
parameters

::
νs::::

and
::
νt355

::
are

:::::::
inferred

:::::
along

::::
with

:::
the

:::::
other

::::::::::
parameters,

:::
i.e.

::
γ,

:::
λs,:::

λt, ::
σ.

:::
The

::::::::
assumed

::::
prior

:::::::::::
distributions

:::
are

:::::::
uniform

::::
over

::::
[1,5]

:::
and

:::::
[0,5]

::
for

:::
νs,::

νt::::::
which

::
is

:::::
larger

::::
than

::::::
typical

::::::::::
uncertainties

::
in

:::
the

:::::
ocean

:::::
about

:::::
these

::::::::::
parameters.

:::::::::
Estimating

::::
these

::::::::::
parameters

::::
leads

::
to

::
a

::::::
45-fold

:::::::
increase

::
in

:::::::::
computing

:::::
time,

:::
due

::
to

:::::::::::
computation

::
of

:::
the

:::::
Bessel

::::::::
function

:::
Kν ,

::
as

::::::::
discussed

::
in
:::::::
Section

:::
2.1.

:

:::
The

::::::
impact

:::
on

::::
flow

::::::::
parameter

:::::::::
estimation

::
is
::
a
::::::
modest

:::::::
increase

:::
of

:::::::::
normalized

:::::
IQW

::::::
(Figure

:::
8)

::::::::
compared

::
to

:::::
OPT[

:::
Np]

::::
with

::::::
Np = 8

::::::
(Figure

:::
6).

:::
For

::::::::
instance,

::::::
spatial

:::
and

::::::::
temporal

:::::::::::
decorrelation

:::::
scales

:::::
IQW

::::::::
estimated

::::
with

:::::::
mooring

:::::::::::
observations

:::::::
increase360

::::
from

:
7
::::
and

::::
14%

::
to

::
10

::::
and

::::
18%

::
of

::::
true

:::::
values

::::::::::
respectively.

:::::::::
Inferences

:::::
from

:::::
drifter

:::::::::::
observations

:::::::
undergo

:::::::::
comparable

:::::::::
increases.

Figure 8.
:::::::::
Distribution

::
of

::::::::
parameter

::::
MAP

:::::
values

::
for

:::
the

:::::::
reference

::::
flow

:::
and

:::::::
reference

:::::::::
observation

::::::
scenario

::::
with

:::::::
inference

::
of

::::::
Matérn

::::::
spectral

::::
slopes

::::::::
(scenario

::::
NU).

:::
True

::::::::
parameter

:::::
values

:::
are

:::::::::
represented

::
by

::::::
vertical

::::
black

::::
lines.

::::
First

:::
and

::::
third

:::::::
quartiles

::
of

::
the

:::::::
posterior

:::::::::
distribution

:::
are

:::
gray

::::::
dashed

:::::
vertical

::::
lines

:::
and

::::::
provide

::::::
insight

:::
into

::::
IQW.

:::
The

::::::::
inference

::
of
::::::

spatial
::::
and

::::::::
temporal

::::::
Matérn

::::::
slopes

:::
are

:::::::::
successful

::::
with

:::::::
posterior

:::::::::::
distributions

:::::::
centered

:::::::
around

::::
their

::::
true

::::::
values,

:::
and,

:::::
IQW

::
of

::::
less

:::
than

:::::
22%

::
of

:::
true

::::::
values.

:::::::::::
Independent

::::::::::
experiments

::::
with

::::::
random

::::::::
platform

:::::::::::
deployments

::::::
similar

::
to

::::
REF

:::
lead

::
to
:::::

more
:::::::::
contrasted

::::::
results

::::
with

:::
the

::::::::
temporal

:::::
slope

:::::
being

:::::::::
effectively

:::::::
resolved

:::
but

:::
not

:::
the

::::::
spatial

:::::
slope

::::
(not

:::::::
shown).

::::
This365
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:
is
::
is
:::
an

::::::::
indication

::::
that

:::
the

:::::::::
estimation

::
of

::::::
Matérn

:::::
slope

::::::::::
parameters

:
is
:::::

more
::::::::::
demanding

::
on

::::::::::
observation

::::::
quality

::::
and

::::::::::
information

::::::
content.

:::::::
Pending

::::::::::::
improvements

::
in
:::
the

:::::::::::
performance

::
of

:::
the

::::::::
inference

:::::::::::
computation,

:::::
these

:::::
results

:::::::
present

::::::::
promising

:::::::::::
perspectives

::
for

:::
the

:::::::::
systematic

::::::::
inference

::
of

:::::::
spectral

::::::
slopes.

:

4 Conclusions

We have presented a novel Bayesian method to infer
::::::
surface ocean circulation spectral parameters (e.g. amplitude, space and370

time
:::
and

::::::
spatial

:::
and

::::::::
temporal

:::::::::::
decorrelation

:
scales) from sparse observations of the flow. The intention here was to quantify

parameter uncertainty due to sampling and flow regimes. These results may guide future field and analysis
::
the

::::::
design

::::
and

::::::
analysis

:::
of

:::::
future

::::
field campaigns and open novel avenues for the analysis of existing datasets. We considered flow observation

from two type of platforms typically employed in Oceanography
:::::::::::
oceanography: moorings which provide fixed point flow

observations and drifters that provide along-flow flow observations. Inferences
::::::::
Inference based on both types of platforms375

provide
::::
flow

:::::::::::::
characterization estimates that converge to true values as the number of observations is increased. The performance

of the method was quantified in various observing configurations which allowed to highlight pros/
::
us

::
to

:::::::
highlight

:::
the

::::
pros

::::
and

cons of each type of platform. As already recognized, moorings are well suited to characterize temporal scales of variability

and can if deployed simultaneously enable to
::
if

::::::::
deployed

::
as

:::::::::::
appropriately

::::::
spaced

:::::::::::
simultaneous

::::::::
networks

::::
can constrain flow

spatial scales. Drifters naturally sample both space and time and we showed they enable to simultaneously constrain the flow380

:::
can

::::::::::::
simultaneously

::::::::
constrain

::::
and

:::::::
separate

:::
the

:::::
flow’s

:
space and time scales even when developed

::::::::
deployed in isolation which

is a first time
::
the

::::
first

:
demonstration to our knowledge. A flow parameter quantifying displacements of drifters relative to

space and time scales modulated
:::
We

::::
also

:::::::
showed

:::
that

:
the ability of drifter at characterizing flow properties

:::::::::::
observations

::
to

::::::::::
characterize

::::
flow

::::::::
properties

:::::::
depends

:::
on

:
a
::::::::::::::
non-dimensional

:::::::::
parameter

:::
that

:::::::::
quantifies

:::
the

::::::
relative

:::::::::
magnitude

:::
of

:::
the

:::::
spatial

::::
and

:::::::
temporal

:::::::::::
decorrelation

::::::
scales. Given the relative low cost and low environmental impact associated with drifter deployments385

compared to
::::
with moorings, we argue they provide a powerful and more sustainable mean to characterize

:::::
means

::
to

::::::::::
characterize

::::::
surface flow properties.

More developments are required in order to make this method applicable to realistic oceanographic configurations. First

the method needs to be extended to flows that are composed of a superposition of processes commonly occurring in the

Ocean
:::::
ocean, e.g. internal waves and tides, near-inertial waves. Such

:
an

:
extension will present methodological challenges390

associated with the parametrization of the space/time variability associated with these processes. The assumption of space/time

separability, which was imposed here by the selected method of flow field generation, may have to be relaxed in a realistic

configuration (Wortham and Wunsch, 2014; De Marez et al., 2023). As long as correlations may be expressed in physical

space, extension of the inference to non-separable cases is direct. It may also be useful to generalize the inference method

to simultaneously account for observations that are of diverse nature, for instance current observations from drifters, pressure395

from moorings, sea level observations from satellite altimetry. Such
::
an

:
extension will require deriving the expected correlation

between each of the variable concerned whose feasibility will have to be addressed
:::::::
variables

:::::::::
concerned

:
and will in any case

depend on the process modeled.
::
A

:::
first

::::::::::
application

::
of

::::
the

::::::
method

:::
to

:::
real

::::
data

::::
may

:::
be

::::
with

:::::::
gridded

:::::::::
altimetric

:::
sea

::::
level

:::
or
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::::::
current

::::
data

::::::::
(AVISO+)

:
.
::::
The

:::::::::
smoothing

::::::
applied

::
to

:::::::
generate

:::::
these

:::::::
products

::::
may

:::::
allow

:::::::::
alleviation

::
of
:::

the
::::::::::
complexity

:::::::::
associated

::::
with

::::::::::::
high-frequency

:::::::::
processes.400

Moving to more realistic
:
a
:::::
more

:::::::
realistic

::::
flow configuration will require evolving the flow synthesis

::::::::
synthetic

::::
flow strategy.

The present choice allowed
:
us

:
to generate flows with arbitrary spatiotemporal structure, even some

::::::::
including

::::
some

:::::
flows

:
that

are unlikely to occur in the Ocean
:::::
ocean, in order to enable a broad exploration of the inference performance. Such choice

::::
This

:::::::
approach

:
could be pushed further with superpositions

:::
the

:::::::::::
superposition of multiple processes ,

:::
and non-separable kernels

and will likely require leveraging spectral domain approaches. A switch to flows
::
As

:::::::::
highlighted

::
in
:::::::
Section

:::
3.5,

:::::
there

:::
are

:::::
some405

:::::::::::
computational

:::::::::
difficulties

::::
with

:::::::::
estimating

:::
the

:::::::
spectral

::::
slope

:::
via

:::
the

::::::
Matérn

:::::::::
covariance

::::::::
function.

:::::
Slope

::::::::
estimation

::
in

:::
the

:::::::
spectral

::::::
domain

::
is

::::::
simple

::
as

:::
the

:::::
slope

:::::::
appears

::
in
::::

the
::::
PSD

::
in

:::
an

::::::::::
analytically

:::::::
tractable

:::::
form

:::::::::::::::::::::
(see Sykulski et al., 2016)

:
;
::::::::
however,

:::
for

:::::
drifter

:::::
based

:::::::::
inference,

::
as

:::
we

:::
are

::::::::
interested

::
in

:::::::::
estimation

::
of
:::

the
::::::::

Eulerian
:::::::::
properties,

:::
we

::::::
cannot

:::
use

::::
such

::::::::::
Lagrangian

:::::::
spectral

:::::::::
techniques.

:::::
There

::::
are

:::::
some

:::::
recent

::::::
results

::::
that

::::::
resolve

::::
the

::::::::::::
computational

::::::
burden

::::::::
imparted

:::
by

:::
the

:::::::::
calculation

:::
of

:::
the

::::::
Bessel

:::::::
function

:::
and

:::
its

:::::::::
derivatives

::::::::::::::::
(Geoga et al., 2022)

:
.
::::::::::
Regrettably,

::
at

:::
the

::::
time

:::
of

::::::
writing,

:::::
code

:::
for

:::
this

::::::
study’s

::::::::::::
methodology

::
is

:::
not410

:::::
widely

::::::::
available

::::::
across

::::::
coding

:::::::::
platforms.

:::
We

:::::
hope

::::
that

::::
this,

::
or

::::::
similar

::::::::::::::
methodological

::::::::::::
advancements,

::::
may

:::
be

:::::::
included

:::
in

:::::
future

::::
work

::::
that

::::
will

:::::
focus

::
on

:::::::::
estimating

:::::
more

:::::::
realistic

:::::
flows.

:::::::
Finally,

:::::
using

::::
flows

:
generated from dynamical models (quasi-

geostrophic, primitive equations) may eventually be welcome however to evolve in
::::::::
necessary

::
to

::::::
capture

:
regimes of variability

more closely representative of the actual Ocean
:::::
ocean

:
dynamics with more realistic representations of process life cycles.

Applications of the inference method to realistic observation datasets (e.g. velocity observations from the Global Drifter415

Program - Lumpkin et al. (2017)) is also
:::::
would

:::
be

:
computationally prevented in the present form by

:::
due

::
to

:
the use of dense

covariance arrays. Alleviating this constraint will require
:
us

:
to leverage sparsity in

:::
the inference inputs associated from

::::
with

observations that are distant in space and/or time .
::::::::
compared

::
to

:::::::::
associated

:::::::::::
decorrelation

::::::
scales.

::::
Data

::::::::
collected

:::::
from

:::::::
regional

:::::::::
campaigns

:::
may

:::
be

::::
more

:::::::
suitable

::
in

:::
the

:::::
short

::::
term.

:

Code availability. The software code required to reproduce results are found at the following url: https://github.com/apatlpo/nwastats420

Video supplement. Animation of the synthetic flow and drifter trajectories in the REF, as well the REG[0.008] and REG[1.6] scenarios are

provided.
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5
::::::::
Appendix

6 MCMC Sampling

5.1
::::::

MCMC
:::::::::
Sampling

5.2 Metropolis-Hastings Algorithm

5.1.1
:::::::::::::::::
Metropolis-Hastings

::::::::::
Algorithm435

The
:::::::::
Markovian

:::::::
property

::
of

:::::::
MCMC

:::::::
implies

:::
that

::
a
::::::
sample

::::
Θ[i]

::::
only

::::::::
depends

::
on

:::
its

:::::::
previous

:::::::
sample

::::::
Θ[i−1];

:::
the

:::::::
method

:::
by

:::::
which

::::
Θ[i]

::
is

::::::::
generated

::::
from

::::::
Θ[i−1]

:::::::::::
distinguishes

:::
the

:::::::
various

::::::
MCMC

::::::::::
algorithms.

:::
All

:::::::
MCMC

:::::::::
algorithms

:::::::
propose

:::::
some

::::
Θ[∗]

::::
from

::::::
Θ[i−1]

:::
and

::::
with

::::::::::
probability

::
α

:::::
either

:::::
accept

:::::
Θ[∗],

::
in

:::::
which

::::
case

::::::::::
Θ[i] =Θ[∗],

:::
or

:::::
reject

::::
Θ[∗],

::
in
::::::
which

::::
case

::::::::::::
Θ[i] =Θ[i−1].

:::
The

:
Metropolis-Hastings

::::
(MH)

:
algorithm, initially proposed in (Metropolis et al., 1953)

::::::::
presented

::
in

::::::::::::::::::::
Metropolis et al. (1953)

and later extended by (?)
::::::::::::
Hastings (1970), generates a proposal Θ[∗] from Θ[i−1] using some user specified proposal distribution440

f(Θ[∗] |Θ[i−1]). Given a proposal Θ[∗], we accept the sample with probability r, where

r =min

(
1,

p(Θ[∗] | y)f(Θ[i−1] |Θ[∗])

p(Θ[i−1] | y)f(Θ[∗] |Θ[i−1])

)
. (13)

If the proposal density is symmetrical, that is, f(Θ[i−1] |Θ[∗]) = f(Θ[∗] |Θ[i−1]), then (13) reduces to the ratio of the posterior

densities and so the MH algorithm will always accept a proposed Θ[∗] that is more probable than Θ[i−1]. The choice of f(· | ·)
is critical to the success of the MH algorithm. If f(· | ·) is too wide then the algorithm can become stuck for many iterations,445

thus generating very few unique proposals. Conversely, if f(· | ·) is too narrow the algorithm will not effectively explore the

parameter space, the sampled Θ[1], . . . ,Θ[n] will be highly correlated, and again, few independent samples will be generated.

One of the main drawbacks of the MH algorithm is that there are sampling parameters that need to be hand-tuned, we provide

some guidance on this in the appendix alongside some diagnostics of the main results.
:
.

We parameterise
::::::::::
parameterize

:
f(· | ·) as a multivariate normal distribution with mean Θ[i−1] and diagonal covariance ma-450

trix. The standard deviations are set to 1/20th of the true values; this yields
:
A
::::::
widely

::::::
agreed

:::::
upon

::::::::::::
rule-of-thumb

::
to

:::::::
balance

:::::::::
exploration

:::
and

:::::::::::
exploitation

::
of

:::
the

:::::::
posterior

::::::::::
distribution

::
is an acceptance probability of ∼ 0.25which is a widely agreed upon

rule-of-thumb to balance exploration and exploitation of the
:
.
:::::::::::
Accordingly,

:::
we

:::
set

:::
the

::::::::
standard

:::::::::
deviations

::
of

:::
the

::::::::
proposal
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:::::::::
distribution

::
to
:::

be
:::::::
between

::::
0.05

::::
and

:::
0.2

:::
of

:::
the

:::
true

:::::::::
parameter

::::::
values,

::::::::::::
corresponding

:::
to

::::::::
situations

::::::
where

:::
we

::::
have

:::::
larger

::::
and

:::::
lower

:::::::
instances

::
of
::::::::
observed

::::
data.

::::
The

::::::
reason

:::
for

:::
this

::
is

::::::
simple:

::
as

:::
the

:::::::
number

::
of

:::::::::::
observations

::::::::
increases,

:::
the

:::::::::
uncertainty

:::
of

:::
our455

::::::::
parameter

:::::
values

:::::::::
decreases,

::::::::
implying

:
a
::::::
tighter posterior distribution.

:::::::::::
Consequently,

:
a
::::::
tighter

:::::::
proposal

::::::::::
distribution

::
is

:::::::
required

::
to

::::::
achieve

:
a
::::::::::
comparable

:::::::::
acceptance

::::::::::
probability.

:
Full validation results to guarantee fit and convergence of the MCMC estimation

algorithm are presented alongside the code at https://github.com/apatlpo/nwa
::::::
nwastats.

5.2 Notes on alternative MCMC sampling algorithms

5.1.1
:::::
Notes

::
on

::::::::::
alternative

:::::::
MCMC

::::::::
sampling

::::::::::
algorithms460

Modern MCMC algorithms have been dominated by gradient-based proposal methods where a proposal Θ[∗] is generated

by assessing the local topology surrounding Θ[i−1]: this allows the algorithm to efficiently trade off notions of exploration

and exploitation of the posterior. Included in these algorithms are the popular Hamiltonian Monte Carlo techniques, such as

those implemented in Stan (Carpenter et al., 2017), PyMC3 (Salvatier et al., 2016) and Pyro (Bingham et al., 2019); these

implementations, as well as others such as GPJax (Pinder and Dodd, 2022) will typically use symbolic toolboxes to define465

the local topology of the posterior. As discussed above, we parameterise our model using the Matérn covariance function

as it exemplifies a number of desirable physical characteristics. However, the derivatives of the Matérn covariance function

are difficult to obtain due to K|ν|(·): analytical derivatives are only available at integer values of ν− 1/2, and numerical

calculations of K|ν|(·) are not available in any symbolic toolboxes that we are aware of. Competing
:::::::::
Alternative MCMC

algorithms should not affect the accuracy of the posterior estimation; but rather, they will differ in their sampling efficiency.470

This study is concerned with inference, and not operationalization, and so we choose the Metropolis-Hastings algorithm so as

to avoid the issue of gradients at the cost of some hand-tuning of the algorithm.

5.2
:::::::

Platform
:::::
array

::::::
design

:::
For

:::
the

:::::::::
experiment

::::
OPT[

:::
Np]

:
,
::::::::
platforms

:::
are

:::::::
deployed

::
at
::::::::
locations

::::
that

:::
aim

::
to

::::
span

::
a

::::
wide

:::::
range

::
of

:::::::
platform

::::::::::
separations

::::::
around

::::
some

::::::::::
expectation

::
of

:::
the

::::::
spatial

:::::
scale

::::::::::::
decorrelation.

:::
For

::::
that

:::::::
purpose,

::::::::
locations

:::::
were

::
set

::::::
along

:
a
:::::
spiral

:::::::
defined

::
by

:::
its

::::::
spatial475

:::::::
footprint

::
L,

::::::::::
orientation

::
β,

:::
and

::::::
center

::::::
(xc,yc):::::::::

according
::
to:

:

xj + iyj
::::::

= xc+ iyc+ rθj × ei(θj+β), with
:::::::::::::::::::::::::::

(14)

θj =
:::

j× δ, and, r =

L/δ, if Np = 2

L/(2Npδ), otherwise
::::::::::::::::::::::::::::::::::

(15)

:::::
where

::::::::::
0≤ j < Np :

is
::
a
:::::::
platform

::::
digit

::::::::
identifier.

:::
We

::::
have

:::::
made

:::
the

::::::
choice

:::::::
δ = π/3.

:::
An

:::::::::
illustration

::
of

:::::
such

:::::::
platform

::::::::::
deployment

:
is
:::::::::
illustrated

::
in

:::::::::
Figure 9a.

::::
The

:::::::::
distribution

:::
of

:::::::
platform

::::::::::
separations

::::::::::
successfully

:::::
spans

:::
the

:::::::::
ensemble

::
of

::::::
length

:::::
scales

:::
up

::
to

::
L480

::::::::::
(Figure 9b).
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Figure 9.
::
(a)

:::::::::
Illustration

::
of

::
an

::::
array

::
of

:::::::
Np = 16

:::::::
platforms

:::
for

::::::::::
L= 200 km

:::
and

:::::::
β = π/3

:::
used

::
in
::::
OPT[

::
Np].

:::
(b)

:::::::::::
Corresponding

:::::::::
distribution

:
of
:::::::

platform
:::::::::
separations.

:

::::
Each

::::
draw

::
in

:::
the

::::
OPT[

:::
Np]

:::::::
ensemble

::::::::::
experiment

:
is
:::::
based

:::::
upon

:::::::
uniform

::::::
random

:::::
draws

::
of

:::
the

:::::
spiral

:::::
center

::::::
within

:::
the

:::::::
domain,

::
of

:::
the

:::::
spatial

::::::::
footprint

::
L

:::::
within

:
[
:::::
50km

::::
,300

:::
km],

::::
and

::
of

:::
the

:::::::::
orientation

::
β

:::::
within

:
[
::
0,

:::
2π]

:
.

6
::::::::
Notations
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Table 2.
:::::::
Notations

Inferred parameters:

:
γ
: :::::::::::

streamfunction
:::::::
amplitude

::
to
:::::
spatial

::::::::::
decorrelation

::::
scale

::::
ratio

:

::
λs :::::

spatial
::::::::::
decorrelation

::::
scale

::
λt ::::::

temporal
::::::::::
decorrelation

::::
scale

:

:
σ
: ::::

noise
::::::
standard

:::::::
deviation

:

::
νs :::::

spatial
::::
slope

::::::::
parameter,

::::
only

::::::
inferred

::
in

:::::
section

:::
3.5

::
νt ::::::

temporal
:::::
slope

::::::::
parameter,

:::
only

::::::
inferred

::
in
::::::
section

:::
3.5

:
Θ
: ::::

vector
::::::::

composed
::
of

::
all

:::::::
inferred

::::::::
parameters

Other parameters:

:
U
: :::

flow
::::::::
amplitude

:
Ψ
: :::::::::::

streamfunction
:::::::
amplitude

:

:::::::::
α= Uλt/λs: ::::::::::::

non-dimensional
::::
flow

:::::::
parameter

:

::
Np: :::::

number
::

of
::::::::
observing

:::::::
platforms

::::
(e.g.

::::::
drifters

::
or

:::::::
moorings)

:

Variables:

:::
x,y

:::::
spatial

::::::::
coordinate

::
or

:::::::
increment

:

:
t

::::::
temporal

::::::::
coordinate

::
or
::::::::
increment

:::
u,v

:::::::
horizontal

:::::::
velocity

:::
field

:

:
ψ
: :::::::::::

streamfunction

:
ϕ
: :::

flow
:::::::
potential

:::
Cab ::::::::::::

cross-correlation
:::::::
between

::::::
variables

::
a
:::
and

:
b
:

:::
Sab :::::::::::

cross-spectrum
::::::
between

:::::::
variables

::
a

:::
and

:
b

::::
(k, l)

:::::::
horizontal

:::::::::::
wavenumbers

::
Kν: ::::::

modified
::::::
Bessel

::::::
function

::
of

:::
the

:::::
second

::::
kind

::
of

::::
order

:
ν
:

:
Γ
: ::::::

Gamma
::::::
function

:

:
y
: ::::::::

observation
:::::
vector

:
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